blob: 2b4e33c66ccdde8850f99eb3bb7f6c5f35eb6f90 [file] [log] [blame]
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm_solaris.h"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "mutex_solaris.inline.hpp"
#include "oops/oop.inline.hpp"
#include "os_share_solaris.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm.h"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/globals.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "runtime/osThread.hpp"
#include "runtime/perfMemory.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/statSampler.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/timer.hpp"
#include "services/attachListener.hpp"
#include "services/memTracker.hpp"
#include "services/runtimeService.hpp"
#include "utilities/decoder.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/vmError.hpp"
// put OS-includes here
# include <dlfcn.h>
# include <errno.h>
# include <exception>
# include <link.h>
# include <poll.h>
# include <pthread.h>
# include <pwd.h>
# include <schedctl.h>
# include <setjmp.h>
# include <signal.h>
# include <stdio.h>
# include <alloca.h>
# include <sys/filio.h>
# include <sys/ipc.h>
# include <sys/lwp.h>
# include <sys/machelf.h> // for elf Sym structure used by dladdr1
# include <sys/mman.h>
# include <sys/processor.h>
# include <sys/procset.h>
# include <sys/pset.h>
# include <sys/resource.h>
# include <sys/shm.h>
# include <sys/socket.h>
# include <sys/stat.h>
# include <sys/systeminfo.h>
# include <sys/time.h>
# include <sys/times.h>
# include <sys/types.h>
# include <sys/wait.h>
# include <sys/utsname.h>
# include <thread.h>
# include <unistd.h>
# include <sys/priocntl.h>
# include <sys/rtpriocntl.h>
# include <sys/tspriocntl.h>
# include <sys/iapriocntl.h>
# include <sys/fxpriocntl.h>
# include <sys/loadavg.h>
# include <string.h>
# include <stdio.h>
# define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later
# include <sys/procfs.h> // see comment in <sys/procfs.h>
#define MAX_PATH (2 * K)
// for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
// Here are some liblgrp types from sys/lgrp_user.h to be able to
// compile on older systems without this header file.
#ifndef MADV_ACCESS_LWP
# define MADV_ACCESS_LWP 7 /* next LWP to access heavily */
#endif
#ifndef MADV_ACCESS_MANY
# define MADV_ACCESS_MANY 8 /* many processes to access heavily */
#endif
#ifndef LGRP_RSRC_CPU
# define LGRP_RSRC_CPU 0 /* CPU resources */
#endif
#ifndef LGRP_RSRC_MEM
# define LGRP_RSRC_MEM 1 /* memory resources */
#endif
// see thr_setprio(3T) for the basis of these numbers
#define MinimumPriority 0
#define NormalPriority 64
#define MaximumPriority 127
// Values for ThreadPriorityPolicy == 1
int prio_policy1[CriticalPriority+1] = {
-99999, 0, 16, 32, 48, 64,
80, 96, 112, 124, 127, 127 };
// System parameters used internally
static clock_t clock_tics_per_sec = 100;
// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
static bool enabled_extended_FILE_stdio = false;
// For diagnostics to print a message once. see run_periodic_checks
static bool check_addr0_done = false;
static sigset_t check_signal_done;
static bool check_signals = true;
address os::Solaris::handler_start; // start pc of thr_sighndlrinfo
address os::Solaris::handler_end; // end pc of thr_sighndlrinfo
address os::Solaris::_main_stack_base = NULL; // 4352906 workaround
// "default" initializers for missing libc APIs
extern "C" {
static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
static int lwp_mutex_destroy(mutex_t *mx) { return 0; }
static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
static int lwp_cond_destroy(cond_t *cv) { return 0; }
}
// "default" initializers for pthread-based synchronization
extern "C" {
static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
}
static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
static inline size_t adjust_stack_size(address base, size_t size) {
if ((ssize_t)size < 0) {
// 4759953: Compensate for ridiculous stack size.
size = max_intx;
}
if (size > (size_t)base) {
// 4812466: Make sure size doesn't allow the stack to wrap the address space.
size = (size_t)base;
}
return size;
}
static inline stack_t get_stack_info() {
stack_t st;
int retval = thr_stksegment(&st);
st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
assert(retval == 0, "incorrect return value from thr_stksegment");
assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
return st;
}
address os::current_stack_base() {
int r = thr_main() ;
guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
bool is_primordial_thread = r;
// Workaround 4352906, avoid calls to thr_stksegment by
// thr_main after the first one (it looks like we trash
// some data, causing the value for ss_sp to be incorrect).
if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
stack_t st = get_stack_info();
if (is_primordial_thread) {
// cache initial value of stack base
os::Solaris::_main_stack_base = (address)st.ss_sp;
}
return (address)st.ss_sp;
} else {
guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
return os::Solaris::_main_stack_base;
}
}
size_t os::current_stack_size() {
size_t size;
int r = thr_main() ;
guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
if(!r) {
size = get_stack_info().ss_size;
} else {
struct rlimit limits;
getrlimit(RLIMIT_STACK, &limits);
size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
}
// base may not be page aligned
address base = current_stack_base();
address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
return (size_t)(base - bottom);
}
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
return localtime_r(clock, res);
}
// interruptible infrastructure
// setup_interruptible saves the thread state before going into an
// interruptible system call.
// The saved state is used to restore the thread to
// its former state whether or not an interrupt is received.
// Used by classloader os::read
// os::restartable_read calls skip this layer and stay in _thread_in_native
void os::Solaris::setup_interruptible(JavaThread* thread) {
JavaThreadState thread_state = thread->thread_state();
assert(thread_state != _thread_blocked, "Coming from the wrong thread");
assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
OSThread* osthread = thread->osthread();
osthread->set_saved_interrupt_thread_state(thread_state);
thread->frame_anchor()->make_walkable(thread);
ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
}
// Version of setup_interruptible() for threads that are already in
// _thread_blocked. Used by os_sleep().
