blob: ee7b925bc0afcf02f08d14f3f4f3347107a8cd9f [file] [log] [blame]
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* Copyright 2013, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateInterpreter.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "utilities/macros.hpp"
#ifndef CC_INTERP
#undef __
#define __ _masm->
// ============================================================================
// Misc helpers
// Do an oop store like *(base + index) = val OR *(base + offset) = val
// (only one of both variants is possible at the same time).
// Index can be noreg.
// Kills:
// Rbase, Rtmp
static void do_oop_store(InterpreterMacroAssembler* _masm,
Register Rbase,
RegisterOrConstant offset,
Register Rval, // Noreg means always null.
Register Rtmp1,
Register Rtmp2,
Register Rtmp3,
BarrierSet::Name barrier,
bool precise,
bool check_null) {
assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
switch (barrier) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1SATBCT:
case BarrierSet::G1SATBCTLogging:
{
// Load and record the previous value.
__ g1_write_barrier_pre(Rbase, offset,
Rtmp3, /* holder of pre_val ? */
Rtmp1, Rtmp2, false /* frame */);
Label Lnull, Ldone;
if (Rval != noreg) {
if (check_null) {
__ cmpdi(CCR0, Rval, 0);
__ beq(CCR0, Lnull);
}
__ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
// Mark the card.
if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
__ add(Rbase, offset, Rbase);
}
__ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
if (check_null) { __ b(Ldone); }
}
if (Rval == noreg || check_null) { // Store null oop.
Register Rnull = Rval;
__ bind(Lnull);
if (Rval == noreg) {
Rnull = Rtmp1;
__ li(Rnull, 0);
}
if (UseCompressedOops) {
__ stw(Rnull, offset, Rbase);
} else {
__ std(Rnull, offset, Rbase);
}
}
__ bind(Ldone);
}
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
{
Label Lnull, Ldone;
if (Rval != noreg) {
if (check_null) {
__ cmpdi(CCR0, Rval, 0);
__ beq(CCR0, Lnull);
}
__ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
// Mark the card.
if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
__ add(Rbase, offset, Rbase);
}
__ card_write_barrier_post(Rbase, Rval, Rtmp1);
if (check_null) {
__ b(Ldone);
}
}
if (Rval == noreg || check_null) { // Store null oop.
Register Rnull = Rval;
__ bind(Lnull);
if (Rval == noreg) {
Rnull = Rtmp1;
__ li(Rnull, 0);
}
if (UseCompressedOops) {
__ stw(Rnull, offset, Rbase);
} else {
__ std(Rnull, offset, Rbase);
}
}
__ bind(Ldone);
}
break;
case BarrierSet::ModRef:
case BarrierSet::Other:
ShouldNotReachHere();
break;
default:
ShouldNotReachHere();
}
}
// ============================================================================
// Platform-dependent initialization
void TemplateTable::pd_initialize() {
// No ppc64 specific initialization.
}
Address TemplateTable::at_bcp(int offset) {
// Not used on ppc.
ShouldNotReachHere();
return Address();
}
// Patches the current bytecode (ptr to it located in bcp)
// in the bytecode stream with a new one.
void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
// With sharing on, may need to test method flag.
if (!RewriteBytecodes) return;
Label L_patch_done;
switch (new_bc) {
case Bytecodes::_fast_aputfield:
case Bytecodes::_fast_bputfield:
case Bytecodes::_fast_zputfield:
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_dputfield:
case Bytecodes::_fast_fputfield:
case Bytecodes::_fast_iputfield:
case Bytecodes::_fast_lputfield:
case Bytecodes::_fast_sputfield:
{
// We skip bytecode quickening for putfield instructions when
// the put_code written to the constant pool cache is zero.
// This is required so that every execution of this instruction
// calls out to InterpreterRuntime::resolve_get_put to do
// additional, required work.
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
assert(load_bc_into_bc_reg, "we use bc_reg as temp");
__ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
// ((*(cache+indices))>>((1+byte_no)*8))&0xFF:
#if defined(VM_LITTLE_ENDIAN)
__ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp);
#else
__ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
#endif
__ cmpwi(CCR0, Rnew_bc, 0);
__ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
__ beq(CCR0, L_patch_done);
// __ isync(); // acquire not needed
break;
}
default:
assert(byte_no == -1, "sanity");
if (load_bc_into_bc_reg) {
__ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
}
}
if (JvmtiExport::can_post_breakpoint()) {
Label L_fast_patch;
__ lbz(Rtemp, 0, R14_bcp);
__ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
__ bne(CCR0, L_fast_patch);
// Perform the quickening, slowly, in the bowels of the breakpoint table.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
__ b(L_patch_done);
__ bind(L_fast_patch);
}
// Patch bytecode.
__ stb(Rnew_bc, 0, R14_bcp);
__ bind(L_patch_done);
}
// ============================================================================
// Individual instructions
void TemplateTable::nop() {
transition(vtos, vtos);
// Nothing to do.
}
void TemplateTable::shouldnotreachhere() {
transition(vtos, vtos);
__ stop("shouldnotreachhere bytecode");
}
void TemplateTable::aconst_null() {
transition(vtos, atos);
__ li(R17_tos, 0);
}
void TemplateTable::iconst(int value) {
transition(vtos, itos);
assert(value >= -1 && value <= 5, "");
__ li(R17_tos, value);
}
void TemplateTable::lconst(int value) {
transition(vtos, ltos);
assert(value >= -1 && value <= 5, "");
__ li(R17_tos, value);
}
void TemplateTable::fconst(int value) {
transition(vtos, ftos);
static float zero = 0.0;
static float one = 1.0;
static float two = 2.0;
switch (value) {
default: ShouldNotReachHere();
case 0: {
int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
__ lfs(F15_ftos, simm16_offset, R11_scratch1);
break;
}
case 1: {
int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
__ lfs(F15_ftos, simm16_offset, R11_scratch1);
break;
}
case 2: {
int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
__ lfs(F15_ftos, simm16_offset, R11_scratch1);
break;
}
}
}
void TemplateTable::dconst(int value) {
transition(vtos, dtos);
static double zero = 0.0;
static double one = 1.0;
switch (value) {
case 0: {
int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
__ lfd(F15_ftos, simm16_offset, R11_scratch1);
break;
}
case 1: {
int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
__ lfd(F15_ftos, simm16_offset, R11_scratch1);
break;
}
default: ShouldNotReachHere();
}
}
void TemplateTable::bipush() {
transition(vtos, itos);
__ lbz(R17_tos, 1, R14_bcp);
__ extsb(R17_tos, R17_tos);
}
void TemplateTable::sipush() {
transition(vtos, itos);
__ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
}
void TemplateTable::ldc(bool wide) {
Register Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2,
Rcpool = R3_ARG1;
transition(vtos, vtos);
Label notInt, notClass, exit;
__ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
if (wide) { // Read index.
__ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
} else {
__ lbz(Rscratch1, 1, R14_bcp);
}
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// Get type from tags.
__ addi(Rscratch2, Rscratch2, tags_offset);
__ lbzx(Rscratch2, Rscratch2, Rscratch1);
__ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
__ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
__ cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
// Resolved class - need to call vm to get java mirror of the class.
__ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
__ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Neither resolved class nor unresolved case from above?
__ beq(CCR0, notClass);
__ li(R4, wide ? 1 : 0);
call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
__ push(atos);
__ b(exit);
__ align(32, 12);
__ bind(notClass);
__ addi(Rcpool, Rcpool, base_offset);
__ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
__ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
__ bne(CCR0, notInt);
__ lwax(R17_tos, Rcpool, Rscratch1);
__ push(itos);
__ b(exit);
__ align(32, 12);
__ bind(notInt);
#ifdef ASSERT
// String and Object are rewritten to fast_aldc
__ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
__ asm_assert_eq("unexpected type", 0x8765);
#endif
__ lfsx(F15_ftos, Rcpool, Rscratch1);
__ push(ftos);
__ align(32, 12);
__ bind(exit);
}
// Fast path for caching oop constants.
void TemplateTable::fast_aldc(bool wide) {
transition(vtos, atos);
int index_size = wide ? sizeof(u2) : sizeof(u1);
const Register Rscratch = R11_scratch1;
Label resolved;
// We are resolved if the resolved reference cache entry contains a
// non-null object (CallSite, etc.)
__ get_cache_index_at_bcp(Rscratch, 1, index_size); // Load index.
__ load_resolved_reference_at_index(R17_tos, Rscratch);
__ cmpdi(CCR0, R17_tos, 0);
__ bne(CCR0, resolved);
__ load_const_optimized(R3_ARG1, (int)bytecode());
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
// First time invocation - must resolve first.
__ call_VM(R17_tos, entry, R3_ARG1);
__ align(32, 12);
__ bind(resolved);
__ verify_oop(R17_tos);
}
void TemplateTable::ldc2_w() {
transition(vtos, vtos);
Label Llong, Lexit;
Register Rindex = R11_scratch1,
Rcpool = R12_scratch2,
Rtag = R3_ARG1;
__ get_cpool_and_tags(Rcpool, Rtag);
__ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// Get type from tags.
__ addi(Rcpool, Rcpool, base_offset);
__ addi(Rtag, Rtag, tags_offset);
__ lbzx(Rtag, Rtag, Rindex);
__ sldi(Rindex, Rindex, LogBytesPerWord);
__ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
__ bne(CCR0, Llong);
// A double can be placed at word-aligned locations in the constant pool.
// Check out Conversions.java for an example.
// Also ConstantPool::header_size() is 20, which makes it very difficult
// to double-align double on the constant pool. SG, 11/7/97
__ lfdx(F15_ftos, Rcpool, Rindex);
__ push(dtos);
__ b(Lexit);
__ bind(Llong);
__ ldx(R17_tos, Rcpool, Rindex);
__ push(ltos);
__ bind(Lexit);
}
// Get the locals index located in the bytecode stream at bcp + offset.
void TemplateTable::locals_index(Register Rdst, int offset) {
__ lbz(Rdst, offset, R14_bcp);
}
void TemplateTable::iload() {
transition(vtos, itos);
// Get the local value into tos
const Register Rindex = R22_tmp2;
locals_index(Rindex);
// Rewrite iload,iload pair into fast_iload2
// iload,caload pair into fast_icaload
if (RewriteFrequentPairs) {
Label Lrewrite, Ldone;
Register Rnext_byte = R3_ARG1,
Rrewrite_to = R6_ARG4,
Rscratch = R11_scratch1;
// get next byte
__ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
// if _iload, wait to rewrite to iload2. We only want to rewrite the
// last two iloads in a pair. Comparing against fast_iload means that
// the next bytecode is neither an iload or a caload, and therefore
// an iload pair.
__ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
__ beq(CCR0, Ldone);
__ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
__ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
__ beq(CCR1, Lrewrite);
__ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
__ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
__ beq(CCR0, Lrewrite);
__ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
__ bind(Lrewrite);
patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
__ bind(Ldone);
}
__ load_local_int(R17_tos, Rindex, Rindex);
}
// Load 2 integers in a row without dispatching
void TemplateTable::fast_iload2() {
transition(vtos, itos);
__ lbz(R3_ARG1, 1, R14_bcp);
__ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
__ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
__ load_local_int(R17_tos, R12_scratch2, R17_tos);
__ push_i(R3_ARG1);
}
void TemplateTable::fast_iload() {
transition(vtos, itos);
// Get the local value into tos
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ load_local_int(R17_tos, Rindex, Rindex);
}
// Load a local variable type long from locals area to TOS cache register.
// Local index resides in bytecodestream.
void TemplateTable::lload() {
transition(vtos, ltos);
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ load_local_long(R17_tos, Rindex, Rindex);
}
void TemplateTable::fload() {
transition(vtos, ftos);
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ load_local_float(F15_ftos, Rindex, Rindex);
}
void TemplateTable::dload() {
transition(vtos, dtos);
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ load_local_double(F15_ftos, Rindex, Rindex);
}
void TemplateTable::aload() {
transition(vtos, atos);
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ load_local_ptr(R17_tos, Rindex, Rindex);
}
void TemplateTable::locals_index_wide(Register Rdst) {
// Offset is 2, not 1, because Lbcp points to wide prefix code.
__ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
}
void TemplateTable::wide_iload() {
// Get the local value into tos.
const Register Rindex = R11_scratch1;
locals_index_wide(Rindex);
__ load_local_int(R17_tos, Rindex, Rindex);
}
void TemplateTable::wide_lload() {
transition(vtos, ltos);
const Register Rindex = R11_scratch1;
locals_index_wide(Rindex);
__ load_local_long(R17_tos, Rindex, Rindex);
}
void TemplateTable::wide_fload() {
transition(vtos, ftos);
const Register Rindex = R11_scratch1;
locals_index_wide(Rindex);
__ load_local_float(F15_ftos, Rindex, Rindex);
}
void TemplateTable::wide_dload() {
transition(vtos, dtos);
const Register Rindex = R11_scratch1;
locals_index_wide(Rindex);
__ load_local_double(F15_ftos, Rindex, Rindex);
}
void TemplateTable::wide_aload() {
transition(vtos, atos);
const Register Rindex = R11_scratch1;
locals_index_wide(Rindex);
__ load_local_ptr(R17_tos, Rindex, Rindex);
}
void TemplateTable::iaload() {
transition(itos, itos);
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R5_ARG3;
__ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
__ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
}
void TemplateTable::laload() {
transition(itos, ltos);
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R5_ARG3;
__ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
__ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
}
void TemplateTable::faload() {
transition(itos, ftos);
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R5_ARG3;
__ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
__ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
}
void TemplateTable::daload() {
transition(itos, dtos);
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R5_ARG3;
__ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
__ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
}
void TemplateTable::aaload() {
transition(itos, atos);
// tos: index
// result tos: array
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R5_ARG3;
__ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
__ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
__ verify_oop(R17_tos);
//__ dcbt(R17_tos); // prefetch
}
void TemplateTable::baload() {
transition(itos, itos);
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R5_ARG3;
__ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
__ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
__ extsb(R17_tos, R17_tos);
}
void TemplateTable::caload() {
transition(itos, itos);
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R5_ARG3;
__ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
__ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
}
// Iload followed by caload frequent pair.
void TemplateTable::fast_icaload() {
transition(vtos, itos);
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R11_scratch1;
locals_index(R17_tos);
__ load_local_int(R17_tos, Rtemp, R17_tos);
__ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
__ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
}
void TemplateTable::saload() {
transition(itos, itos);
const Register Rload_addr = R11_scratch1,
Rarray = R12_scratch2,
Rtemp = R3_ARG1;
__ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
__ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
}
void TemplateTable::iload(int n) {
transition(vtos, itos);
__ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
}
void TemplateTable::lload(int n) {
transition(vtos, ltos);
__ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
}
void TemplateTable::fload(int n) {
transition(vtos, ftos);
__ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
}
void TemplateTable::dload(int n) {
transition(vtos, dtos);
__ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
}
void TemplateTable::aload(int n) {
transition(vtos, atos);
__ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
}
void TemplateTable::aload_0() {
transition(vtos, atos);
// According to bytecode histograms, the pairs:
//
// _aload_0, _fast_igetfield
// _aload_0, _fast_agetfield
// _aload_0, _fast_fgetfield
//
// occur frequently. If RewriteFrequentPairs is set, the (slow)
// _aload_0 bytecode checks if the next bytecode is either
// _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
// rewrites the current bytecode into a pair bytecode; otherwise it
// rewrites the current bytecode into _0 that doesn't do
// the pair check anymore.
//
// Note: If the next bytecode is _getfield, the rewrite must be
// delayed, otherwise we may miss an opportunity for a pair.
//
// Also rewrite frequent pairs
// aload_0, aload_1
// aload_0, iload_1
// These bytecodes with a small amount of code are most profitable
// to rewrite.
if (RewriteFrequentPairs) {
Label Lrewrite, Ldont_rewrite;
Register Rnext_byte = R3_ARG1,
Rrewrite_to = R6_ARG4,
Rscratch = R11_scratch1;
// Get next byte.
__ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
// If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
__ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
__ beq(CCR0, Ldont_rewrite);
__ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
__ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
__ beq(CCR1, Lrewrite);
__ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
__ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
__ beq(CCR0, Lrewrite);
__ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
__ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
__ beq(CCR1, Lrewrite);
__ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
__ bind(Lrewrite);
patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
__ bind(Ldont_rewrite);
}
// Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
aload(0);
}
void TemplateTable::istore() {
transition(itos, vtos);
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ store_local_int(R17_tos, Rindex);
}
void TemplateTable::lstore() {
transition(ltos, vtos);
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ store_local_long(R17_tos, Rindex);
}
void TemplateTable::fstore() {
transition(ftos, vtos);
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ store_local_float(F15_ftos, Rindex);
}
void TemplateTable::dstore() {
transition(dtos, vtos);
const Register Rindex = R11_scratch1;
locals_index(Rindex);
__ store_local_double(F15_ftos, Rindex);
}
void TemplateTable::astore() {
transition(vtos, vtos);
const Register Rindex = R11_scratch1;
__ pop_ptr();
__ verify_oop_or_return_address(R17_tos, Rindex);
locals_index(Rindex);
__ store_local_ptr(R17_tos, Rindex);
}
void TemplateTable::wide_istore() {
transition(vtos, vtos);
const Register Rindex = R11_scratch1;
__ pop_i();
locals_index_wide(Rindex);
__ store_local_int(R17_tos, Rindex);
}
void TemplateTable::wide_lstore() {
transition(vtos, vtos);
const Register Rindex = R11_scratch1;
__ pop_l();
locals_index_wide(Rindex);
__ store_local_long(R17_tos, Rindex);
}
void TemplateTable::wide_fstore() {
transition(vtos, vtos);
const Register Rindex = R11_scratch1;
__ pop_f();
locals_index_wide(Rindex);
__ store_local_float(F15_ftos, Rindex);
}
void TemplateTable::wide_dstore() {
transition(vtos, vtos);
const Register Rindex = R11_scratch1;
__ pop_d();
locals_index_wide(Rindex);
__ store_local_double(F15_ftos, Rindex);
}
void TemplateTable::wide_astore() {
transition(vtos, vtos);
const Register Rindex = R11_scratch1;
__ pop_ptr();
__ verify_oop_or_return_address(R17_tos, Rindex);
locals_index_wide(Rindex);
__ store_local_ptr(R17_tos, Rindex);
}
void TemplateTable::iastore() {
transition(itos, vtos);
const Register Rindex = R3_ARG1,
Rstore_addr = R4_ARG2,
Rarray = R5_ARG3,
Rtemp = R6_ARG4;
__ pop_i(Rindex);
__ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
__ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
}
void TemplateTable::lastore() {
transition(ltos, vtos);
const Register Rindex = R3_ARG1,
Rstore_addr = R4_ARG2,
Rarray = R5_ARG3,
Rtemp = R6_ARG4;
__ pop_i(Rindex);
__ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
__ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
}
void TemplateTable::fastore() {
transition(ftos, vtos);
const Register Rindex = R3_ARG1,
Rstore_addr = R4_ARG2,
Rarray = R5_ARG3,
Rtemp = R6_ARG4;
__ pop_i(Rindex);
__ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
__ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
}
void TemplateTable::dastore() {
transition(dtos, vtos);
const Register Rindex = R3_ARG1,
Rstore_addr = R4_ARG2,
Rarray = R5_ARG3,
Rtemp = R6_ARG4;
__ pop_i(Rindex);
__ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
__ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
}
// Pop 3 values from the stack and...
void TemplateTable::aastore() {
transition(vtos, vtos);
Label Lstore_ok, Lis_null, Ldone;
const Register Rindex = R3_ARG1,
Rarray = R4_ARG2,
Rscratch = R11_scratch1,
Rscratch2 = R12_scratch2,
Rarray_klass = R5_ARG3,
Rarray_element_klass = Rarray_klass,
Rvalue_klass = R6_ARG4,
Rstore_addr = R31; // Use register which survives VM call.
__ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
__ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
__ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp); // Get array.
__ verify_oop(R17_tos);
__ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
// Rindex is dead!
Register Rscratch3 = Rindex;
// Do array store check - check for NULL value first.
__ cmpdi(CCR0, R17_tos, 0);
__ beq(CCR0, Lis_null);
__ load_klass(Rarray_klass, Rarray);
__ load_klass(Rvalue_klass, R17_tos);
// Do fast instanceof cache test.
__ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
// Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
__ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
// Fell through: subtype check failed => throw an exception.
__ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
__ mtctr(R11_scratch1);
__ bctr();
__ bind(Lis_null);
do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
__ profile_null_seen(Rscratch, Rscratch2);
__ b(Ldone);
// Store is OK.
__ bind(Lstore_ok);
do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
__ bind(Ldone);
// Adjust sp (pops array, index and value).
__ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
}
void TemplateTable::bastore() {
transition(itos, vtos);
const Register Rindex = R11_scratch1,
Rarray = R12_scratch2,
Rscratch = R3_ARG1;
__ pop_i(Rindex);
__ pop_ptr(Rarray);
// tos: val
// Need to check whether array is boolean or byte
// since both types share the bastore bytecode.
__ load_klass(Rscratch, Rarray);
__ lwz(Rscratch, in_bytes(Klass::layout_helper_offset()), Rscratch);
int diffbit = exact_log2(Klass::layout_helper_boolean_diffbit());
__ testbitdi(CCR0, R0, Rscratch, diffbit);
Label L_skip;
__ bfalse(CCR0, L_skip);
__ andi(R17_tos, R17_tos, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
__ bind(L_skip);
__ index_check_without_pop(Rarray, Rindex, 0, Rscratch, Rarray);
__ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
}
void TemplateTable::castore() {
transition(itos, vtos);
const Register Rindex = R11_scratch1,
Rarray = R12_scratch2,
Rscratch = R3_ARG1;
__ pop_i(Rindex);
// tos: val
// Rarray: array ptr (popped by index_check)
__ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
__ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
}
void TemplateTable::sastore() {
castore();
}
void TemplateTable::istore(int n) {
transition(itos, vtos);
__ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
}
void TemplateTable::lstore(int n) {
transition(ltos, vtos);
__ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
}
void TemplateTable::fstore(int n) {
transition(ftos, vtos);
__ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
}
void TemplateTable::dstore(int n) {
transition(dtos, vtos);
__ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
}
void TemplateTable::astore(int n) {
transition(vtos, vtos);
__ pop_ptr();
__ verify_oop_or_return_address(R17_tos, R11_scratch1);
__ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
}
void TemplateTable::pop() {
transition(vtos, vtos);
__ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
}
void TemplateTable::pop2() {
transition(vtos, vtos);
__ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
}
void TemplateTable::dup() {
transition(vtos, vtos);
__ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
__ push_ptr(R11_scratch1);
}
void TemplateTable::dup_x1() {
transition(vtos, vtos);
Register Ra = R11_scratch1,
Rb = R12_scratch2;
// stack: ..., a, b
__ ld(Rb, Interpreter::stackElementSize, R15_esp);
__ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
__ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
__ std(Ra, Interpreter::stackElementSize, R15_esp);
__ push_ptr(Rb);
// stack: ..., b, a, b
}
void TemplateTable::dup_x2() {
transition(vtos, vtos);
Register Ra = R11_scratch1,
Rb = R12_scratch2,
Rc = R3_ARG1;
// stack: ..., a, b, c
__ ld(Rc, Interpreter::stackElementSize, R15_esp); // load c
__ ld(Ra, Interpreter::stackElementSize * 3, R15_esp); // load a
__ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
__ ld(Rb, Interpreter::stackElementSize * 2, R15_esp); // load b
// stack: ..., c, b, c
__ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
// stack: ..., c, a, c
__ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in c
__ push_ptr(Rc); // push c
// stack: ..., c, a, b, c
}
void TemplateTable::dup2() {
transition(vtos, vtos);
Register Ra = R11_scratch1,
Rb = R12_scratch2;
// stack: ..., a, b
__ ld(Rb, Interpreter::stackElementSize, R15_esp);
__ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
__ push_2ptrs(Ra, Rb);
// stack: ..., a, b, a, b
}
void TemplateTable::dup2_x1() {
transition(vtos, vtos);
Register Ra = R11_scratch1,
Rb = R12_scratch2,
Rc = R3_ARG1;
// stack: ..., a, b, c
__ ld(Rc, Interpreter::stackElementSize, R15_esp);
__ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
__ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
__ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
__ std(Ra, Interpreter::stackElementSize, R15_esp);
__ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
// stack: ..., b, c, a
__ push_2ptrs(Rb, Rc);
// stack: ..., b, c, a, b, c
}
void TemplateTable::dup2_x2() {
transition(vtos, vtos);
Register Ra = R11_scratch1,
Rb = R12_scratch2,
Rc = R3_ARG1,
Rd = R4_ARG2;
// stack: ..., a, b, c, d
__ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
__ ld(Rd, Interpreter::stackElementSize, R15_esp);
__ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in d
__ std(Rd, Interpreter::stackElementSize * 3, R15_esp); // store d in b
__ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
__ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
__ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in c
__ std(Rc, Interpreter::stackElementSize * 4, R15_esp); // store c in a
// stack: ..., c, d, a, b
__ push_2ptrs(Rc, Rd);
// stack: ..., c, d, a, b, c, d
}
void TemplateTable::swap() {
transition(vtos, vtos);
// stack: ..., a, b
Register Ra = R11_scratch1,
Rb = R12_scratch2;
// stack: ..., a, b
__ ld(Rb, Interpreter::stackElementSize, R15_esp);
__ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
__ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
__ std(Ra, Interpreter::stackElementSize, R15_esp);
// stack: ..., b, a
}
void TemplateTable::iop2(Operation op) {
transition(itos, itos);
Register Rscratch = R11_scratch1;
__ pop_i(Rscratch);
// tos = number of bits to shift
// Rscratch = value to shift
switch (op) {
case add: __ add(R17_tos, Rscratch, R17_tos); break;
case sub: __ sub(R17_tos, Rscratch, R17_tos); break;
case mul: __ mullw(R17_tos, Rscratch, R17_tos); break;
case _and: __ andr(R17_tos, Rscratch, R17_tos); break;
case _or: __ orr(R17_tos, Rscratch, R17_tos); break;
case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break;
case shl: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
case shr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
case ushr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
default: ShouldNotReachHere();
}
}
void TemplateTable::lop2(Operation op) {
transition(ltos, ltos);
Register Rscratch = R11_scratch1;
__ pop_l(Rscratch);
switch (op) {
case add: __ add(R17_tos, Rscratch, R17_tos); break;
case sub: __ sub(R17_tos, Rscratch, R17_tos); break;
case _and: __ andr(R17_tos, Rscratch, R17_tos); break;
case _or: __ orr(R17_tos, Rscratch, R17_tos); break;
case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break;
default: ShouldNotReachHere();
}
}
void TemplateTable::idiv() {
transition(itos, itos);
Label Lnormal, Lexception, Ldone;
Register Rdividend = R11_scratch1; // Used by irem.
