blob: 2a8fc59c8921aaaa4bbfed3a29a4a39faea56419 [file] [log] [blame]
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_PPC_VM_BYTES_PPC_HPP
#define CPU_PPC_VM_BYTES_PPC_HPP
#include "memory/allocation.hpp"
class Bytes: AllStatic {
public:
// Efficient reading and writing of unaligned unsigned data in platform-specific byte ordering
// PowerPC needs to check for alignment.
// Can I count on address always being a pointer to an unsigned char? Yes.
#if defined(VM_LITTLE_ENDIAN)
// Returns true, if the byte ordering used by Java is different from the native byte ordering
// of the underlying machine. For example, true for Intel x86, False, for Solaris on Sparc.
static inline bool is_Java_byte_ordering_different() { return true; }
// Forward declarations of the compiler-dependent implementation
static inline u2 swap_u2(u2 x);
static inline u4 swap_u4(u4 x);
static inline u8 swap_u8(u8 x);
static inline u2 get_native_u2(address p) {
return (intptr_t(p) & 1) == 0
? *(u2*)p
: ( u2(p[1]) << 8 )
| ( u2(p[0]) );
}
static inline u4 get_native_u4(address p) {
switch (intptr_t(p) & 3) {
case 0: return *(u4*)p;
case 2: return ( u4( ((u2*)p)[1] ) << 16 )
| ( u4( ((u2*)p)[0] ) );
default: return ( u4(p[3]) << 24 )
| ( u4(p[2]) << 16 )
| ( u4(p[1]) << 8 )
| u4(p[0]);
}
}
static inline u8 get_native_u8(address p) {
switch (intptr_t(p) & 7) {
case 0: return *(u8*)p;
case 4: return ( u8( ((u4*)p)[1] ) << 32 )
| ( u8( ((u4*)p)[0] ) );
case 2: return ( u8( ((u2*)p)[3] ) << 48 )
| ( u8( ((u2*)p)[2] ) << 32 )
| ( u8( ((u2*)p)[1] ) << 16 )
| ( u8( ((u2*)p)[0] ) );
default: return ( u8(p[7]) << 56 )
| ( u8(p[6]) << 48 )
| ( u8(p[5]) << 40 )
| ( u8(p[4]) << 32 )
| ( u8(p[3]) << 24 )
| ( u8(p[2]) << 16 )
| ( u8(p[1]) << 8 )
| u8(p[0]);
}
}
static inline void put_native_u2(address p, u2 x) {
if ( (intptr_t(p) & 1) == 0 ) *(u2*)p = x;
else {
p[1] = x >> 8;
p[0] = x;
}
}
static inline void put_native_u4(address p, u4 x) {
switch ( intptr_t(p) & 3 ) {
case 0: *(u4*)p = x;
break;
case 2: ((u2*)p)[1] = x >> 16;
((u2*)p)[0] = x;
break;
default: ((u1*)p)[3] = x >> 24;
((u1*)p)[2] = x >> 16;
((u1*)p)[1] = x >> 8;
((u1*)p)[0] = x;
break;
}
}
static inline void put_native_u8(address p, u8 x) {
switch ( intptr_t(p) & 7 ) {
case 0: *(u8*)p = x;
break;
case 4: ((u4*)p)[1] = x >> 32;
((u4*)p)[0] = x;
break;
case 2: ((u2*)p)[3] = x >> 48;
((u2*)p)[2] = x >> 32;
((u2*)p)[1] = x >> 16;
((u2*)p)[0] = x;
break;
default: ((u1*)p)[7] = x >> 56;
((u1*)p)[6] = x >> 48;
((u1*)p)[5] = x >> 40;
((u1*)p)[4] = x >> 32;
((u1*)p)[3] = x >> 24;
((u1*)p)[2] = x >> 16;
((u1*)p)[1] = x >> 8;
((u1*)p)[0] = x;
}
}
// Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering)
// (no byte-order reversal is needed since Power CPUs are big-endian oriented).
static inline u2 get_Java_u2(address p) { return swap_u2(get_native_u2(p)); }
static inline u4 get_Java_u4(address p) { return swap_u4(get_native_u4(p)); }
static inline u8 get_Java_u8(address p) { return swap_u8(get_native_u8(p)); }
static inline void put_Java_u2(address p, u2 x) { put_native_u2(p, swap_u2(x)); }
static inline void put_Java_u4(address p, u4 x) { put_native_u4(p, swap_u4(x)); }
static inline void put_Java_u8(address p, u8 x) { put_native_u8(p, swap_u8(x)); }
#else // !defined(VM_LITTLE_ENDIAN)
// Returns true, if the byte ordering used by Java is different from the nativ byte ordering
// of the underlying machine. For example, true for Intel x86, False, for Solaris on Sparc.