void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
thread->frame_anchor()->make_walkable(thread);
}
JavaThread* os::Solaris::setup_interruptible() {
JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
setup_interruptible(thread);
return thread;
}
void os::Solaris::try_enable_extended_io() {
typedef int (*enable_extended_FILE_stdio_t)(int, int);
if (!UseExtendedFileIO) {
return;
}
enable_extended_FILE_stdio_t enabler =
(enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
"enable_extended_FILE_stdio");
if (enabler) {
enabler(-1, -1);
}
}
#ifdef ASSERT
JavaThread* os::Solaris::setup_interruptible_native() {
JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
JavaThreadState thread_state = thread->thread_state();
assert(thread_state == _thread_in_native, "Assumed thread_in_native");
return thread;
}
void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
JavaThreadState thread_state = thread->thread_state();
assert(thread_state == _thread_in_native, "Assumed thread_in_native");
}
#endif
// cleanup_interruptible reverses the effects of setup_interruptible
// setup_interruptible_already_blocked() does not need any cleanup.
void os::Solaris::cleanup_interruptible(JavaThread* thread) {
OSThread* osthread = thread->osthread();
ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
}
// I/O interruption related counters called in _INTERRUPTIBLE
void os::Solaris::bump_interrupted_before_count() {
RuntimeService::record_interrupted_before_count();
}
void os::Solaris::bump_interrupted_during_count() {
RuntimeService::record_interrupted_during_count();
}
static int _processors_online = 0;
jint os::Solaris::_os_thread_limit = 0;
volatile jint os::Solaris::_os_thread_count = 0;
julong os::available_memory() {
return Solaris::available_memory();
}
julong os::Solaris::available_memory() {
return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
}
julong os::Solaris::_physical_memory = 0;
julong os::physical_memory() {
return Solaris::physical_memory();
}
static hrtime_t first_hrtime = 0;
static const hrtime_t hrtime_hz = 1000*1000*1000;
static volatile hrtime_t max_hrtime = 0;
void os::Solaris::initialize_system_info() {
set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
_processors_online = sysconf (_SC_NPROCESSORS_ONLN);
_physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
}
int os::active_processor_count() {
int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
pid_t pid = getpid();
psetid_t pset = PS_NONE;
// Are we running in a processor set or is there any processor set around?
if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
uint_t pset_cpus;
// Query the number of cpus available to us.
if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
_processors_online = pset_cpus;
return pset_cpus;
}
}
// Otherwise return number of online cpus
return online_cpus;
}
static bool find_processors_in_pset(psetid_t pset,
processorid_t** id_array,
uint_t* id_length) {
bool result = false;
// Find the number of processors in the processor set.
if (pset_info(pset, NULL, id_length, NULL) == 0) {
// Make up an array to hold their ids.
*id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
// Fill in the array with their processor ids.
if (pset_info(pset, NULL, id_length, *id_array) == 0) {
result = true;
}
}
return result;
}
// Callers of find_processors_online() must tolerate imprecise results --
// the system configuration can change asynchronously because of DR
// or explicit psradm operations.
//
// We also need to take care that the loop (below) terminates as the
// number of processors online can change between the _SC_NPROCESSORS_ONLN
// request and the loop that builds the list of processor ids. Unfortunately
// there's no reliable way to determine the maximum valid processor id,
// so we use a manifest constant, MAX_PROCESSOR_ID, instead. See p_online
// man pages, which claim the processor id set is "sparse, but
// not too sparse". MAX_PROCESSOR_ID is used to ensure that we eventually
// exit the loop.
//
// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
// not available on S8.0.
static bool find_processors_online(processorid_t** id_array,
uint* id_length) {
const processorid_t MAX_PROCESSOR_ID = 100000 ;
// Find the number of processors online.
*id_length = sysconf(_SC_NPROCESSORS_ONLN);
// Make up an array to hold their ids.
*id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
// Processors need not be numbered consecutively.
long found = 0;
processorid_t next = 0;
while (found < *id_length && next < MAX_PROCESSOR_ID) {
processor_info_t info;
if (processor_info(next, &info) == 0) {
// NB, PI_NOINTR processors are effectively online ...
if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
(*id_array)[found] = next;
found += 1;
}
}
next += 1;
}
if (found < *id_length) {
// The loop above didn't identify the expected number of processors.
// We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
// and re-running the loop, above, but there's no guarantee of progress
// if the system configuration is in flux. Instead, we just return what
// we've got. Note that in the worst case find_processors_online() could
// return an empty set. (As a fall-back in the case of the empty set we
// could just return the ID of the current processor).
*id_length = found ;
}
return true;
}
static bool assign_distribution(processorid_t* id_array,
uint id_length,
uint* distribution,
uint distribution_length) {
// We assume we can assign processorid_t's to uint's.
assert(sizeof(processorid_t) == sizeof(uint),
"can't convert processorid_t to uint");
// Quick check to see if we won't succeed.
if (id_length < distribution_length) {
return false;
}
// Assign processor ids to the distribution.
// Try to shuffle processors to distribute work across boards,
// assuming 4 processors per board.
const uint processors_per_board = ProcessDistributionStride;
// Find the maximum processor id.
processorid_t max_id = 0;
for (uint m = 0; m < id_length; m += 1) {
max_id = MAX2(max_id, id_array[m]);
}
// The next id, to limit loops.
const processorid_t limit_id = max_id + 1;
// Make up markers for available processors.
bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
for (uint c = 0; c < limit_id; c += 1) {
available_id[c] = false;
}
for (uint a = 0; a < id_length; a += 1) {
available_id[id_array[a]] = true;
}
// Step by "boards", then by "slot", copying to "assigned".
// NEEDS_CLEANUP: The assignment of processors should be stateful,
// remembering which processors have been assigned by
// previous calls, etc., so as to distribute several
// independent calls of this method. What we'd like is
// It would be nice to have an API that let us ask
// how many processes are bound to a processor,
// but we don't have that, either.