__ addi(R0, R17_tos, 1);
__ cmplwi(CCR0, R0, 2);
__ bgt(CCR0, Lnormal); // divisor <-1 or >1
__ cmpwi(CCR1, R17_tos, 0);
__ beq(CCR1, Lexception); // divisor == 0
__ pop_i(Rdividend);
__ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
__ b(Ldone);
__ bind(Lexception);
__ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
__ mtctr(R11_scratch1);
__ bctr();
__ align(32, 12);
__ bind(Lnormal);
__ pop_i(Rdividend);
__ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
__ bind(Ldone);
}
void TemplateTable::irem() {
transition(itos, itos);
__ mr(R12_scratch2, R17_tos);
idiv();
__ mullw(R17_tos, R17_tos, R12_scratch2);
__ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
}
void TemplateTable::lmul() {
transition(ltos, ltos);
__ pop_l(R11_scratch1);
__ mulld(R17_tos, R11_scratch1, R17_tos);
}
void TemplateTable::ldiv() {
transition(ltos, ltos);
Label Lnormal, Lexception, Ldone;
Register Rdividend = R11_scratch1; // Used by lrem.
__ addi(R0, R17_tos, 1);
__ cmpldi(CCR0, R0, 2);
__ bgt(CCR0, Lnormal); // divisor <-1 or >1
__ cmpdi(CCR1, R17_tos, 0);
__ beq(CCR1, Lexception); // divisor == 0
__ pop_l(Rdividend);
__ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
__ b(Ldone);
__ bind(Lexception);
__ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
__ mtctr(R11_scratch1);
__ bctr();
__ align(32, 12);
__ bind(Lnormal);
__ pop_l(Rdividend);
__ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
__ bind(Ldone);
}
void TemplateTable::lrem() {
transition(ltos, ltos);
__ mr(R12_scratch2, R17_tos);
ldiv();
__ mulld(R17_tos, R17_tos, R12_scratch2);
__ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
}
void TemplateTable::lshl() {
transition(itos, ltos);
__ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
__ pop_l(R11_scratch1);
__ sld(R17_tos, R11_scratch1, R17_tos);
}
void TemplateTable::lshr() {
transition(itos, ltos);
__ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
__ pop_l(R11_scratch1);
__ srad(R17_tos, R11_scratch1, R17_tos);
}
void TemplateTable::lushr() {
transition(itos, ltos);
__ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
__ pop_l(R11_scratch1);
__ srd(R17_tos, R11_scratch1, R17_tos);
}
void TemplateTable::fop2(Operation op) {
transition(ftos, ftos);
switch (op) {
case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
case rem:
__ pop_f(F1_ARG1);
__ fmr(F2_ARG2, F15_ftos);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
__ fmr(F15_ftos, F1_RET);
break;
default: ShouldNotReachHere();
}
}
void TemplateTable::dop2(Operation op) {
transition(dtos, dtos);
switch (op) {
case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
case rem:
__ pop_d(F1_ARG1);
__ fmr(F2_ARG2, F15_ftos);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
__ fmr(F15_ftos, F1_RET);
break;
default: ShouldNotReachHere();
}
}
// Negate the value in the TOS cache.
void TemplateTable::ineg() {
transition(itos, itos);
__ neg(R17_tos, R17_tos);
}
// Negate the value in the TOS cache.
void TemplateTable::lneg() {
transition(ltos, ltos);
__ neg(R17_tos, R17_tos);
}
void TemplateTable::fneg() {
transition(ftos, ftos);
__ fneg(F15_ftos, F15_ftos);
}
void TemplateTable::dneg() {
transition(dtos, dtos);
__ fneg(F15_ftos, F15_ftos);
}
// Increments a local variable in place.
void TemplateTable::iinc() {
transition(vtos, vtos);
const Register Rindex = R11_scratch1,
Rincrement = R0,
Rvalue = R12_scratch2;
locals_index(Rindex); // Load locals index from bytecode stream.
__ lbz(Rincrement, 2, R14_bcp); // Load increment from the bytecode stream.
__ extsb(Rincrement, Rincrement);
__ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
__ add(Rvalue, Rincrement, Rvalue);
__ stw(Rvalue, 0, Rindex);
}
void TemplateTable::wide_iinc() {
transition(vtos, vtos);
Register Rindex = R11_scratch1,
Rlocals_addr = Rindex,
Rincr = R12_scratch2;
locals_index_wide(Rindex);
__ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
__ load_local_int(R17_tos, Rlocals_addr, Rindex);
__ add(R17_tos, Rincr, R17_tos);
__ stw(R17_tos, 0, Rlocals_addr);
}
void TemplateTable::convert() {
// %%%%% Factor this first part accross platforms
#ifdef ASSERT
TosState tos_in = ilgl;
TosState tos_out = ilgl;
switch (bytecode()) {
case Bytecodes::_i2l: // fall through
case Bytecodes::_i2f: // fall through
case Bytecodes::_i2d: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_in = itos; break;
case Bytecodes::_l2i: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_l2d: tos_in = ltos; break;
case Bytecodes::_f2i: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_f2d: tos_in = ftos; break;
case Bytecodes::_d2i: // fall through
case Bytecodes::_d2l: // fall through
case Bytecodes::_d2f: tos_in = dtos; break;
default : ShouldNotReachHere();
}
switch (bytecode()) {
case Bytecodes::_l2i: // fall through
case Bytecodes::_f2i: // fall through
case Bytecodes::_d2i: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_out = itos; break;
case Bytecodes::_i2l: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_d2l: tos_out = ltos; break;
case Bytecodes::_i2f: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_d2f: tos_out = ftos; break;
case Bytecodes::_i2d: // fall through
case Bytecodes::_l2d: // fall through
case Bytecodes::_f2d: tos_out = dtos; break;
default : ShouldNotReachHere();
}
transition(tos_in, tos_out);
#endif
// Conversion
Label done;
switch (bytecode()) {
case Bytecodes::_i2l:
__ extsw(R17_tos, R17_tos);
break;
case Bytecodes::_l2i:
// Nothing to do, we'll continue to work with the lower bits.
break;
case Bytecodes::_i2b:
__ extsb(R17_tos, R17_tos);
break;
case Bytecodes::_i2c:
__ rldicl(R17_tos, R17_tos, 0, 64-2*8);
break;
case Bytecodes::_i2s:
__ extsh(R17_tos, R17_tos);
break;
case Bytecodes::_i2d:
__ extsw(R17_tos, R17_tos);
case Bytecodes::_l2d:
__ push_l_pop_d();
__ fcfid(F15_ftos, F15_ftos);
break;
case Bytecodes::_i2f:
__ extsw(R17_tos, R17_tos);
__ push_l_pop_d();
if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
// Comment: alternatively, load with sign extend could be done by lfiwax.
__ fcfids(F15_ftos, F15_ftos);
} else {
__ fcfid(F15_ftos, F15_ftos);
__ frsp(F15_ftos, F15_ftos);
}
break;
case Bytecodes::_l2f:
if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
__ push_l_pop_d();
__ fcfids(F15_ftos, F15_ftos);
} else {
// Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
__ mr(R3_ARG1, R17_tos);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
__ fmr(F15_ftos, F1_RET);
}
break;
case Bytecodes::_f2d:
// empty
break;
case Bytecodes::_d2f:
__ frsp(F15_ftos, F15_ftos);
break;
case Bytecodes::_d2i:
case Bytecodes::_f2i:
__ fcmpu(CCR0, F15_ftos, F15_ftos);
__ li(R17_tos, 0); // 0 in case of NAN
__ bso(CCR0, done);
__ fctiwz(F15_ftos, F15_ftos);
__ push_d_pop_l();
break;
case Bytecodes::_d2l:
case Bytecodes::_f2l:
__ fcmpu(CCR0, F15_ftos, F15_ftos);
__ li(R17_tos, 0); // 0 in case of NAN
__ bso(CCR0, done);
__ fctidz(F15_ftos, F15_ftos);
__ push_d_pop_l();
break;
default: ShouldNotReachHere();
}
__ bind(done);
}
// Long compare
void TemplateTable::lcmp() {
transition(ltos, itos);
const Register Rscratch = R11_scratch1;
__ pop_l(Rscratch); // first operand, deeper in stack
__ cmpd(CCR0, Rscratch, R17_tos); // compare
__ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
__ srwi(Rscratch, R17_tos, 30);
__ srawi(R17_tos, R17_tos, 31);
__ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
}
// fcmpl/fcmpg and dcmpl/dcmpg bytecodes
// unordered_result == -1 => fcmpl or dcmpl
// unordered_result == 1 => fcmpg or dcmpg
void TemplateTable::float_cmp(bool is_float, int unordered_result) {
const FloatRegister Rfirst = F0_SCRATCH,
Rsecond = F15_ftos;
const Register Rscratch = R11_scratch1;
if (is_float) {
__ pop_f(Rfirst);
} else {
__ pop_d(Rfirst);
}
Label Lunordered, Ldone;
__ fcmpu(CCR0, Rfirst, Rsecond); // compare
if (unordered_result) {
__ bso(CCR0, Lunordered);
}
__ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
__ srwi(Rscratch, R17_tos, 30);
__ srawi(R17_tos, R17_tos, 31);
__ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
if (unordered_result) {
__ b(Ldone);
__ bind(Lunordered);
__ load_const_optimized(R17_tos, unordered_result);
}
__ bind(Ldone);
}
// Branch_conditional which takes TemplateTable::Condition.
void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
bool positive = false;
Assembler::Condition cond = Assembler::equal;
switch (cc) {
case TemplateTable::equal: positive = true ; cond = Assembler::equal ; break;
case TemplateTable::not_equal: positive = false; cond = Assembler::equal ; break;
case TemplateTable::less: positive = true ; cond = Assembler::less ; break;
case TemplateTable::less_equal: positive = false; cond = Assembler::greater; break;
case TemplateTable::greater: positive = true ; cond = Assembler::greater; break;
case TemplateTable::greater_equal: positive = false; cond = Assembler::less ; break;
default: ShouldNotReachHere();
}
int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
int bi = Assembler::bi0(crx, cond);
__ bc(bo, bi, L);
}
void TemplateTable::branch(bool is_jsr, bool is_wide) {
// Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
__ verify_thread();
const Register Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2,
Rscratch3 = R3_ARG1,
R4_counters = R4_ARG2,
bumped_count = R31,
Rdisp = R22_tmp2;
__ profile_taken_branch(Rscratch1, bumped_count);
// Get (wide) offset.
if (is_wide) {
__ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
} else {
__ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
}
// --------------------------------------------------------------------------
// Handle all the JSR stuff here, then exit.
// It's much shorter and cleaner than intermingling with the
// non-JSR normal-branch stuff occurring below.
if (is_jsr) {
// Compute return address as bci in Otos_i.
__ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
__ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
__ subf(R17_tos, Rscratch1, Rscratch2);
// Bump bcp to target of JSR.
__ add(R14_bcp, Rdisp, R14_bcp);
// Push returnAddress for "ret" on stack.
__ push_ptr(R17_tos);
// And away we go!
__ dispatch_next(vtos);
return;
}
// --------------------------------------------------------------------------
// Normal (non-jsr) branch handling
const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
if (increment_invocation_counter_for_backward_branches) {
//__ unimplemented("branch invocation counter");
Label Lforward;
__ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
// Check branch direction.
__ cmpdi(CCR0, Rdisp, 0);
__ bgt(CCR0, Lforward);
__ get_method_counters(R19_method, R4_counters, Lforward);
if (TieredCompilation) {
Label Lno_mdo, Loverflow;
const int increment = InvocationCounter::count_increment;
const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
if (ProfileInterpreter) {
Register Rmdo = Rscratch1;
// If no method data exists, go to profile_continue.
__ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
__ cmpdi(CCR0, Rmdo, 0);
__ beq(CCR0, Lno_mdo);
// Increment backedge counter in the MDO.
const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
__ lwz(Rscratch2, mdo_bc_offs, Rmdo);
__ load_const_optimized(Rscratch3, mask, R0);
__ addi(Rscratch2, Rscratch2, increment);
__ stw(Rscratch2, mdo_bc_offs, Rmdo);
__ and_(Rscratch3, Rscratch2, Rscratch3);
__ bne(CCR0, Lforward);
__ b(Loverflow);
}
// If there's no MDO, increment counter in method.
const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
__ bind(Lno_mdo);
__ lwz(Rscratch2, mo_bc_offs, R4_counters);
__ load_const_optimized(Rscratch3, mask, R0);
__ addi(Rscratch2, Rscratch2, increment);
__ stw(Rscratch2, mo_bc_offs, R19_method);
__ and_(Rscratch3, Rscratch2, Rscratch3);
__ bne(CCR0, Lforward);
__ bind(Loverflow);
// Notify point for loop, pass branch bytecode.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);
// Was an OSR adapter generated?
// O0 = osr nmethod
__ cmpdi(CCR0, R3_RET, 0);
__ beq(CCR0, Lforward);
// Has the nmethod been invalidated already?
__ lwz(R0, nmethod::entry_bci_offset(), R3_RET);
__ cmpwi(CCR0, R0, InvalidOSREntryBci);
__ beq(CCR0, Lforward);
// Migrate the interpreter frame off of the stack.
// We can use all registers because we will not return to interpreter from this point.
// Save nmethod.
const Register osr_nmethod = R31;
__ mr(osr_nmethod, R3_RET);
__ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
__ reset_last_Java_frame();
// OSR buffer is in ARG1.
// Remove the interpreter frame.
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
// Jump to the osr code.
__ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
__ mtlr(R0);
__ mtctr(R11_scratch1);
__ bctr();
} else {
const Register invoke_ctr = Rscratch1;
// Update Backedge branch separately from invocations.
__ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
if (ProfileInterpreter) {
__ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
if (UseOnStackReplacement) {
__ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
}
} else {
if (UseOnStackReplacement) {
__ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
}
}
}
__ bind(Lforward);
} else {
// Bump bytecode pointer by displacement (take the branch).
__ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
}
// Continue with bytecode @ target.
// %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
// %%%%% and changing dispatch_next to dispatch_only.
__ dispatch_next(vtos);
}
// Helper function for if_cmp* methods below.
// Factored out common compare and branch code.
void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
Label Lnot_taken;
// Note: The condition code we get is the condition under which we
// *fall through*! So we have to inverse the CC here.
if (is_jint) {
if (cmp0) {
__ cmpwi(CCR0, Rfirst, 0);
} else {
__ cmpw(CCR0, Rfirst, Rsecond);
}
} else {
if (cmp0) {
__ cmpdi(CCR0, Rfirst, 0);
} else {
__ cmpd(CCR0, Rfirst, Rsecond);
}
}
branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
// Conition is false => Jump!
branch(false, false);
// Condition is not true => Continue.
__ align(32, 12);
__ bind(Lnot_taken);
__ profile_not_taken_branch(Rscratch1, Rscratch2);
}
// Compare integer values with zero and fall through if CC holds, branch away otherwise.
void TemplateTable::if_0cmp(Condition cc) {
transition(itos, vtos);
if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
}
// Compare integer values and fall through if CC holds, branch away otherwise.
//
// Interface:
// - Rfirst: First operand (older stack value)
// - tos: Second operand (younger stack value)
void TemplateTable::if_icmp(Condition cc) {
transition(itos, vtos);
const Register Rfirst = R0,
Rsecond = R17_tos;
__ pop_i(Rfirst);
if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
}
void TemplateTable::if_nullcmp(Condition cc) {
transition(atos, vtos);
if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
}
void TemplateTable::if_acmp(Condition cc) {
transition(atos, vtos);
const Register Rfirst = R0,
Rsecond = R17_tos;
__ pop_ptr(Rfirst);
if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
}
void TemplateTable::ret() {
locals_index(R11_scratch1);
__ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
__ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
__ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
__ add(R11_scratch1, R17_tos, R11_scratch1);
__ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
__ dispatch_next(vtos);
}
void TemplateTable::wide_ret() {
transition(vtos, vtos);
const Register Rindex = R3_ARG1,
Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2;
locals_index_wide(Rindex);
__ load_local_ptr(R17_tos, R17_tos, Rindex);
__ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
// Tos now contains the bci, compute the bcp from that.
__ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
__ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
__ add(R14_bcp, Rscratch1, Rscratch2);
__ dispatch_next(vtos);
}
void TemplateTable::tableswitch() {
transition(itos, vtos);
Label Ldispatch, Ldefault_case;
Register Rlow_byte = R3_ARG1,
Rindex = Rlow_byte,
Rhigh_byte = R4_ARG2,
Rdef_offset_addr = R5_ARG3, // is going to contain address of default offset
Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2,
Roffset = R6_ARG4;
// Align bcp.
__ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
__ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
// Load lo & hi.
__ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
__ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned);
// Check for default case (=index outside [low,high]).
__ cmpw(CCR0, R17_tos, Rlow_byte);
__ cmpw(CCR1, R17_tos, Rhigh_byte);
__ blt(CCR0, Ldefault_case);
__ bgt(CCR1, Ldefault_case);
// Lookup dispatch offset.
__ sub(Rindex, R17_tos, Rlow_byte);
__ extsw(Rindex, Rindex);
__ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
__ sldi(Rindex, Rindex, LogBytesPerInt);
__ addi(Rindex, Rindex, 3 * BytesPerInt);
#if defined(VM_LITTLE_ENDIAN)
__ lwbrx(Roffset, Rdef_offset_addr, Rindex);
__ extsw(Roffset, Roffset);
#else
__ lwax(Roffset, Rdef_offset_addr, Rindex);
#endif
__ b(Ldispatch);
__ bind(Ldefault_case);
__ profile_switch_default(Rhigh_byte, Rscratch1);
__ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
__ bind(Ldispatch);
__ add(R14_bcp, Roffset, R14_bcp);
__ dispatch_next(vtos);
}
void TemplateTable::lookupswitch() {
transition(itos, itos);
__ stop("lookupswitch bytecode should have been rewritten");
}
// Table switch using linear search through cases.
// Bytecode stream format:
// Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
// Note: Everything is big-endian format here.
void TemplateTable::fast_linearswitch() {
transition(itos, vtos);
Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case;
Register Rcount = R3_ARG1,
Rcurrent_pair = R4_ARG2,
Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
Roffset = R31, // Might need to survive C call.
Rvalue = R12_scratch2,
Rscratch = R11_scratch1,
Rcmp_value = R17_tos;
// Align bcp.
__ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
__ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
// Setup loop counter and limit.
__ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
__ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
__ mtctr(Rcount);
__ cmpwi(CCR0, Rcount, 0);
__ bne(CCR0, Lloop_entry);
// Default case
__ bind(Ldefault_case);
__ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
if (ProfileInterpreter) {
__ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
}
__ b(Lcontinue_execution);
// Next iteration
__ bind(Lsearch_loop);
__ bdz(Ldefault_case);
__ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
__ bind(Lloop_entry);
__ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned);
__ cmpw(CCR0, Rvalue, Rcmp_value);
__ bne(CCR0, Lsearch_loop);
// Found, load offset.
__ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed);
// Calculate case index and profile
__ mfctr(Rcurrent_pair);
if (ProfileInterpreter) {
__ sub(Rcurrent_pair, Rcount, Rcurrent_pair);
__ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
}
__ bind(Lcontinue_execution);
__ add(R14_bcp, Roffset, R14_bcp);
__ dispatch_next(vtos);
}
// Table switch using binary search (value/offset pairs are ordered).
// Bytecode stream format:
// Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
// Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
void TemplateTable::fast_binaryswitch() {
transition(itos, vtos);
// Implementation using the following core algorithm: (copied from Intel)
//
// int binary_search(int key, LookupswitchPair* array, int n) {
// // Binary search according to "Methodik des Programmierens" by
// // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
// int i = 0;
// int j = n;
// while (i+1 < j) {
// // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
// // with Q: for all i: 0 <= i < n: key < a[i]
// // where a stands for the array and assuming that the (inexisting)
// // element a[n] is infinitely big.
// int h = (i + j) >> 1;
// // i < h < j
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
// }
// // R: a[i] <= key < a[i+1] or Q
// // (i.e., if key is within array, i is the correct index)
// return i;
// }
// register allocation
const Register Rkey = R17_tos; // already set (tosca)
const Register Rarray = R3_ARG1;
const Register Ri = R4_ARG2;
const Register Rj = R5_ARG3;
const Register Rh = R6_ARG4;
const Register Rscratch = R11_scratch1;
const int log_entry_size = 3;
const int entry_size = 1 << log_entry_size;
Label found;
// Find Array start,
__ addi(Rarray, R14_bcp, 3 * BytesPerInt);
__ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
// initialize i & j
__ li(Ri,0);
__ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned);
// and start.
Label entry;
__ b(entry);
// binary search loop
{ Label loop;
__ bind(loop);
// int h = (i + j) >> 1;
__ srdi(Rh, Rh, 1);
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
__ sldi(Rscratch, Rh, log_entry_size);
#if defined(VM_LITTLE_ENDIAN)
__ lwbrx(Rscratch, Rscratch, Rarray);
#else
__ lwzx(Rscratch, Rscratch, Rarray);
#endif
// if (key < current value)
// Rh = Rj
// else
// Rh = Ri
Label Lgreater;
__ cmpw(CCR0, Rkey, Rscratch);
__ bge(CCR0, Lgreater);
__ mr(Rj, Rh);
__ b(entry);
__ bind(Lgreater);
__ mr(Ri, Rh);
// while (i+1 < j)
__ bind(entry);
__ addi(Rscratch, Ri, 1);
__ cmpw(CCR0, Rscratch, Rj);
__ add(Rh, Ri, Rj); // start h = i + j >> 1;
__ blt(CCR0, loop);
}
// End of binary search, result index is i (must check again!).
Label default_case;
Label continue_execution;
if (ProfileInterpreter) {
__ mr(Rh, Ri); // Save index in i for profiling.
}
// Ri = value offset
__ sldi(Ri, Ri, log_entry_size);
__ add(Ri, Ri, Rarray);
__ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned);
Label not_found;
// Ri = offset offset
__ cmpw(CCR0, Rkey, Rscratch);
__ beq(CCR0, not_found);
// entry not found -> j = default offset
__ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned);
__ b(default_case);
__ bind(not_found);
// entry found -> j = offset
__ profile_switch_case(Rh, Rj, Rscratch, Rkey);
__ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned);
if (ProfileInterpreter) {
__ b(continue_execution);
}
__ bind(default_case); // fall through (if not profiling)
__ profile_switch_default(Ri, Rscratch);
__ bind(continue_execution);
__ extsw(Rj, Rj);
__ add(R14_bcp, Rj, R14_bcp);
__ dispatch_next(vtos);
}
void TemplateTable::_return(TosState state) {
transition(state, state);
assert(_desc->calls_vm(),
"inconsistent calls_vm information"); // call in remove_activation
if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
Register Rscratch = R11_scratch1,
Rklass = R12_scratch2,
Rklass_flags = Rklass;
Label Lskip_register_finalizer;
// Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
assert(state == vtos, "only valid state");
__ ld(R17_tos, 0, R18_locals);
// Load klass of this obj.
__ load_klass(Rklass, R17_tos);
__ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
__ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
__ bfalse(CCR0, Lskip_register_finalizer);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
__ align(32, 12);
__ bind(Lskip_register_finalizer);
}
// Move the result value into the correct register and remove memory stack frame.