static inline bool is_Java_byte_ordering_different() { return false; }
// Thus, a swap between native and Java ordering is always a no-op:
static inline u2 swap_u2(u2 x) { return x; }
static inline u4 swap_u4(u4 x) { return x; }
static inline u8 swap_u8(u8 x) { return x; }
static inline u2 get_native_u2(address p) {
return (intptr_t(p) & 1) == 0
? *(u2*)p
: ( u2(p[0]) << 8 )
| ( u2(p[1]) );
}
static inline u4 get_native_u4(address p) {
switch (intptr_t(p) & 3) {
case 0: return *(u4*)p;
case 2: return ( u4( ((u2*)p)[0] ) << 16 )
| ( u4( ((u2*)p)[1] ) );
default: return ( u4(p[0]) << 24 )
| ( u4(p[1]) << 16 )
| ( u4(p[2]) << 8 )
| u4(p[3]);
}
}
static inline u8 get_native_u8(address p) {
switch (intptr_t(p) & 7) {
case 0: return *(u8*)p;
case 4: return ( u8( ((u4*)p)[0] ) << 32 )
| ( u8( ((u4*)p)[1] ) );
case 2: return ( u8( ((u2*)p)[0] ) << 48 )
| ( u8( ((u2*)p)[1] ) << 32 )
| ( u8( ((u2*)p)[2] ) << 16 )
| ( u8( ((u2*)p)[3] ) );
default: return ( u8(p[0]) << 56 )
| ( u8(p[1]) << 48 )
| ( u8(p[2]) << 40 )
| ( u8(p[3]) << 32 )
| ( u8(p[4]) << 24 )
| ( u8(p[5]) << 16 )
| ( u8(p[6]) << 8 )
| u8(p[7]);
}
}
static inline void put_native_u2(address p, u2 x) {
if ( (intptr_t(p) & 1) == 0 ) { *(u2*)p = x; }
else {
p[0] = x >> 8;
p[1] = x;
}
}
static inline void put_native_u4(address p, u4 x) {
switch ( intptr_t(p) & 3 ) {
case 0: *(u4*)p = x;
break;
case 2: ((u2*)p)[0] = x >> 16;
((u2*)p)[1] = x;
break;
default: ((u1*)p)[0] = x >> 24;
((u1*)p)[1] = x >> 16;
((u1*)p)[2] = x >> 8;
((u1*)p)[3] = x;
break;
}
}
static inline void put_native_u8(address p, u8 x) {
switch ( intptr_t(p) & 7 ) {
case 0: *(u8*)p = x;
break;
case 4: ((u4*)p)[0] = x >> 32;
((u4*)p)[1] = x;
break;
case 2: ((u2*)p)[0] = x >> 48;
((u2*)p)[1] = x >> 32;
((u2*)p)[2] = x >> 16;
((u2*)p)[3] = x;
break;
default: ((u1*)p)[0] = x >> 56;
((u1*)p)[1] = x >> 48;
((u1*)p)[2] = x >> 40;
((u1*)p)[3] = x >> 32;
((u1*)p)[4] = x >> 24;
((u1*)p)[5] = x >> 16;
((u1*)p)[6] = x >> 8;
((u1*)p)[7] = x;
}
}
// Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering)
// (no byte-order reversal is needed since Power CPUs are big-endian oriented).
static inline u2 get_Java_u2(address p) { return get_native_u2(p); }
static inline u4 get_Java_u4(address p) { return get_native_u4(p); }
static inline u8 get_Java_u8(address p) { return get_native_u8(p); }
static inline void put_Java_u2(address p, u2 x) { put_native_u2(p, x); }
static inline void put_Java_u4(address p, u4 x) { put_native_u4(p, x); }
static inline void put_Java_u8(address p, u8 x) { put_native_u8(p, x); }
#endif // VM_LITTLE_ENDIAN
};
#if defined(TARGET_OS_ARCH_linux_ppc)
#include "bytes_linux_ppc.inline.hpp"
#endif
#endif // CPU_PPC_VM_BYTES_PPC_HPP