// In the short term, "board" is static so that
// subsequent distributions don't all start at board 0.
static uint board = 0;
uint assigned = 0;
// Until we've found enough processors ....
while (assigned < distribution_length) {
// ... find the next available processor in the board.
for (uint slot = 0; slot < processors_per_board; slot += 1) {
uint try_id = board * processors_per_board + slot;
if ((try_id < limit_id) && (available_id[try_id] == true)) {
distribution[assigned] = try_id;
available_id[try_id] = false;
assigned += 1;
break;
}
}
board += 1;
if (board * processors_per_board + 0 >= limit_id) {
board = 0;
}
}
if (available_id != NULL) {
FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
}
return true;
}
void os::set_native_thread_name(const char *name) {
// Not yet implemented.
return;
}
bool os::distribute_processes(uint length, uint* distribution) {
bool result = false;
// Find the processor id's of all the available CPUs.
processorid_t* id_array = NULL;
uint id_length = 0;
// There are some races between querying information and using it,
// since processor sets can change dynamically.
psetid_t pset = PS_NONE;
// Are we running in a processor set?
if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
result = find_processors_in_pset(pset, &id_array, &id_length);
} else {
result = find_processors_online(&id_array, &id_length);
}
if (result == true) {
if (id_length >= length) {
result = assign_distribution(id_array, id_length, distribution, length);
} else {
result = false;
}
}
if (id_array != NULL) {
FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
}
return result;
}
bool os::bind_to_processor(uint processor_id) {
// We assume that a processorid_t can be stored in a uint.
assert(sizeof(uint) == sizeof(processorid_t),
"can't convert uint to processorid_t");
int bind_result =
processor_bind(P_LWPID, // bind LWP.
P_MYID, // bind current LWP.
(processorid_t) processor_id, // id.
NULL); // don't return old binding.
return (bind_result == 0);
}
bool os::getenv(const char* name, char* buffer, int len) {
char* val = ::getenv( name );
if ( val == NULL
|| strlen(val) + 1 > len ) {
if (len > 0) buffer[0] = 0; // return a null string
return false;
}
strcpy( buffer, val );
return true;
}
// Return true if user is running as root.
bool os::have_special_privileges() {
static bool init = false;
static bool privileges = false;
if (!init) {
privileges = (getuid() != geteuid()) || (getgid() != getegid());
init = true;
}
return privileges;
}
void os::init_system_properties_values() {
// The next steps are taken in the product version:
//
// Obtain the JAVA_HOME value from the location of libjvm.so.
// This library should be located at:
// <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
//
// If "/jre/lib/" appears at the right place in the path, then we
// assume libjvm.so is installed in a JDK and we use this path.
//
// Otherwise exit with message: "Could not create the Java virtual machine."
//
// The following extra steps are taken in the debugging version:
//
// If "/jre/lib/" does NOT appear at the right place in the path
// instead of exit check for $JAVA_HOME environment variable.
//
// If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
// then we append a fake suffix "hotspot/libjvm.so" to this path so
// it looks like libjvm.so is installed there
// <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
//
// Otherwise exit.
//
// Important note: if the location of libjvm.so changes this
// code needs to be changed accordingly.
// Base path of extensions installed on the system.
#define SYS_EXT_DIR "/usr/jdk/packages"
#define EXTENSIONS_DIR "/lib/ext"
#define ENDORSED_DIR "/lib/endorsed"
char cpu_arch[12];
// Buffer that fits several sprintfs.
// Note that the space for the colon and the trailing null are provided
// by the nulls included by the sizeof operator.
const size_t bufsize =
MAX4((size_t)MAXPATHLEN, // For dll_dir & friends.
sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
(size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
(size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
// sysclasspath, java_home, dll_dir
{
char *pslash;
os::jvm_path(buf, bufsize);
// Found the full path to libjvm.so.
// Now cut the path to <java_home>/jre if we can.
*(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
pslash = strrchr(buf, '/');
if (pslash != NULL) {
*pslash = '\0'; // Get rid of /{client|server|hotspot}.
}
Arguments::set_dll_dir(buf);
if (pslash != NULL) {
pslash = strrchr(buf, '/');
if (pslash != NULL) {
*pslash = '\0'; // Get rid of /<arch>.
pslash = strrchr(buf, '/');
if (pslash != NULL) {
*pslash = '\0'; // Get rid of /lib.
}
}
}
Arguments::set_java_home(buf);
set_boot_path('/', ':');
}
// Where to look for native libraries.
{
// Use dlinfo() to determine the correct java.library.path.
//
// If we're launched by the Java launcher, and the user
// does not set java.library.path explicitly on the commandline,
// the Java launcher sets LD_LIBRARY_PATH for us and unsets
// LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64. In this case
// dlinfo returns LD_LIBRARY_PATH + crle settings (including
// /usr/lib), which is exactly what we want.
//
// If the user does set java.library.path, it completely
// overwrites this setting, and always has.
//
// If we're not launched by the Java launcher, we may
// get here with any/all of the LD_LIBRARY_PATH[_32|64]
// settings. Again, dlinfo does exactly what we want.
Dl_serinfo info_sz, *info = &info_sz;
Dl_serpath *path;
char *library_path;
char *common_path = buf;
// Determine search path count and required buffer size.
if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
FREE_C_HEAP_ARRAY(char, buf, mtInternal);
vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
}
// Allocate new buffer and initialize.
info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
info->dls_size = info_sz.dls_size;
info->dls_cnt = info_sz.dls_cnt;
// Obtain search path information.
if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
FREE_C_HEAP_ARRAY(char, buf, mtInternal);
FREE_C_HEAP_ARRAY(char, info, mtInternal);
vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
}
path = &info->dls_serpath[0];
// Note: Due to a legacy implementation, most of the library path
// is set in the launcher. This was to accomodate linking restrictions
// on legacy Solaris implementations (which are no longer supported).
// Eventually, all the library path setting will be done here.
//
// However, to prevent the proliferation of improperly built native
// libraries, the new path component /usr/jdk/packages is added here.
// Determine the actual CPU architecture.
sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
#ifdef _LP64
// If we are a 64-bit vm, perform the following translations:
// sparc -> sparcv9
// i386 -> amd64
if (strcmp(cpu_arch, "sparc") == 0) {
strcat(cpu_arch, "v9");
} else if (strcmp(cpu_arch, "i386") == 0) {
strcpy(cpu_arch, "amd64");
}
#endif
// Construct the invariant part of ld_library_path.
sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
// Struct size is more than sufficient for the path components obtained
// through the dlinfo() call, so only add additional space for the path
// components explicitly added here.
size_t library_path_size = info->dls_size + strlen(common_path);
library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
library_path[0] = '\0';
// Construct the desired Java library path from the linker's library
// search path.