__ remove_activation(state, /* throw_monitor_exception */ true);
// Restoration of lr done by remove_activation.
switch (state) {
// Narrow result if state is itos but result type is smaller.
// Need to narrow in the return bytecode rather than in generate_return_entry
// since compiled code callers expect the result to already be narrowed.
case itos: __ narrow(R17_tos); /* fall through */
case ltos:
case btos:
case ztos:
case ctos:
case stos:
case atos: __ mr(R3_RET, R17_tos); break;
case ftos:
case dtos: __ fmr(F1_RET, F15_ftos); break;
case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
// to get visible before the reference to the object gets stored anywhere.
__ membar(Assembler::StoreStore); break;
default : ShouldNotReachHere();
}
__ blr();
}
// ============================================================================
// Constant pool cache access
//
// Memory ordering:
//
// Like done in C++ interpreter, we load the fields
// - _indices
// - _f12_oop
// acquired, because these are asked if the cache is already resolved. We don't
// want to float loads above this check.
// See also comments in ConstantPoolCacheEntry::bytecode_1(),
// ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
// Call into the VM if call site is not yet resolved
//
// Input regs:
// - None, all passed regs are outputs.
//
// Returns:
// - Rcache: The const pool cache entry that contains the resolved result.
// - Rresult: Either noreg or output for f1/f2.
//
// Kills:
// - Rscratch
void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
__ get_cache_and_index_at_bcp(Rcache, 1, index_size);
Label Lresolved, Ldone;
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
// We are resolved if the indices offset contains the current bytecode.
#if defined(VM_LITTLE_ENDIAN)
__ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache);
#else
__ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
#endif
// Acquire by cmp-br-isync (see below).
__ cmpdi(CCR0, Rscratch, (int)bytecode());
__ beq(CCR0, Lresolved);
address entry = NULL;
switch (bytecode()) {
case Bytecodes::_getstatic : // fall through
case Bytecodes::_putstatic : // fall through
case Bytecodes::_getfield : // fall through
case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
case Bytecodes::_invokevirtual : // fall through
case Bytecodes::_invokespecial : // fall through
case Bytecodes::_invokestatic : // fall through
case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
default : ShouldNotReachHere(); break;
}
__ li(R4_ARG2, (int)bytecode());
__ call_VM(noreg, entry, R4_ARG2, true);
// Update registers with resolved info.
__ get_cache_and_index_at_bcp(Rcache, 1, index_size);
__ b(Ldone);
__ bind(Lresolved);
__ isync(); // Order load wrt. succeeding loads.
__ bind(Ldone);
}
// Load the constant pool cache entry at field accesses into registers.
// The Rcache and Rindex registers must be set before call.
// Input:
// - Rcache, Rindex
// Output:
// - Robj, Roffset, Rflags
void TemplateTable::load_field_cp_cache_entry(Register Robj,
Register Rcache,
Register Rindex /* unused on PPC64 */,
Register Roffset,
Register Rflags,
bool is_static = false) {
assert_different_registers(Rcache, Rflags, Roffset);
// assert(Rindex == noreg, "parameter not used on PPC64");
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
__ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
__ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
if (is_static) {
__ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
__ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
// Acquire not needed here. Following access has an address dependency on this value.
}
}
// Load the constant pool cache entry at invokes into registers.
// Resolve if necessary.
// Input Registers:
// - None, bcp is used, though
//
// Return registers:
// - Rmethod (f1 field or f2 if invokevirtual)
// - Ritable_index (f2 field)
// - Rflags (flags field)
//
// Kills:
// - R21
//
void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
Register Rmethod,
Register Ritable_index,
Register Rflags,
bool is_invokevirtual,
bool is_invokevfinal,
bool is_invokedynamic) {
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
// Determine constant pool cache field offsets.
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
const int flags_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
// Access constant pool cache fields.
const int index_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
if (is_invokevfinal) {
assert(Ritable_index == noreg, "register not used");
// Already resolved.
__ get_cache_and_index_at_bcp(Rcache, 1);
} else {
resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
}
__ ld(Rmethod, method_offset, Rcache);
__ ld(Rflags, flags_offset, Rcache);
if (Ritable_index != noreg) {
__ ld(Ritable_index, index_offset, Rcache);
}
}
// ============================================================================
// Field access
// Volatile variables demand their effects be made known to all CPU's
// in order. Store buffers on most chips allow reads & writes to
// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
// without some kind of memory barrier (i.e., it's not sufficient that
// the interpreter does not reorder volatile references, the hardware
// also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other. ALSO reads &
// writes act as aquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that
// happen after the read float up to before the read. It's OK for
// non-volatile memory refs that happen before the volatile read to
// float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile
// memory refs that happen BEFORE the write float down to after the
// write. It's OK for non-volatile memory refs that happen after the
// volatile write to float up before it.
//
// We only put in barriers around volatile refs (they are expensive),
// not _between_ memory refs (that would require us to track the
// flavor of the previous memory refs). Requirements (2) and (3)
// require some barriers before volatile stores and after volatile
// loads. These nearly cover requirement (1) but miss the
// volatile-store-volatile-load case. This final case is placed after
// volatile-stores although it could just as well go before
// volatile-loads.
// The registers cache and index expected to be set before call.
// Correct values of the cache and index registers are preserved.
// Kills:
// Rcache (if has_tos)
// Rscratch
void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
assert_different_registers(Rcache, Rscratch);
if (JvmtiExport::can_post_field_access()) {
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
Label Lno_field_access_post;
// Check if post field access in enabled.
int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
__ lwz(Rscratch, offs, Rscratch);
__ cmpwi(CCR0, Rscratch, 0);
__ beq(CCR0, Lno_field_access_post);
// Post access enabled - do it!
__ addi(Rcache, Rcache, in_bytes(cp_base_offset));
if (is_static) {
__ li(R17_tos, 0);
} else {
if (has_tos) {
// The fast bytecode versions have obj ptr in register.
// Thus, save object pointer before call_VM() clobbers it
// put object on tos where GC wants it.
__ push_ptr(R17_tos);
} else {
// Load top of stack (do not pop the value off the stack).
__ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
}
__ verify_oop(R17_tos);
}
// tos: object pointer or NULL if static
// cache: cache entry pointer
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
if (!is_static && has_tos) {
// Restore object pointer.
__ pop_ptr(R17_tos);
__ verify_oop(R17_tos);
} else {
// Cache is still needed to get class or obj.
__ get_cache_and_index_at_bcp(Rcache, 1);
}
__ align(32, 12);
__ bind(Lno_field_access_post);
}
}
// kills R11_scratch1
void TemplateTable::pop_and_check_object(Register Roop) {
Register Rtmp = R11_scratch1;
assert_different_registers(Rtmp, Roop);
__ pop_ptr(Roop);
// For field access must check obj.
__ null_check_throw(Roop, -1, Rtmp);
__ verify_oop(Roop);
}
// PPC64: implement volatile loads as fence-store-acquire.
void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
transition(vtos, vtos);
Label Lacquire, Lisync;
const Register Rcache = R3_ARG1,
Rclass_or_obj = R22_tmp2,
Roffset = R23_tmp3,
Rflags = R31,
Rbtable = R5_ARG3,
Rbc = R6_ARG4,
Rscratch = R12_scratch2;
static address field_branch_table[number_of_states],
static_branch_table[number_of_states];
address* branch_table = is_static ? static_branch_table : field_branch_table;
// Get field offset.
resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
// JVMTI support
jvmti_post_field_access(Rcache, Rscratch, is_static, false);
// Load after possible GC.
load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
// Load pointer to branch table.
__ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
// Get volatile flag.
__ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
// Note: sync is needed before volatile load on PPC64.
// Check field type.
__ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
#ifdef ASSERT
Label LFlagInvalid;
__ cmpldi(CCR0, Rflags, number_of_states);
__ bge(CCR0, LFlagInvalid);
#endif
// Load from branch table and dispatch (volatile case: one instruction ahead).
__ sldi(Rflags, Rflags, LogBytesPerWord);
__ cmpwi(CCR6, Rscratch, 1); // Volatile?
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
}
__ ldx(Rbtable, Rbtable, Rflags);
// Get the obj from stack.
if (!is_static) {
pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
} else {
__ verify_oop(Rclass_or_obj);
}
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
}
__ mtctr(Rbtable);
__ bctr();
#ifdef ASSERT
__ bind(LFlagInvalid);
__ stop("got invalid flag", 0x654);
// __ bind(Lvtos);
address pc_before_fence = __ pc();
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
assert(branch_table[vtos] == 0, "can't compute twice");
branch_table[vtos] = __ pc(); // non-volatile_entry point
__ stop("vtos unexpected", 0x655);
#endif
__ align(32, 28, 28); // Align load.
// __ bind(Ldtos);
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[dtos] == 0, "can't compute twice");
branch_table[dtos] = __ pc(); // non-volatile_entry point
__ lfdx(F15_ftos, Rclass_or_obj, Roffset);
__ push(dtos);
if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
{
Label acquire_double;
__ beq(CCR6, acquire_double); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ bind(acquire_double);
__ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
__ beq_predict_taken(CCR0, Lisync);
__ b(Lisync); // In case of NAN.
}
__ align(32, 28, 28); // Align load.
// __ bind(Lftos);
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[ftos] == 0, "can't compute twice");
branch_table[ftos] = __ pc(); // non-volatile_entry point
__ lfsx(F15_ftos, Rclass_or_obj, Roffset);
__ push(ftos);
if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
{
Label acquire_float;
__ beq(CCR6, acquire_float); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ bind(acquire_float);
__ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
__ beq_predict_taken(CCR0, Lisync);
__ b(Lisync); // In case of NAN.
}
__ align(32, 28, 28); // Align load.
// __ bind(Litos);
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[itos] == 0, "can't compute twice");
branch_table[itos] = __ pc(); // non-volatile_entry point
__ lwax(R17_tos, Rclass_or_obj, Roffset);
__ push(itos);
if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
__ beq(CCR6, Lacquire); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align load.
// __ bind(Lltos);
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[ltos] == 0, "can't compute twice");
branch_table[ltos] = __ pc(); // non-volatile_entry point
__ ldx(R17_tos, Rclass_or_obj, Roffset);
__ push(ltos);
if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
__ beq(CCR6, Lacquire); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align load.
// __ bind(Lbtos);
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[btos] == 0, "can't compute twice");
branch_table[btos] = __ pc(); // non-volatile_entry point
__ lbzx(R17_tos, Rclass_or_obj, Roffset);
__ extsb(R17_tos, R17_tos);
__ push(btos);
if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
__ beq(CCR6, Lacquire); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align load.
// __ bind(Lztos); (same code as btos)
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[ztos] == 0, "can't compute twice");
branch_table[ztos] = __ pc(); // non-volatile_entry point
__ lbzx(R17_tos, Rclass_or_obj, Roffset);
__ extsb(R17_tos, R17_tos);
__ push(ztos);
if (!is_static) {
// use btos rewriting, no truncating to t/f bit is needed for getfield.
patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
}
__ beq(CCR6, Lacquire); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align load.
// __ bind(Lctos);
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[ctos] == 0, "can't compute twice");
branch_table[ctos] = __ pc(); // non-volatile_entry point
__ lhzx(R17_tos, Rclass_or_obj, Roffset);
__ push(ctos);
if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
__ beq(CCR6, Lacquire); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align load.
// __ bind(Lstos);
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[stos] == 0, "can't compute twice");
branch_table[stos] = __ pc(); // non-volatile_entry point
__ lhax(R17_tos, Rclass_or_obj, Roffset);
__ push(stos);
if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
__ beq(CCR6, Lacquire); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align load.
// __ bind(Latos);
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[atos] == 0, "can't compute twice");
branch_table[atos] = __ pc(); // non-volatile_entry point
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
__ verify_oop(R17_tos);
__ push(atos);
//__ dcbt(R17_tos); // prefetch
if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
__ beq(CCR6, Lacquire); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 12);
__ bind(Lacquire);
__ twi_0(R17_tos);
__ bind(Lisync);
__ isync(); // acquire
#ifdef ASSERT
for (int i = 0; i<number_of_states; ++i) {
assert(branch_table[i], "get initialization");
//tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
// is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
}
#endif
}
void TemplateTable::getfield(int byte_no) {
getfield_or_static(byte_no, false);
}
void TemplateTable::getstatic(int byte_no) {
getfield_or_static(byte_no, true);
}
// The registers cache and index expected to be set before call.
