blob: 14868cb45a1ddc4e6afc10e3afc470a471fad1db [file] [log] [blame]
/*
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "code/relocInfo.hpp"
#include "nativeInst_x86.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/safepoint.hpp"
void Relocation::pd_set_data_value(address x, intptr_t o, bool verify_only) {
#ifdef AMD64
x += o;
typedef Assembler::WhichOperand WhichOperand;
WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm, call32, narrow oop
assert(which == Assembler::disp32_operand ||
which == Assembler::narrow_oop_operand ||
which == Assembler::imm_operand, "format unpacks ok");
if (which == Assembler::imm_operand) {
if (verify_only) {
assert(*pd_address_in_code() == x, "instructions must match");
} else {
*pd_address_in_code() = x;
}
} else if (which == Assembler::narrow_oop_operand) {
address disp = Assembler::locate_operand(addr(), which);
// both compressed oops and compressed classes look the same
if (Universe::heap()->is_in_reserved((oop)x)) {
if (verify_only) {
assert(*(uint32_t*) disp == oopDesc::encode_heap_oop((oop)x), "instructions must match");
} else {
*(int32_t*) disp = oopDesc::encode_heap_oop((oop)x);
}
} else {
if (verify_only) {
assert(*(uint32_t*) disp == Klass::encode_klass((Klass*)x), "instructions must match");
} else {
*(int32_t*) disp = Klass::encode_klass((Klass*)x);
}
}
} else {
// Note: Use runtime_call_type relocations for call32_operand.
address ip = addr();
address disp = Assembler::locate_operand(ip, which);
address next_ip = Assembler::locate_next_instruction(ip);
if (verify_only) {
assert(*(int32_t*) disp == (x - next_ip), "instructions must match");
} else {
*(int32_t*) disp = x - next_ip;
}
}
#else
if (verify_only) {
assert(*pd_address_in_code() == (x + o), "instructions must match");
} else {
*pd_address_in_code() = x + o;
}
#endif // AMD64
}
address Relocation::pd_call_destination(address orig_addr) {
intptr_t adj = 0;
if (orig_addr != NULL) {
// We just moved this call instruction from orig_addr to addr().
// This means its target will appear to have grown by addr() - orig_addr.
adj = -( addr() - orig_addr );
}
NativeInstruction* ni = nativeInstruction_at(addr());
if (ni->is_call()) {
return nativeCall_at(addr())->destination() + adj;
} else if (ni->is_jump()) {
return nativeJump_at(addr())->jump_destination() + adj;
} else if (ni->is_cond_jump()) {
return nativeGeneralJump_at(addr())->jump_destination() + adj;
} else if (ni->is_mov_literal64()) {
return (address) ((NativeMovConstReg*)ni)->data();
} else {
ShouldNotReachHere();
return NULL;
}
}
void Relocation::pd_set_call_destination(address x) {
NativeInstruction* ni = nativeInstruction_at(addr());
if (ni->is_call()) {
nativeCall_at(addr())->set_destination(x);
} else if (ni->is_jump()) {
NativeJump* nj = nativeJump_at(addr());
// Unresolved jumps are recognized by a destination of -1
// However 64bit can't actually produce such an address
// and encodes a jump to self but jump_destination will
// return a -1 as the signal. We must not relocate this
// jmp or the ic code will not see it as unresolved.
if (nj->jump_destination() == (address) -1) {
x = addr(); // jump to self
}
nj->set_jump_destination(x);
} else if (ni->is_cond_jump()) {
// %%%% kludge this, for now, until we get a jump_destination method
address old_dest = nativeGeneralJump_at(addr())->jump_destination();
address disp = Assembler::locate_operand(addr(), Assembler::call32_operand);
*(jint*)disp += (x - old_dest);
} else if (ni->is_mov_literal64()) {
((NativeMovConstReg*)ni)->set_data((intptr_t)x);
} else {
ShouldNotReachHere();
}
}
address* Relocation::pd_address_in_code() {
// All embedded Intel addresses are stored in 32-bit words.
// Since the addr points at the start of the instruction,
// we must parse the instruction a bit to find the embedded word.
assert(is_data(), "must be a DataRelocation");
typedef Assembler::WhichOperand WhichOperand;
WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32
#ifdef AMD64
assert(which == Assembler::disp32_operand ||
which == Assembler::call32_operand ||
which == Assembler::imm_operand, "format unpacks ok");
// The "address" in the code is a displacement can't return it as
// and address* since it is really a jint*
guarantee(which == Assembler::imm_operand, "must be immediate operand");
#else
assert(which == Assembler::disp32_operand || which == Assembler::imm_operand, "format unpacks ok");
#endif // AMD64
return (address*) Assembler::locate_operand(addr(), which);
}
address Relocation::pd_get_address_from_code() {
#ifdef AMD64
// All embedded Intel addresses are stored in 32-bit words.
// Since the addr points at the start of the instruction,
// we must parse the instruction a bit to find the embedded word.
assert(is_data(), "must be a DataRelocation");
typedef Assembler::WhichOperand WhichOperand;
WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32
assert(which == Assembler::disp32_operand ||
which == Assembler::call32_operand ||
which == Assembler::imm_operand, "format unpacks ok");
if (which != Assembler::imm_operand) {
address ip = addr();
address disp = Assembler::locate_operand(ip, which);
address next_ip = Assembler::locate_next_instruction(ip);
address a = next_ip + *(int32_t*) disp;
return a;
}
#endif // AMD64
return *pd_address_in_code();
}
void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
#ifdef _LP64
if (!Assembler::is_polling_page_far()) {
typedef Assembler::WhichOperand WhichOperand;
WhichOperand which = (WhichOperand) format();
// This format is imm but it is really disp32
which = Assembler::disp32_operand;
address orig_addr = old_addr_for(addr(), src, dest);
NativeInstruction* oni = nativeInstruction_at(orig_addr);
int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which);
// This poll_addr is incorrect by the size of the instruction it is irrelevant
intptr_t poll_addr = (intptr_t)oni + *orig_disp;
NativeInstruction* ni = nativeInstruction_at(addr());
intptr_t new_disp = poll_addr - (intptr_t) ni;
int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which);
* disp = (int32_t)new_disp;
}
#endif // _LP64
}
void poll_return_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
#ifdef _LP64
if (!Assembler::is_polling_page_far()) {
typedef Assembler::WhichOperand WhichOperand;
WhichOperand which = (WhichOperand) format();
// This format is imm but it is really disp32
which = Assembler::disp32_operand;
address orig_addr = old_addr_for(addr(), src, dest);
NativeInstruction* oni = nativeInstruction_at(orig_addr);
int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which);
// This poll_addr is incorrect by the size of the instruction it is irrelevant
intptr_t poll_addr = (intptr_t)oni + *orig_disp;
NativeInstruction* ni = nativeInstruction_at(addr());
intptr_t new_disp = poll_addr - (intptr_t) ni;
int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which);
* disp = (int32_t)new_disp;
}
#endif // _LP64
}
void metadata_Relocation::pd_fix_value(address x) {
}