//
// For compatibility, it is optimal that we insert the additional path
// components specific to the Java VM after those components specified
// in LD_LIBRARY_PATH (if any) but before those added by the ld.so
// infrastructure.
if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
strcpy(library_path, common_path);
} else {
int inserted = 0;
int i;
for (i = 0; i < info->dls_cnt; i++, path++) {
uint_t flags = path->dls_flags & LA_SER_MASK;
if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
strcat(library_path, common_path);
strcat(library_path, os::path_separator());
inserted = 1;
}
strcat(library_path, path->dls_name);
strcat(library_path, os::path_separator());
}
// Eliminate trailing path separator.
library_path[strlen(library_path)-1] = '\0';
}
// happens before argument parsing - can't use a trace flag
// tty->print_raw("init_system_properties_values: native lib path: ");
// tty->print_raw_cr(library_path);
// Callee copies into its own buffer.
Arguments::set_library_path(library_path);
FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
FREE_C_HEAP_ARRAY(char, info, mtInternal);
}
// Extensions directories.
sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
Arguments::set_ext_dirs(buf);
// Endorsed standards default directory.
sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
Arguments::set_endorsed_dirs(buf);
FREE_C_HEAP_ARRAY(char, buf, mtInternal);
#undef SYS_EXT_DIR
#undef EXTENSIONS_DIR
#undef ENDORSED_DIR
}
void os::breakpoint() {
BREAKPOINT;
}
bool os::obsolete_option(const JavaVMOption *option)
{
if (!strncmp(option->optionString, "-Xt", 3)) {
return true;
} else if (!strncmp(option->optionString, "-Xtm", 4)) {
return true;
} else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
return true;
} else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
return true;
}
return false;
}
bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
address stackStart = (address)thread->stack_base();
address stackEnd = (address)(stackStart - (address)thread->stack_size());
if (sp < stackStart && sp >= stackEnd ) return true;
return false;
}
extern "C" void breakpoint() {
// use debugger to set breakpoint here
}
static thread_t main_thread;
// Thread start routine for all new Java threads
extern "C" void* java_start(void* thread_addr) {
// Try to randomize the cache line index of hot stack frames.
// This helps when threads of the same stack traces evict each other's
// cache lines. The threads can be either from the same JVM instance, or
// from different JVM instances. The benefit is especially true for
// processors with hyperthreading technology.
static int counter = 0;
int pid = os::current_process_id();
alloca(((pid ^ counter++) & 7) * 128);
int prio;
Thread* thread = (Thread*)thread_addr;
OSThread* osthr = thread->osthread();
osthr->set_lwp_id( _lwp_self() ); // Store lwp in case we are bound
thread->_schedctl = (void *) schedctl_init () ;
if (UseNUMA) {
int lgrp_id = os::numa_get_group_id();
if (lgrp_id != -1) {
thread->set_lgrp_id(lgrp_id);
}
}
// If the creator called set priority before we started,
// we need to call set_native_priority now that we have an lwp.
// We used to get the priority from thr_getprio (we called
// thr_setprio way back in create_thread) and pass it to
// set_native_priority, but Solaris scales the priority
// in java_to_os_priority, so when we read it back here,
// we pass trash to set_native_priority instead of what's
// in java_to_os_priority. So we save the native priority
// in the osThread and recall it here.
if ( osthr->thread_id() != -1 ) {
if ( UseThreadPriorities ) {
int prio = osthr->native_priority();
if (ThreadPriorityVerbose) {
tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
INTPTR_FORMAT ", setting priority: %d\n",
osthr->thread_id(), osthr->lwp_id(), prio);
}
os::set_native_priority(thread, prio);
}
} else if (ThreadPriorityVerbose) {
warning("Can't set priority in _start routine, thread id hasn't been set\n");
}
assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
// initialize signal mask for this thread
os::Solaris::hotspot_sigmask(thread);
thread->run();
// One less thread is executing
// When the VMThread gets here, the main thread may have already exited
// which frees the CodeHeap containing the Atomic::dec code
if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
Atomic::dec(&os::Solaris::_os_thread_count);
}
if (UseDetachedThreads) {
thr_exit(NULL);
ShouldNotReachHere();
}
return NULL;
}
static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
// Allocate the OSThread object
OSThread* osthread = new OSThread(NULL, NULL);
if (osthread == NULL) return NULL;
// Store info on the Solaris thread into the OSThread
osthread->set_thread_id(thread_id);
osthread->set_lwp_id(_lwp_self());
thread->_schedctl = (void *) schedctl_init () ;
if (UseNUMA) {
int lgrp_id = os::numa_get_group_id();
if (lgrp_id != -1) {
thread->set_lgrp_id(lgrp_id);
}
}
if ( ThreadPriorityVerbose ) {
tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
osthread->thread_id(), osthread->lwp_id() );
}
// Initial thread state is INITIALIZED, not SUSPENDED
osthread->set_state(INITIALIZED);
return osthread;
}
void os::Solaris::hotspot_sigmask(Thread* thread) {
//Save caller's signal mask
sigset_t sigmask;
thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
OSThread *osthread = thread->osthread();
osthread->set_caller_sigmask(sigmask);
thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
if (!ReduceSignalUsage) {
if (thread->is_VM_thread()) {
// Only the VM thread handles BREAK_SIGNAL ...
thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
} else {
// ... all other threads block BREAK_SIGNAL
assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
}
}
}
bool os::create_attached_thread(JavaThread* thread) {
#ifdef ASSERT
thread->verify_not_published();
#endif
OSThread* osthread = create_os_thread(thread, thr_self());
if (osthread == NULL) {
return false;
}
// Initial thread state is RUNNABLE
osthread->set_state(RUNNABLE);
thread->set_osthread(osthread);
// initialize signal mask for this thread
// and save the caller's signal mask
os::Solaris::hotspot_sigmask(thread);
return true;
}
bool os::create_main_thread(JavaThread* thread) {
#ifdef ASSERT
thread->verify_not_published();
#endif
if (_starting_thread == NULL) {
_starting_thread = create_os_thread(thread, main_thread);
if (_starting_thread == NULL) {
return false;
}
}
// The primodial thread is runnable from the start
_starting_thread->set_state(RUNNABLE);
thread->set_osthread(_starting_thread);
// initialize signal mask for this thread
// and save the caller's signal mask
os::Solaris::hotspot_sigmask(thread);
return true;
}
// _T2_libthread is true if we believe we are running with the newer
// SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
bool os::Solaris::_T2_libthread = false;
bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
// Allocate the OSThread object
OSThread* osthread = new OSThread(NULL, NULL);
if (osthread == NULL) {
return false;
}
if ( ThreadPriorityVerbose ) {
char *thrtyp;
switch ( thr_type ) {
case vm_thread:
thrtyp = (char *)"vm";
break;
case cgc_thread:
thrtyp = (char *)"cgc";
break;
case pgc_thread:
thrtyp = (char *)"pgc";
break;
case java_thread:
thrtyp = (char *)"java";
break;
case compiler_thread:
thrtyp = (char *)"compiler";
break;
case watcher_thread:
thrtyp = (char *)"watcher";
break;
default:
thrtyp = (char *)"unknown";
break;
}
tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
}
// Calculate stack size if it's not specified by caller.