// The function may destroy various registers, just not the cache and index registers.
void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
assert_different_registers(Rcache, Rscratch, R6_ARG4);
if (JvmtiExport::can_post_field_modification()) {
Label Lno_field_mod_post;
// Check if post field access in enabled.
int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
__ lwz(Rscratch, offs, Rscratch);
__ cmpwi(CCR0, Rscratch, 0);
__ beq(CCR0, Lno_field_mod_post);
// Do the post
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
const Register Robj = Rscratch;
__ addi(Rcache, Rcache, in_bytes(cp_base_offset));
if (is_static) {
// Life is simple. Null out the object pointer.
__ li(Robj, 0);
} else {
// In case of the fast versions, value lives in registers => put it back on tos.
int offs = Interpreter::expr_offset_in_bytes(0);
Register base = R15_esp;
switch(bytecode()) {
case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
case Bytecodes::_fast_iputfield: // Fall through
case Bytecodes::_fast_bputfield: // Fall through
case Bytecodes::_fast_zputfield: // Fall through
case Bytecodes::_fast_cputfield: // Fall through
case Bytecodes::_fast_sputfield: __ push_i(); offs+= Interpreter::stackElementSize; break;
case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
case Bytecodes::_fast_fputfield: __ push_f(); offs+= Interpreter::stackElementSize; break;
case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
default: {
offs = 0;
base = Robj;
const Register Rflags = Robj;
Label is_one_slot;
// Life is harder. The stack holds the value on top, followed by the
// object. We don't know the size of the value, though; it could be
// one or two words depending on its type. As a result, we must find
// the type to determine where the object is.
__ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
__ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
__ cmpwi(CCR0, Rflags, ltos);
__ cmpwi(CCR1, Rflags, dtos);
__ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
__ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
__ beq(CCR0, is_one_slot);
__ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
__ bind(is_one_slot);
break;
}
}
__ ld(Robj, offs, base);
__ verify_oop(Robj);
}
__ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
__ get_cache_and_index_at_bcp(Rcache, 1);
// In case of the fast versions, value lives in registers => put it back on tos.
switch(bytecode()) {
case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
case Bytecodes::_fast_iputfield: // Fall through
case Bytecodes::_fast_bputfield: // Fall through
case Bytecodes::_fast_zputfield: // Fall through
case Bytecodes::_fast_cputfield: // Fall through
case Bytecodes::_fast_sputfield: __ pop_i(); break;
case Bytecodes::_fast_lputfield: __ pop_l(); break;
case Bytecodes::_fast_fputfield: __ pop_f(); break;
case Bytecodes::_fast_dputfield: __ pop_d(); break;
default: break; // Nothin' to do.
}
__ align(32, 12);
__ bind(Lno_field_mod_post);
}
}
// PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
Label Lvolatile;
const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
Rclass_or_obj = R31, // Needs to survive C call.
Roffset = R22_tmp2, // Needs to survive C call.
Rflags = R3_ARG1,
Rbtable = R4_ARG2,
Rscratch = R11_scratch1,
Rscratch2 = R12_scratch2,
Rscratch3 = R6_ARG4,
Rbc = Rscratch3;
const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
static address field_branch_table[number_of_states],
static_branch_table[number_of_states];
address* branch_table = is_static ? static_branch_table : field_branch_table;
// Stack (grows up):
// value
// obj
// Load the field offset.
resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
jvmti_post_field_mod(Rcache, Rscratch, is_static);
load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
// Load pointer to branch table.
__ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
// Get volatile flag.
__ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
// Check the field type.
__ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
#ifdef ASSERT
Label LFlagInvalid;
__ cmpldi(CCR0, Rflags, number_of_states);
__ bge(CCR0, LFlagInvalid);
#endif
// Load from branch table and dispatch (volatile case: one instruction ahead).
__ sldi(Rflags, Rflags, LogBytesPerWord);
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
__ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
__ ldx(Rbtable, Rbtable, Rflags);
__ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
__ mtctr(Rbtable);
__ bctr();
#ifdef ASSERT
__ bind(LFlagInvalid);
__ stop("got invalid flag", 0x656);
// __ bind(Lvtos);
address pc_before_release = __ pc();
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
assert(branch_table[vtos] == 0, "can't compute twice");
branch_table[vtos] = __ pc(); // non-volatile_entry point
__ stop("vtos unexpected", 0x657);
#endif
__ align(32, 28, 28); // Align pop.
// __ bind(Ldtos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[dtos] == 0, "can't compute twice");
branch_table[dtos] = __ pc(); // non-volatile_entry point
__ pop(dtos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
__ stfdx(F15_ftos, Rclass_or_obj, Roffset);
if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
}
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align pop.
// __ bind(Lftos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[ftos] == 0, "can't compute twice");
branch_table[ftos] = __ pc(); // non-volatile_entry point
__ pop(ftos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
__ stfsx(F15_ftos, Rclass_or_obj, Roffset);
if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
}
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align pop.
// __ bind(Litos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[itos] == 0, "can't compute twice");
branch_table[itos] = __ pc(); // non-volatile_entry point
__ pop(itos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
__ stwx(R17_tos, Rclass_or_obj, Roffset);
if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
}
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align pop.
// __ bind(Lltos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[ltos] == 0, "can't compute twice");
branch_table[ltos] = __ pc(); // non-volatile_entry point
__ pop(ltos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
__ stdx(R17_tos, Rclass_or_obj, Roffset);
if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
}
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align pop.
// __ bind(Lbtos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[btos] == 0, "can't compute twice");
branch_table[btos] = __ pc(); // non-volatile_entry point
__ pop(btos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
__ stbx(R17_tos, Rclass_or_obj, Roffset);
if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
}
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align pop.
// __ bind(Lztos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[ztos] == 0, "can't compute twice");
branch_table[ztos] = __ pc(); // non-volatile_entry point
__ pop(ztos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
__ andi(R17_tos, R17_tos, 0x1);
__ stbx(R17_tos, Rclass_or_obj, Roffset);
if (!is_static) { patch_bytecode(Bytecodes::_fast_zputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
}
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align pop.
// __ bind(Lctos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[ctos] == 0, "can't compute twice");
branch_table[ctos] = __ pc(); // non-volatile_entry point
__ pop(ctos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
__ sthx(R17_tos, Rclass_or_obj, Roffset);
if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
}
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align pop.
// __ bind(Lstos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[stos] == 0, "can't compute twice");
branch_table[stos] = __ pc(); // non-volatile_entry point
__ pop(stos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
__ sthx(R17_tos, Rclass_or_obj, Roffset);
if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
}
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 28, 28); // Align pop.
// __ bind(Latos);
__ release(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[atos] == 0, "can't compute twice");
branch_table[atos] = __ pc(); // non-volatile_entry point
__ pop(atos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ beq(CR_is_vol, Lvolatile); // Volatile?
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 12);
__ bind(Lvolatile);
__ fence();
}
// fallthru: __ b(Lexit);
#ifdef ASSERT
for (int i = 0; i<number_of_states; ++i) {
assert(branch_table[i], "put initialization");
//tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
// is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
}
#endif
}
void TemplateTable::putfield(int byte_no) {
putfield_or_static(byte_no, false);
}
void TemplateTable::putstatic(int byte_no) {
putfield_or_static(byte_no, true);
}
// See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
void TemplateTable::jvmti_post_fast_field_mod() {
__ should_not_reach_here();
}
void TemplateTable::fast_storefield(TosState state) {
transition(state, vtos);
const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
Rclass_or_obj = R31, // Needs to survive C call.
Roffset = R22_tmp2, // Needs to survive C call.
Rflags = R3_ARG1,
Rscratch = R11_scratch1,
Rscratch2 = R12_scratch2,
Rscratch3 = R4_ARG2;
const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
// Constant pool already resolved => Load flags and offset of field.
__ get_cache_and_index_at_bcp(Rcache, 1);
jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
// Get the obj and the final store addr.
pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
// Get volatile flag.
__ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
{
Label LnotVolatile;
__ beq(CCR0, LnotVolatile);
__ release();
__ align(32, 12);
__ bind(LnotVolatile);
}
// Do the store and fencing.
switch(bytecode()) {
case Bytecodes::_fast_aputfield:
// Store into the field.
do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
break;
case Bytecodes::_fast_iputfield:
__ stwx(R17_tos, Rclass_or_obj, Roffset);
break;
case Bytecodes::_fast_lputfield:
__ stdx(R17_tos, Rclass_or_obj, Roffset);
break;
case Bytecodes::_fast_zputfield:
__ andi(R17_tos, R17_tos, 0x1); // boolean is true if LSB is 1
// fall through to bputfield
case Bytecodes::_fast_bputfield:
__ stbx(R17_tos, Rclass_or_obj, Roffset);
break;
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_sputfield:
__ sthx(R17_tos, Rclass_or_obj, Roffset);
break;
case Bytecodes::_fast_fputfield:
__ stfsx(F15_ftos, Rclass_or_obj, Roffset);
break;
case Bytecodes::_fast_dputfield:
__ stfdx(F15_ftos, Rclass_or_obj, Roffset);
break;
default: ShouldNotReachHere();
}
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
Label LVolatile;
__ beq(CR_is_vol, LVolatile);
__ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
__ align(32, 12);
__ bind(LVolatile);
__ fence();
}
}
void TemplateTable::fast_accessfield(TosState state) {
transition(atos, state);
Label LisVolatile;
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
const Register Rcache = R3_ARG1,
Rclass_or_obj = R17_tos,
Roffset = R22_tmp2,
Rflags = R23_tmp3,
Rscratch = R12_scratch2;
// Constant pool already resolved. Get the field offset.
__ get_cache_and_index_at_bcp(Rcache, 1);
load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
// JVMTI support
jvmti_post_field_access(Rcache, Rscratch, false, true);
// Get the load address.
__ null_check_throw(Rclass_or_obj, -1, Rscratch);
// Get volatile flag.
__ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
__ bne(CCR0, LisVolatile);
switch(bytecode()) {
case Bytecodes::_fast_agetfield:
{
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
__ verify_oop(R17_tos);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
__ verify_oop(R17_tos);
__ twi_0(R17_tos);
__ isync();
break;
}
case Bytecodes::_fast_igetfield:
{
__ lwax(R17_tos, Rclass_or_obj, Roffset);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ lwax(R17_tos, Rclass_or_obj, Roffset);
__ twi_0(R17_tos);
__ isync();
break;
}
case Bytecodes::_fast_lgetfield:
{
__ ldx(R17_tos, Rclass_or_obj, Roffset);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ ldx(R17_tos, Rclass_or_obj, Roffset);
__ twi_0(R17_tos);
__ isync();
break;
}
case Bytecodes::_fast_bgetfield:
{
__ lbzx(R17_tos, Rclass_or_obj, Roffset);
__ extsb(R17_tos, R17_tos);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ lbzx(R17_tos, Rclass_or_obj, Roffset);
__ twi_0(R17_tos);
__ extsb(R17_tos, R17_tos);
__ isync();
break;
}
case Bytecodes::_fast_cgetfield:
{
__ lhzx(R17_tos, Rclass_or_obj, Roffset);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ lhzx(R17_tos, Rclass_or_obj, Roffset);
__ twi_0(R17_tos);
__ isync();
break;
}
case Bytecodes::_fast_sgetfield:
{
__ lhax(R17_tos, Rclass_or_obj, Roffset);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ lhax(R17_tos, Rclass_or_obj, Roffset);
__ twi_0(R17_tos);
__ isync();
break;
}
case Bytecodes::_fast_fgetfield:
{
__ lfsx(F15_ftos, Rclass_or_obj, Roffset);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
Label Ldummy;
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ lfsx(F15_ftos, Rclass_or_obj, Roffset);
__ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
__ bne_predict_not_taken(CCR0, Ldummy);
__ bind(Ldummy);
__ isync();
break;
}
case Bytecodes::_fast_dgetfield:
{
__ lfdx(F15_ftos, Rclass_or_obj, Roffset);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
Label Ldummy;
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ lfdx(F15_ftos, Rclass_or_obj, Roffset);
__ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
__ bne_predict_not_taken(CCR0, Ldummy);
__ bind(Ldummy);
__ isync();
break;
}
default: ShouldNotReachHere();
}
}
void TemplateTable::fast_xaccess(TosState state) {
transition(vtos, state);
Label LisVolatile;
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
const Register Rcache = R3_ARG1,
Rclass_or_obj = R17_tos,
Roffset = R22_tmp2,
Rflags = R23_tmp3,
Rscratch = R12_scratch2;
__ ld(Rclass_or_obj, 0, R18_locals);
// Constant pool already resolved. Get the field offset.