if (stack_size == 0) {
// The default stack size 1M (2M for LP64).
stack_size = (BytesPerWord >> 2) * K * K;
switch (thr_type) {
case os::java_thread:
// Java threads use ThreadStackSize which default value can be changed with the flag -Xss
if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
break;
case os::compiler_thread:
if (CompilerThreadStackSize > 0) {
stack_size = (size_t)(CompilerThreadStackSize * K);
break;
} // else fall through:
// use VMThreadStackSize if CompilerThreadStackSize is not defined
case os::vm_thread:
case os::pgc_thread:
case os::cgc_thread:
case os::watcher_thread:
if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
break;
}
}
stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
// Initial state is ALLOCATED but not INITIALIZED
osthread->set_state(ALLOCATED);
if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
// We got lots of threads. Check if we still have some address space left.
// Need to be at least 5Mb of unreserved address space. We do check by
// trying to reserve some.
const size_t VirtualMemoryBangSize = 20*K*K;
char* mem = os::reserve_memory(VirtualMemoryBangSize);
if (mem == NULL) {
delete osthread;
return false;
} else {
// Release the memory again
os::release_memory(mem, VirtualMemoryBangSize);
}
}
// Setup osthread because the child thread may need it.
thread->set_osthread(osthread);
// Create the Solaris thread
// explicit THR_BOUND for T2_libthread case in case
// that assumption is not accurate, but our alternate signal stack
// handling is based on it which must have bound threads
thread_t tid = 0;
long flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
| ((UseBoundThreads || os::Solaris::T2_libthread() ||
(thr_type == vm_thread) ||
(thr_type == cgc_thread) ||
(thr_type == pgc_thread) ||
(thr_type == compiler_thread && BackgroundCompilation)) ?
THR_BOUND : 0);
int status;
// 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
//
// On multiprocessors systems, libthread sometimes under-provisions our
// process with LWPs. On a 30-way systems, for instance, we could have
// 50 user-level threads in ready state and only 2 or 3 LWPs assigned
// to our process. This can result in under utilization of PEs.
// I suspect the problem is related to libthread's LWP
// pool management and to the kernel's SIGBLOCKING "last LWP parked"
// upcall policy.
//
// The following code is palliative -- it attempts to ensure that our
// process has sufficient LWPs to take advantage of multiple PEs.
// Proper long-term cures include using user-level threads bound to LWPs
// (THR_BOUND) or using LWP-based synchronization. Note that there is a
// slight timing window with respect to sampling _os_thread_count, but
// the race is benign. Also, we should periodically recompute
// _processors_online as the min of SC_NPROCESSORS_ONLN and the
// the number of PEs in our partition. You might be tempted to use
// THR_NEW_LWP here, but I'd recommend against it as that could
// result in undesirable growth of the libthread's LWP pool.
// The fix below isn't sufficient; for instance, it doesn't take into count
// LWPs parked on IO. It does, however, help certain CPU-bound benchmarks.
//
// Some pathologies this scheme doesn't handle:
// * Threads can block, releasing the LWPs. The LWPs can age out.
// When a large number of threads become ready again there aren't
// enough LWPs available to service them. This can occur when the
// number of ready threads oscillates.
// * LWPs/Threads park on IO, thus taking the LWP out of circulation.
//
// Finally, we should call thr_setconcurrency() periodically to refresh
// the LWP pool and thwart the LWP age-out mechanism.
// The "+3" term provides a little slop -- we want to slightly overprovision.
if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
if (!(flags & THR_BOUND)) {
thr_setconcurrency (os::Solaris::_os_thread_count); // avoid starvation
}
}
// Although this doesn't hurt, we should warn of undefined behavior
// when using unbound T1 threads with schedctl(). This should never
// happen, as the compiler and VM threads are always created bound
DEBUG_ONLY(
if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
(!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
((thr_type == vm_thread) || (thr_type == cgc_thread) ||
(thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
}
);
// Mark that we don't have an lwp or thread id yet.
// In case we attempt to set the priority before the thread starts.
osthread->set_lwp_id(-1);
osthread->set_thread_id(-1);
status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
if (status != 0) {
if (PrintMiscellaneous && (Verbose || WizardMode)) {
perror("os::create_thread");
}
thread->set_osthread(NULL);
// Need to clean up stuff we've allocated so far
delete osthread;
return false;
}
Atomic::inc(&os::Solaris::_os_thread_count);
// Store info on the Solaris thread into the OSThread
osthread->set_thread_id(tid);
// Remember that we created this thread so we can set priority on it
osthread->set_vm_created();
// Set the default thread priority. If using bound threads, setting
// lwp priority will be delayed until thread start.
set_native_priority(thread,
DefaultThreadPriority == -1 ?
java_to_os_priority[NormPriority] :
DefaultThreadPriority);
// Initial thread state is INITIALIZED, not SUSPENDED
osthread->set_state(INITIALIZED);
// The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
return true;
}
/* defined for >= Solaris 10. This allows builds on earlier versions
* of Solaris to take advantage of the newly reserved Solaris JVM signals
* With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
* and -XX:+UseAltSigs does nothing since these should have no conflict
*/
#if !defined(SIGJVM1)
#define SIGJVM1 39
#define SIGJVM2 40
#endif
debug_only(static bool signal_sets_initialized = false);
static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
int os::Solaris::_SIGasync = ASYNC_SIGNAL;
bool os::Solaris::is_sig_ignored(int sig) {
struct sigaction oact;
sigaction(sig, (struct sigaction*)NULL, &oact);
void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
: CAST_FROM_FN_PTR(void*, oact.sa_handler);
if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
return true;
else
return false;
}
// Note: SIGRTMIN is a macro that calls sysconf() so it will
// dynamically detect SIGRTMIN value for the system at runtime, not buildtime
static bool isJVM1available() {
return SIGJVM1 < SIGRTMIN;
}
void os::Solaris::signal_sets_init() {
// Should also have an assertion stating we are still single-threaded.
assert(!signal_sets_initialized, "Already initialized");
// Fill in signals that are necessarily unblocked for all threads in
// the VM. Currently, we unblock the following signals:
// SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
// by -Xrs (=ReduceSignalUsage));
// BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
// other threads. The "ReduceSignalUsage" boolean tells us not to alter
// the dispositions or masks wrt these signals.