__ get_cache_and_index_at_bcp(Rcache, 2);
load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
// JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
// Needed to report exception at the correct bcp.
__ addi(R14_bcp, R14_bcp, 1);
// Get the load address.
__ null_check_throw(Rclass_or_obj, -1, Rscratch);
// Get volatile flag.
__ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
__ bne(CCR0, LisVolatile);
switch(state) {
case atos:
{
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
__ verify_oop(R17_tos);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
__ verify_oop(R17_tos);
__ twi_0(R17_tos);
__ isync();
break;
}
case itos:
{
__ lwax(R17_tos, Rclass_or_obj, Roffset);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ lwax(R17_tos, Rclass_or_obj, Roffset);
__ twi_0(R17_tos);
__ isync();
break;
}
case ftos:
{
__ lfsx(F15_ftos, Rclass_or_obj, Roffset);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
__ bind(LisVolatile);
Label Ldummy;
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ lfsx(F15_ftos, Rclass_or_obj, Roffset);
__ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
__ bne_predict_not_taken(CCR0, Ldummy);
__ bind(Ldummy);
__ isync();
break;
}
default: ShouldNotReachHere();
}
__ addi(R14_bcp, R14_bcp, -1);
}
// ============================================================================
// Calls
// Common code for invoke
//
// Input:
// - byte_no
//
// Output:
// - Rmethod: The method to invoke next.
// - Rret_addr: The return address to return to.
// - Rindex: MethodType (invokehandle) or CallSite obj (invokedynamic)
// - Rrecv: Cache for "this" pointer, might be noreg if static call.
// - Rflags: Method flags from const pool cache.
//
// Kills:
// - Rscratch1
//
void TemplateTable::prepare_invoke(int byte_no,
Register Rmethod, // linked method (or i-klass)
Register Rret_addr,// return address
Register Rindex, // itable index, MethodType, etc.
Register Rrecv, // If caller wants to see it.
Register Rflags, // If caller wants to test it.
Register Rscratch
) {
// Determine flags.
const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (Rrecv != noreg);
assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
assert_different_registers(Rret_addr, Rscratch);
load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
// Saving of SP done in call_from_interpreter.
// Maybe push "appendix" to arguments.
if (is_invokedynamic || is_invokehandle) {
Label Ldone;
__ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
__ beq(CCR0, Ldone);
// Push "appendix" (MethodType, CallSite, etc.).
// This must be done before we get the receiver,
// since the parameter_size includes it.
__ load_resolved_reference_at_index(Rscratch, Rindex);
__ verify_oop(Rscratch);
__ push_ptr(Rscratch);
__ bind(Ldone);
}
// Load receiver if needed (after appendix is pushed so parameter size is correct).
if (load_receiver) {
const Register Rparam_count = Rscratch;
__ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
__ load_receiver(Rparam_count, Rrecv);
__ verify_oop(Rrecv);
}
// Get return address.
{
Register Rtable_addr = Rscratch;
Register Rret_type = Rret_addr;
address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
// Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
__ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
__ load_dispatch_table(Rtable_addr, (address*)table_addr);
__ sldi(Rret_type, Rret_type, LogBytesPerWord);
// Get return address.
__ ldx(Rret_addr, Rtable_addr, Rret_type);
}
}
// Helper for virtual calls. Load target out of vtable and jump off!
// Kills all passed registers.
void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
assert_different_registers(Rrecv_klass, Rtemp, Rret);
const Register Rtarget_method = Rindex;
// Get target method & entry point.
const int base = InstanceKlass::vtable_start_offset() * wordSize;
// Calc vtable addr scale the vtable index by 8.
__ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
// Load target.
__ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
__ ldx(Rtarget_method, Rindex, Rrecv_klass);
// Argument and return type profiling.
__ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true);
__ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
}
// Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
void TemplateTable::invokevirtual(int byte_no) {
transition(vtos, vtos);
Register Rtable_addr = R11_scratch1,
Rret_type = R12_scratch2,
Rret_addr = R5_ARG3,
Rflags = R22_tmp2, // Should survive C call.
Rrecv = R3_ARG1,
Rrecv_klass = Rrecv,
Rvtableindex_or_method = R31, // Should survive C call.
Rnum_params = R4_ARG2,
Rnew_bc = R6_ARG4;
Label LnotFinal;
load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
__ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
__ bfalse(CCR0, LnotFinal);
patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
__ align(32, 12);
__ bind(LnotFinal);
// Load "this" pointer (receiver).
__ rldicl(Rnum_params, Rflags, 64, 48);
__ load_receiver(Rnum_params, Rrecv);
__ verify_oop(Rrecv);
// Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
__ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
__ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
__ sldi(Rret_type, Rret_type, LogBytesPerWord);
__ ldx(Rret_addr, Rret_type, Rtable_addr);
__ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
__ load_klass(Rrecv_klass, Rrecv);
__ verify_klass_ptr(Rrecv_klass);
__ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
}
void TemplateTable::fast_invokevfinal(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
Register Rflags = R22_tmp2,
Rmethod = R31;
load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
}
void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
// Load receiver from stack slot.
Register Rrecv = Rscratch2;
Register Rnum_params = Rrecv;
__ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
__ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
// Get return address.
Register Rtable_addr = Rscratch1,
Rret_addr = Rflags,
Rret_type = Rret_addr;
// Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
__ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
__ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
__ sldi(Rret_type, Rret_type, LogBytesPerWord);
__ ldx(Rret_addr, Rret_type, Rtable_addr);
// Load receiver and receiver NULL check.
__ load_receiver(Rnum_params, Rrecv);
__ null_check_throw(Rrecv, -1, Rscratch1);
__ profile_final_call(Rrecv, Rscratch1);
// Argument and return type profiling.
__ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
// Do the call.
__ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
}
void TemplateTable::invokespecial(int byte_no) {
assert(byte_no == f1_byte, "use this argument");
transition(vtos, vtos);
Register Rtable_addr = R3_ARG1,
Rret_addr = R4_ARG2,
Rflags = R5_ARG3,
Rreceiver = R6_ARG4,
Rmethod = R31;
prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
// Receiver NULL check.
__ null_check_throw(Rreceiver, -1, R11_scratch1);
__ profile_call(R11_scratch1, R12_scratch2);
// Argument and return type profiling.
__ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false);
__ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
}
void TemplateTable::invokestatic(int byte_no) {
assert(byte_no == f1_byte, "use this argument");
transition(vtos, vtos);
Register Rtable_addr = R3_ARG1,
Rret_addr = R4_ARG2,
Rflags = R5_ARG3;
prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
__ profile_call(R11_scratch1, R12_scratch2);
// Argument and return type profiling.
__ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false);
__ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
}
void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
Register Rret,
Register Rflags,
Register Rindex,
Register Rtemp1,
Register Rtemp2) {
assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
Label LnotFinal;
// Check for vfinal.
__ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
__ bfalse(CCR0, LnotFinal);
Register Rscratch = Rflags; // Rflags is dead now.
// Final call case.
__ profile_final_call(Rtemp1, Rscratch);
// Argument and return type profiling.
__ profile_arguments_type(Rindex, Rscratch, Rrecv_klass /* scratch */, true);
// Do the final call - the index (f2) contains the method.
__ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */);
// Non-final callc case.
__ bind(LnotFinal);
__ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch);
}
void TemplateTable::invokeinterface(int byte_no) {
assert(byte_no == f1_byte, "use this argument");
transition(vtos, vtos);
const Register Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2,
Rscratch3 = R9_ARG7,
Rscratch4 = R10_ARG8,
Rtable_addr = Rscratch2,
Rinterface_klass = R5_ARG3,
Rret_type = R8_ARG6,
Rret_addr = Rret_type,
Rindex = R6_ARG4,
Rreceiver = R4_ARG2,
Rrecv_klass = Rreceiver,
Rflags = R7_ARG5;
prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1);
// Get receiver klass.
__ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3);
__ load_klass(Rrecv_klass, Rreceiver);
// Check corner case object method.
Label LobjectMethod;
__ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
__ btrue(CCR0, LobjectMethod);
// Fallthrough: The normal invokeinterface case.
__ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
// Find entry point to call.
Label Lthrow_icc, Lthrow_ame;
// Result will be returned in Rindex.
__ mr(Rscratch4, Rrecv_klass);
__ mr(Rscratch3, Rindex);
__ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc);
__ cmpdi(CCR0, Rindex, 0);
__ beq(CCR0, Lthrow_ame);
// Found entry. Jump off!
// Argument and return type profiling.
__ profile_arguments_type(Rindex, Rscratch1, Rscratch2, true);
__ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2);
// Vtable entry was NULL => Throw abstract method error.
__ bind(Lthrow_ame);
__ mr(Rrecv_klass, Rscratch4);
__ mr(Rindex, Rscratch3);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
// Interface was not found => Throw incompatible class change error.
__ bind(Lthrow_icc);
__ mr(Rrecv_klass, Rscratch4);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
__ should_not_reach_here();
// Special case of invokeinterface called for virtual method of
// java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
// The invokeinterface was rewritten to a invokevirtual, hence we have
// to handle this corner case. This code isn't produced by javac, but could
// be produced by another compliant java compiler.
__ bind(LobjectMethod);
invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2);
}
void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos);
const Register Rret_addr = R3_ARG1,
Rflags = R4_ARG2,
Rmethod = R22_tmp2,
Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2;
if (!EnableInvokeDynamic) {
// We should not encounter this bytecode if !EnableInvokeDynamic.
// The verifier will stop it. However, if we get past the verifier,
// this will stop the thread in a reasonable way, without crashing the JVM.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
// The call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
return;
}
prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
// Profile this call.
__ profile_call(Rscratch1, Rscratch2);
// Off we go. With the new method handles, we don't jump to a method handle
// entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
// to be the callsite object the bootstrap method returned. This is passed to a
// "link" method which does the dispatch (Most likely just grabs the MH stored
// inside the callsite and does an invokehandle).
// Argument and return type profiling.
__ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false);
__ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
}
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
const Register Rret_addr = R3_ARG1,
Rflags = R4_ARG2,
Rrecv = R5_ARG3,
Rmethod = R22_tmp2,
Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2;
if (!EnableInvokeDynamic) {
// Rewriter does not generate this bytecode.
__ should_not_reach_here();
return;
}
prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
__ verify_method_ptr(Rmethod);
__ null_check_throw(Rrecv, -1, Rscratch2);
__ profile_final_call(Rrecv, Rscratch1);
// Still no call from handle => We call the method handle interpreter here.
// Argument and return type profiling.
__ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
__ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
}
// =============================================================================
// Allocation
// Puts allocated obj ref onto the expression stack.
void TemplateTable::_new() {
transition(vtos, atos);
Label Lslow_case,
Ldone,
Linitialize_header,
Lallocate_shared,
Linitialize_object; // Including clearing the fields.
const Register RallocatedObject = R17_tos,
RinstanceKlass = R9_ARG7,
Rscratch = R11_scratch1,
Roffset = R8_ARG6,
Rinstance_size = Roffset,
Rcpool = R4_ARG2,
Rtags = R3_ARG1,
Rindex = R5_ARG3;
const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
// --------------------------------------------------------------------------
// Check if fast case is possible.
// Load pointers to const pool and const pool's tags array.
__ get_cpool_and_tags(Rcpool, Rtags);
// Load index of constant pool entry.
__ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
if (UseTLAB) {
// Make sure the class we're about to instantiate has been resolved
// This is done before loading instanceKlass to be consistent with the order
// how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
__ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
__ lbzx(Rtags, Rindex, Rtags);
__ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
__ bne(CCR0, Lslow_case);
// Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
__ sldi(Roffset, Rindex, LogBytesPerWord);
__ addi(Rscratch, Rcpool, sizeof(ConstantPool));
__ isync(); // Order load of instance Klass wrt. tags.
__ ldx(RinstanceKlass, Roffset, Rscratch);
// Make sure klass is fully initialized and get instance_size.
__ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
__ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
__ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
// Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
__ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
__ crnand(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // slow path bit set or not fully initialized?
__ beq(CCR0, Lslow_case);
// --------------------------------------------------------------------------
// Fast case:
// Allocate the instance.
// 1) Try to allocate in the TLAB.
// 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
// 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
Register RnewTopValue = R6_ARG4;
Register RendValue = R7_ARG5;
// Check if we can allocate in the TLAB.
__ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
__ ld(RendValue, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
__ add(RnewTopValue, Rinstance_size, RoldTopValue);
// If there is enough space, we do not CAS and do not clear.
__ cmpld(CCR0, RnewTopValue, RendValue);
__ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);
__ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
if (ZeroTLAB) {
// The fields have already been cleared.