// Programs embedding the VM that want to use the above signals for their
// own purposes must, at this time, use the "-Xrs" option to prevent
// interference with shutdown hooks and BREAK_SIGNAL thread dumping.
// (See bug 4345157, and other related bugs).
// In reality, though, unblocking these signals is really a nop, since
// these signals are not blocked by default.
sigemptyset(&unblocked_sigs);
sigemptyset(&allowdebug_blocked_sigs);
sigaddset(&unblocked_sigs, SIGILL);
sigaddset(&unblocked_sigs, SIGSEGV);
sigaddset(&unblocked_sigs, SIGBUS);
sigaddset(&unblocked_sigs, SIGFPE);
if (isJVM1available) {
os::Solaris::set_SIGinterrupt(SIGJVM1);
os::Solaris::set_SIGasync(SIGJVM2);
} else if (UseAltSigs) {
os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
} else {
os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
os::Solaris::set_SIGasync(ASYNC_SIGNAL);
}
sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
if (!ReduceSignalUsage) {
if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
}
if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
}
if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
}
}
// Fill in signals that are blocked by all but the VM thread.
sigemptyset(&vm_sigs);
if (!ReduceSignalUsage)
sigaddset(&vm_sigs, BREAK_SIGNAL);
debug_only(signal_sets_initialized = true);
// For diagnostics only used in run_periodic_checks
sigemptyset(&check_signal_done);
}
// These are signals that are unblocked while a thread is running Java.
// (For some reason, they get blocked by default.)
sigset_t* os::Solaris::unblocked_signals() {
assert(signal_sets_initialized, "Not initialized");
return &unblocked_sigs;
}
// These are the signals that are blocked while a (non-VM) thread is
// running Java. Only the VM thread handles these signals.
sigset_t* os::Solaris::vm_signals() {
assert(signal_sets_initialized, "Not initialized");
return &vm_sigs;
}
// These are signals that are blocked during cond_wait to allow debugger in
sigset_t* os::Solaris::allowdebug_blocked_signals() {
assert(signal_sets_initialized, "Not initialized");
return &allowdebug_blocked_sigs;
}
void _handle_uncaught_cxx_exception() {
VMError err("An uncaught C++ exception");
err.report_and_die();
}
// First crack at OS-specific initialization, from inside the new thread.
void os::initialize_thread(Thread* thr) {
int r = thr_main() ;
guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
if (r) {
JavaThread* jt = (JavaThread *)thr;
assert(jt != NULL,"Sanity check");
size_t stack_size;
address base = jt->stack_base();
if (Arguments::created_by_java_launcher()) {
// Use 2MB to allow for Solaris 7 64 bit mode.
stack_size = JavaThread::stack_size_at_create() == 0
? 2048*K : JavaThread::stack_size_at_create();
// There are rare cases when we may have already used more than
// the basic stack size allotment before this method is invoked.
// Attempt to allow for a normally sized java_stack.
size_t current_stack_offset = (size_t)(base - (address)&stack_size);
stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
} else {
// 6269555: If we were not created by a Java launcher, i.e. if we are
// running embedded in a native application, treat the primordial thread
// as much like a native attached thread as possible. This means using
// the current stack size from thr_stksegment(), unless it is too large
// to reliably setup guard pages. A reasonable max size is 8MB.
size_t current_size = current_stack_size();
// This should never happen, but just in case....
if (current_size == 0) current_size = 2 * K * K;
stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
}
address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
stack_size = (size_t)(base - bottom);
assert(stack_size > 0, "Stack size calculation problem");
if (stack_size > jt->stack_size()) {
NOT_PRODUCT(
struct rlimit limits;
getrlimit(RLIMIT_STACK, &limits);
size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
assert(size >= jt->stack_size(), "Stack size problem in main thread");
)
tty->print_cr(
"Stack size of %d Kb exceeds current limit of %d Kb.\n"
"(Stack sizes are rounded up to a multiple of the system page size.)\n"
"See limit(1) to increase the stack size limit.",
stack_size / K, jt->stack_size() / K);
vm_exit(1);
}
assert(jt->stack_size() >= stack_size,
"Attempt to map more stack than was allocated");
jt->set_stack_size(stack_size);
}
// 5/22/01: Right now alternate signal stacks do not handle
// throwing stack overflow exceptions, see bug 4463178
// Until a fix is found for this, T2 will NOT imply alternate signal
// stacks.
// If using T2 libthread threads, install an alternate signal stack.
// Because alternate stacks associate with LWPs on Solaris,
// see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
// we prefer to explicitly stack bang.
// If not using T2 libthread, but using UseBoundThreads any threads
// (primordial thread, jni_attachCurrentThread) we do not create,
// probably are not bound, therefore they can not have an alternate
// signal stack. Since our stack banging code is generated and
// is shared across threads, all threads must be bound to allow
// using alternate signal stacks. The alternative is to interpose
// on _lwp_create to associate an alt sig stack with each LWP,
// and this could be a problem when the JVM is embedded.
// We would prefer to use alternate signal stacks with T2
// Since there is currently no accurate way to detect T2
// we do not. Assuming T2 when running T1 causes sig 11s or assertions
// on installing alternate signal stacks
// 05/09/03: removed alternate signal stack support for Solaris
// The alternate signal stack mechanism is no longer needed to
// handle stack overflow. This is now handled by allocating
// guard pages (red zone) and stackbanging.
// Initially the alternate signal stack mechanism was removed because
// it did not work with T1 llibthread. Alternate
// signal stacks MUST have all threads bound to lwps. Applications
// can create their own threads and attach them without their being
// bound under T1. This is frequently the case for the primordial thread.