__ b(Linitialize_header);
} else {
// Initialize both the header and fields.
__ b(Linitialize_object);
}
// Fall through: TLAB was too small.
if (allow_shared_alloc) {
Register RtlabWasteLimitValue = R10_ARG8;
Register RfreeValue = RnewTopValue;
__ bind(Lallocate_shared);
// Check if tlab should be discarded (refill_waste_limit >= free).
__ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
__ subf(RfreeValue, RoldTopValue, RendValue);
__ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
__ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
__ bge(CCR0, Lslow_case);
// Increment waste limit to prevent getting stuck on this slow path.
__ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
__ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
}
// else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
}
// else: Always go the slow path.
// --------------------------------------------------------------------------
// slow case
__ bind(Lslow_case);
call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
if (UseTLAB) {
__ b(Ldone);
// --------------------------------------------------------------------------
// Init1: Zero out newly allocated memory.
if (!ZeroTLAB || allow_shared_alloc) {
// Clear object fields.
__ bind(Linitialize_object);
// Initialize remaining object fields.
Register Rbase = Rtags;
__ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
__ addi(Rbase, RallocatedObject, sizeof(oopDesc));
__ srdi(Rinstance_size, Rinstance_size, 3);
// Clear out object skipping header. Takes also care of the zero length case.
__ clear_memory_doubleword(Rbase, Rinstance_size);
// fallthru: __ b(Linitialize_header);
}
// --------------------------------------------------------------------------
// Init2: Initialize the header: mark, klass
__ bind(Linitialize_header);
// Init mark.
if (UseBiasedLocking) {
__ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
} else {
__ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
}
__ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
// Init klass.
__ store_klass_gap(RallocatedObject);
__ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
// Check and trigger dtrace event.
{
SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
__ push(atos);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
__ pop(atos);
}
}
// continue
__ bind(Ldone);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(Assembler::StoreStore);
}
void TemplateTable::newarray() {
transition(itos, atos);
__ lbz(R4, 1, R14_bcp);
__ extsw(R5, R17_tos);
call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(Assembler::StoreStore);
}
void TemplateTable::anewarray() {
transition(itos, atos);
__ get_constant_pool(R4);
__ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
__ extsw(R6, R17_tos); // size
call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(Assembler::StoreStore);
}
// Allocate a multi dimensional array
void TemplateTable::multianewarray() {
transition(vtos, atos);
Register Rptr = R31; // Needs to survive C call.
// Put ndims * wordSize into frame temp slot
__ lbz(Rptr, 3, R14_bcp);
__ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
// Esp points past last_dim, so set to R4 to first_dim address.
__ add(R4, Rptr, R15_esp);
call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
// Pop all dimensions off the stack.
__ add(R15_esp, Rptr, R15_esp);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(Assembler::StoreStore);
}
void TemplateTable::arraylength() {
transition(atos, itos);
Label LnoException;
__ verify_oop(R17_tos);
__ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
__ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
}
// ============================================================================
// Typechecks
void TemplateTable::checkcast() {
transition(atos, atos);
Label Ldone, Lis_null, Lquicked, Lresolved;
Register Roffset = R6_ARG4,
RobjKlass = R4_ARG2,
RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
Rcpool = R11_scratch1,
Rtags = R12_scratch2;
// Null does not pass.
__ cmpdi(CCR0, R17_tos, 0);
__ beq(CCR0, Lis_null);
// Get constant pool tag to find out if the bytecode has already been "quickened".
__ get_cpool_and_tags(Rcpool, Rtags);
__ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
__ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
__ lbzx(Rtags, Rtags, Roffset);
__ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
__ beq(CCR0, Lquicked);
// Call into the VM to "quicken" instanceof.
__ push_ptr(); // for GC
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
__ get_vm_result_2(RspecifiedKlass);
__ pop_ptr(); // Restore receiver.
__ b(Lresolved);
// Extract target class from constant pool.
__ bind(Lquicked);
__ sldi(Roffset, Roffset, LogBytesPerWord);
__ addi(Rcpool, Rcpool, sizeof(ConstantPool));
__ isync(); // Order load of specified Klass wrt. tags.
__ ldx(RspecifiedKlass, Rcpool, Roffset);
// Do the checkcast.
__ bind(Lresolved);
// Get value klass in RobjKlass.
__ load_klass(RobjKlass, R17_tos);
// Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
__ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
// Not a subtype; so must throw exception
// Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
__ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
__ mtctr(R11_scratch1);
__ bctr();
// Profile the null case.
__ align(32, 12);
__ bind(Lis_null);
__ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
__ align(32, 12);
__ bind(Ldone);
}
// Output:
// - tos == 0: Obj was null or not an instance of class.
// - tos == 1: Obj was an instance of class.
void TemplateTable::instanceof() {
transition(atos, itos);
Label Ldone, Lis_null, Lquicked, Lresolved;
Register Roffset = R5_ARG3,
RobjKlass = R4_ARG2,
RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register.
Rcpool = R11_scratch1,
Rtags = R12_scratch2;
// Null does not pass.
__ cmpdi(CCR0, R17_tos, 0);
__ beq(CCR0, Lis_null);
// Get constant pool tag to find out if the bytecode has already been "quickened".
__ get_cpool_and_tags(Rcpool, Rtags);
__ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
__ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
__ lbzx(Rtags, Rtags, Roffset);
__ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
__ beq(CCR0, Lquicked);
// Call into the VM to "quicken" instanceof.
__ push_ptr(); // for GC
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
__ get_vm_result_2(RspecifiedKlass);
__ pop_ptr(); // Restore receiver.
__ b(Lresolved);
// Extract target class from constant pool.
__ bind(Lquicked);
__ sldi(Roffset, Roffset, LogBytesPerWord);
__ addi(Rcpool, Rcpool, sizeof(ConstantPool));
__ isync(); // Order load of specified Klass wrt. tags.
__ ldx(RspecifiedKlass, Rcpool, Roffset);
// Do the checkcast.
__ bind(Lresolved);
// Get value klass in RobjKlass.
__ load_klass(RobjKlass, R17_tos);
// Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
__ li(R17_tos, 1);
__ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
__ li(R17_tos, 0);
if (ProfileInterpreter) {
__ b(Ldone);
}
// Profile the null case.
__ align(32, 12);
__ bind(Lis_null);
__ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
__ align(32, 12);
__ bind(Ldone);
}
// =============================================================================
// Breakpoints
void TemplateTable::_breakpoint() {
transition(vtos, vtos);
// Get the unpatched byte code.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
__ mr(R31, R3_RET);
// Post the breakpoint event.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
// Complete the execution of original bytecode.
__ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
}
// =============================================================================
// Exceptions
void TemplateTable::athrow() {
transition(atos, vtos);
// Exception oop is in tos
__ verify_oop(R17_tos);
__ null_check_throw(R17_tos, -1, R11_scratch1);
// Throw exception interpreter entry expects exception oop to be in R3.
__ mr(R3_RET, R17_tos);
__ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
__ mtctr(R11_scratch1);
__ bctr();
}
// =============================================================================
// Synchronization
// Searches the basic object lock list on the stack for a free slot
// and uses it to lock the obect in tos.
//
// Recursive locking is enabled by exiting the search if the same
// object is already found in the list. Thus, a new basic lock obj lock
// is allocated "higher up" in the stack and thus is found first
// at next monitor exit.
void TemplateTable::monitorenter() {
transition(atos, vtos);
__ verify_oop(R17_tos);
Register Rcurrent_monitor = R11_scratch1,
Rcurrent_obj = R12_scratch2,
Robj_to_lock = R17_tos,
Rscratch1 = R3_ARG1,
Rscratch2 = R4_ARG2,
Rscratch3 = R5_ARG3,
Rcurrent_obj_addr = R6_ARG4;
// ------------------------------------------------------------------------------
// Null pointer exception.
__ null_check_throw(Robj_to_lock, -1, R11_scratch1);
// Try to acquire a lock on the object.
// Repeat until succeeded (i.e., until monitorenter returns true).
// ------------------------------------------------------------------------------
// Find a free slot in the monitor block.
Label Lfound, Lexit, Lallocate_new;
ConditionRegister found_free_slot = CCR0,
found_same_obj = CCR1,
reached_limit = CCR6;
{
Label Lloop, Lentry;
Register Rlimit = Rcurrent_monitor;
// Set up search loop - start with topmost monitor.
__ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
__ ld(Rlimit, 0, R1_SP);
__ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
// Check if any slot is present => short cut to allocation if not.
__ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
__ bgt(reached_limit, Lallocate_new);
// Pre-load topmost slot.
__ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
__ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
// The search loop.
__ bind(Lloop);
// Found free slot?
__ cmpdi(found_free_slot, Rcurrent_obj, 0);
// Is this entry for same obj? If so, stop the search and take the found
// free slot or allocate a new one to enable recursive locking.
__ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
__ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
__ beq(found_free_slot, Lexit);
__ beq(found_same_obj, Lallocate_new);
__ bgt(reached_limit, Lallocate_new);
// Check if last allocated BasicLockObj reached.
__ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
__ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
// Next iteration if unchecked BasicObjectLocks exist on the stack.
__ b(Lloop);
}
// ------------------------------------------------------------------------------
// Check if we found a free slot.
__ bind(Lexit);
__ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
__ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
__ b(Lfound);
// We didn't find a free BasicObjLock => allocate one.
__ align(32, 12);
__ bind(Lallocate_new);
__ add_monitor_to_stack(false, Rscratch1, Rscratch2);
__ mr(Rcurrent_monitor, R26_monitor);
__ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
// ------------------------------------------------------------------------------
// We now have a slot to lock.
__ bind(Lfound);
// Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
// The object has already been poped from the stack, so the expression stack looks correct.
__ addi(R14_bcp, R14_bcp, 1);
__ std(Robj_to_lock, 0, Rcurrent_obj_addr);
__ lock_object(Rcurrent_monitor, Robj_to_lock);
// Check if there's enough space on the stack for the monitors after locking.
Label Lskip_stack_check;
// Optimization: If the monitors stack section is less then a std page size (4K) don't run
// the stack check. There should be enough shadow pages to fit that in.
__ ld(Rscratch3, 0, R1_SP);
__ sub(Rscratch3, Rscratch3, R26_monitor);
__ cmpdi(CCR0, Rscratch3, 4*K);
__ blt(CCR0, Lskip_stack_check);
DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
__ li(Rscratch1, 0);
__ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);
__ align(32, 12);
__ bind(Lskip_stack_check);
// The bcp has already been incremented. Just need to dispatch to next instruction.
__ dispatch_next(vtos);
}
void TemplateTable::monitorexit() {
transition(atos, vtos);
__ verify_oop(R17_tos);
Register Rcurrent_monitor = R11_scratch1,
Rcurrent_obj = R12_scratch2,
Robj_to_lock = R17_tos,
Rcurrent_obj_addr = R3_ARG1,
Rlimit = R4_ARG2;
Label Lfound, Lillegal_monitor_state;
// Check corner case: unbalanced monitorEnter / Exit.
__ ld(Rlimit, 0, R1_SP);
__ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
// Null pointer check.
__ null_check_throw(Robj_to_lock, -1, R11_scratch1);
__ cmpld(CCR0, R26_monitor, Rlimit);
__ bgt(CCR0, Lillegal_monitor_state);
// Find the corresponding slot in the monitors stack section.
{
Label Lloop;
// Start with topmost monitor.
__ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
__ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
__ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
__ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
__ bind(Lloop);
// Is this entry for same obj?
__ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
__ beq(CCR0, Lfound);
// Check if last allocated BasicLockObj reached.
__ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
__ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
__ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
// Next iteration if unchecked BasicObjectLocks exist on the stack.
__ ble(CCR0, Lloop);
}
// Fell through without finding the basic obj lock => throw up!
__ bind(Lillegal_monitor_state);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
__ align(32, 12);
__ bind(Lfound);
__ addi(Rcurrent_monitor, Rcurrent_obj_addr,
-(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
__ unlock_object(Rcurrent_monitor);
}
// ============================================================================
// Wide bytecodes
// Wide instructions. Simply redirects to the wide entry point for that instruction.
void TemplateTable::wide() {
transition(vtos, vtos);
const Register Rtable = R11_scratch1,
Rindex = R12_scratch2,
Rtmp = R0;
__ lbz(Rindex, 1, R14_bcp);
__ load_dispatch_table(Rtable, Interpreter::_wentry_point);
__ slwi(Rindex, Rindex, LogBytesPerWord);
__ ldx(Rtmp, Rtable, Rindex);
__ mtctr(Rtmp);
__ bctr();
// Note: the bcp increment step is part of the individual wide bytecode implementations.
}
#endif // !CC_INTERP