// If we were ever to reenable this mechanism we would need to
// use the dynamic check for T2 libthread.
os::Solaris::init_thread_fpu_state();
std::set_terminate(_handle_uncaught_cxx_exception);
}
// Free Solaris resources related to the OSThread
void os::free_thread(OSThread* osthread) {
assert(osthread != NULL, "os::free_thread but osthread not set");
// We are told to free resources of the argument thread,
// but we can only really operate on the current thread.
// The main thread must take the VMThread down synchronously
// before the main thread exits and frees up CodeHeap
guarantee((Thread::current()->osthread() == osthread
|| (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
if (Thread::current()->osthread() == osthread) {
// Restore caller's signal mask
sigset_t sigmask = osthread->caller_sigmask();
thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
}
delete osthread;
}
void os::pd_start_thread(Thread* thread) {
int status = thr_continue(thread->osthread()->thread_id());
assert_status(status == 0, status, "thr_continue failed");
}
intx os::current_thread_id() {
return (intx)thr_self();
}
static pid_t _initial_pid = 0;
int os::current_process_id() {
return (int)(_initial_pid ? _initial_pid : getpid());
}
// gethrtime() should be monotonic according to the documentation,
// but some virtualized platforms are known to break this guarantee.
// getTimeNanos() must be guaranteed not to move backwards, so we
// are forced to add a check here.
inline hrtime_t getTimeNanos() {
const hrtime_t now = gethrtime();
const hrtime_t prev = max_hrtime;
if (now <= prev) {
return prev; // same or retrograde time;
}
const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
assert(obsv >= prev, "invariant"); // Monotonicity
// If the CAS succeeded then we're done and return "now".
// If the CAS failed and the observed value "obsv" is >= now then
// we should return "obsv". If the CAS failed and now > obsv > prv then
// some other thread raced this thread and installed a new value, in which case
// we could either (a) retry the entire operation, (b) retry trying to install now
// or (c) just return obsv. We use (c). No loop is required although in some cases
// we might discard a higher "now" value in deference to a slightly lower but freshly
// installed obsv value. That's entirely benign -- it admits no new orderings compared
// to (a) or (b) -- and greatly reduces coherence traffic.
// We might also condition (c) on the magnitude of the delta between obsv and now.
// Avoiding excessive CAS operations to hot RW locations is critical.
// See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
return (prev == obsv) ? now : obsv;
}
// Time since start-up in seconds to a fine granularity.
// Used by VMSelfDestructTimer and the MemProfiler.
double os::elapsedTime() {
return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
}
jlong os::elapsed_counter() {
return (jlong)(getTimeNanos() - first_hrtime);
}
jlong os::elapsed_frequency() {
return hrtime_hz;
}
// Return the real, user, and system times in seconds from an
// arbitrary fixed point in the past.
bool os::getTimesSecs(double* process_real_time,
double* process_user_time,
double* process_system_time) {
struct tms ticks;
clock_t real_ticks = times(&ticks);
if (real_ticks == (clock_t) (-1)) {
return false;
} else {
double ticks_per_second = (double) clock_tics_per_sec;
*process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
*process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
// For consistency return the real time from getTimeNanos()
// converted to seconds.
*process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
return true;
}
}
bool os::supports_vtime() { return true; }
bool os::enable_vtime() {
int fd = ::open("/proc/self/ctl", O_WRONLY);
if (fd == -1)
return false;
long cmd[] = { PCSET, PR_MSACCT };
int res = ::write(fd, cmd, sizeof(long) * 2);
::close(fd);
if (res != sizeof(long) * 2)
return false;
return true;
}
bool os::vtime_enabled() {
int fd = ::open("/proc/self/status", O_RDONLY);
if (fd == -1)
return false;
pstatus_t status;
int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
::close(fd);
if (res != sizeof(pstatus_t))
return false;
return status.pr_flags & PR_MSACCT;
}
double os::elapsedVTime() {
return (double)gethrvtime() / (double)hrtime_hz;
}
// Used internally for comparisons only
// getTimeMillis guaranteed to not move backwards on Solaris
jlong getTimeMillis() {
jlong nanotime = getTimeNanos();
return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
}
// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
jlong os::javaTimeMillis() {
timeval t;
if (gettimeofday( &t, NULL) == -1)
fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
return jlong(t.tv_sec) * 1000 + jlong(t.tv_usec) / 1000;
}
jlong os::javaTimeNanos() {
return (jlong)getTimeNanos();
}
void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
info_ptr->max_value = ALL_64_BITS; // gethrtime() uses all 64 bits
info_ptr->may_skip_backward = false; // not subject to resetting or drifting
info_ptr->may_skip_forward = false; // not subject to resetting or drifting
info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
}
char * os::local_time_string(char *buf, size_t buflen) {
struct tm t;
time_t long_time;
time(&long_time);
localtime_r(&long_time, &t);
jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
t.tm_hour, t.tm_min, t.tm_sec);
return buf;
}
// Note: os::shutdown() might be called very early during initialization, or
// called from signal handler. Before adding something to os::shutdown(), make
// sure it is async-safe and can handle partially initialized VM.
void os::shutdown() {
// allow PerfMemory to attempt cleanup of any persistent resources
perfMemory_exit();
// needs to remove object in file system
AttachListener::abort();
// flush buffered output, finish log files
ostream_abort();
// Check for abort hook
abort_hook_t abort_hook = Arguments::abort_hook();
if (abort_hook != NULL) {
abort_hook();
}
}
// Note: os::abort() might be called very early during initialization, or
// called from signal handler. Before adding something to os::abort(), make
// sure it is async-safe and can handle partially initialized VM.
void os::abort(bool dump_core) {
os::shutdown();
if (dump_core) {
#ifndef PRODUCT
fdStream out(defaultStream::output_fd());
out.print_raw("Current thread is ");
char buf[16];
jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
out.print_raw_cr(buf);
out.print_raw_cr("Dumping core ...");
#endif
::abort(); // dump core (for debugging)
}
::exit(1);
}
// Die immediately, no exit hook, no abort hook, no cleanup.
void os::die() {
::abort(); // dump core (for debugging)
}
// DLL functions
const char* os::dll_file_extension() { return ".so"; }
// This must be hard coded because it's the system's temporary
// directory not the java application's temp directory, ala java.io.tmpdir.
const char* os::get_temp_directory() { return "/tmp"; }
static bool file_exists(const char* filename) {
struct stat statbuf;
if (filename == NULL || strlen(filename) == 0) {
return false;
}
return os::stat(filename, &statbuf) == 0;
}
bool os::dll_build_name(char* buffer, size_t buflen,
const char* pname, const char* fname) {
bool retval = false;
const size_t pnamelen = pname ? strlen(pname) : 0;
// Return error on buffer overflow.
if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
return retval;
}
if (pnamelen == 0) {
snprintf(buffer, buflen, "lib%s.so", fname);
retval = true;
} else if (strchr(pname, *os::path_separator()) != NULL) {
int n;
char** pelements = split_path(pname, &n);
if (pelements == NULL) {
return false;
}
for (int i = 0 ; i < n ; i++) {
// really shouldn't be NULL but what the heck, check can't hurt
if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
continue; // skip the empty path values
}
snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
if (file_exists(buffer)) {
retval = true;
break;
}
}
// release the storage
for (int i = 0 ; i < n ; i++) {
if (pelements[i] != NULL) {
FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
}
}
if (pelements != NULL) {
FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
}
} else {
snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
retval = true;
}
return retval;
}
// check if addr is inside libjvm.so
bool os::address_is_in_vm(address addr) {
static address libjvm_base_addr;
Dl_info dlinfo;
if (libjvm_base_addr == NULL) {
if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
libjvm_base_addr = (address)dlinfo.dli_fbase;
}
assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
}
if (dladdr((void *)addr, &dlinfo) != 0) {
if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
}
return false;
}
typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
static dladdr1_func_type dladdr1_func = NULL;
bool os::dll_address_to_function_name(address addr, char *buf,
int buflen, int * offset) {
// buf is not optional, but offset is optional
assert(buf != NULL, "sanity check");
Dl_info dlinfo;
// dladdr1_func was initialized in os::init()
if (dladdr1_func != NULL) {
// yes, we have dladdr1
// Support for dladdr1 is checked at runtime; it may be
// available even if the vm is built on a machine that does
// not have dladdr1 support. Make sure there is a value for
// RTLD_DL_SYMENT.
#ifndef RTLD_DL_SYMENT
#define RTLD_DL_SYMENT 1
#endif
#ifdef _LP64
Elf64_Sym * info;
#else
Elf32_Sym * info;
#endif
if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
RTLD_DL_SYMENT) != 0) {
// see if we have a matching symbol that covers our address
if (dlinfo.dli_saddr != NULL &&
(char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
if (dlinfo.dli_sname != NULL) {
if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
}
if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
return true;
}
}
// no matching symbol so try for just file info
if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
buf, buflen, offset, dlinfo.dli_fname)) {
return true;
}
}
}
buf[0] = '\0';
if (offset != NULL) *offset = -1;
return false;
}
// no, only dladdr is available
if (dladdr((void *)addr, &dlinfo) != 0) {
// see if we have a matching symbol
if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
jio_snprintf(buf, buflen, dlinfo.dli_sname);
}
if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
return true;
}
// no matching symbol so try for just file info
if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
buf, buflen, offset, dlinfo.dli_fname)) {
return true;
}
}
}
buf[0] = '\0';
if (offset != NULL) *offset = -1;
return false;
}
bool os::dll_address_to_library_name(address addr, char* buf,
int buflen, int* offset) {
// buf is not optional, but offset is optional
assert(buf != NULL, "sanity check");
Dl_info dlinfo;
if (dladdr((void*)addr, &dlinfo) != 0) {
if (dlinfo.dli_fname != NULL) {
jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
}
if (dlinfo.dli_fbase != NULL && offset != NULL) {
*offset = addr - (address)dlinfo.dli_fbase;
}
return true;
}
buf[0] = '\0';
if (offset) *offset = -1;
return false;
}
// Prints the names and full paths of all opened dynamic libraries
// for current process
void os::print_dll_info(outputStream * st) {
Dl_info dli;
void *handle;
Link_map *map;
Link_map *p;
st->print_cr("Dynamic libraries:"); st->flush();
if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
dli.dli_fname == NULL) {
st->print_cr("Error: Cannot print dynamic libraries.");
return;
}
handle = dlopen(dli.dli_fname, RTLD_LAZY);
if (handle == NULL) {
st->print_cr("Error: Cannot print dynamic libraries.");
return;
}
dlinfo(handle, RTLD_DI_LINKMAP, &map);
if (map == NULL) {
st->print_cr("Error: Cannot print dynamic libraries.");
return;
}
while (map->l_prev != NULL)
map = map->l_prev;
while (map != NULL) {
st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
map = map->l_next;
}
dlclose(handle);
}
// Loads .dll/.so and
// in case of error it checks if .dll/.so was built for the
// same architecture as Hotspot is running on
void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
{
void * result= ::dlopen(filename, RTLD_LAZY);
if (result != NULL) {
// Successful loading
return result;
}
Elf32_Ehdr elf_head;
// Read system error message into ebuf
// It may or may not be overwritten below
::strncpy(ebuf, ::dlerror(), ebuflen-1);
ebuf[ebuflen-1]='\0';
int diag_msg_max_length=ebuflen-strlen(ebuf);
char* diag_msg_buf=ebuf+strlen(ebuf);
if (diag_msg_max_length==0) {
// No more space in ebuf for additional diagnostics message
return NULL;
}
int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
if (file_descriptor < 0) {
// Can't open library, report dlerror() message
return NULL;
}
bool failed_to_read_elf_head=
(sizeof(elf_head)!=
(::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
::close(file_descriptor);
if (failed_to_read_elf_head) {
// file i/o error - report dlerror() msg
return NULL;
}
typedef struct {
Elf32_Half code; // Actual value as defined in elf.h
Elf32_Half compat_class; // Compatibility of archs at VM's sense
char elf_class; // 32 or 64 bit
char endianess; // MSB or LSB
char* name; // String representation
} arch_t;
static const arch_t arch_array[]={
{EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
{EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
{EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
{EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
{EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
{EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
{EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
{EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
{EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
{EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
};
#if (defined IA32)
static Elf32_Half running_arch_code=EM_386;
#elif (defined AMD64)
static Elf32_Half running_arch_code=EM_X86_64;
#elif (defined IA64)
static Elf32_Half running_arch_code=EM_IA_64;
#elif (defined __sparc) && (defined _LP64)
static Elf32_Half running_arch_code=EM_SPARCV9;
#elif (defined __sparc) && (!defined _LP64)
static Elf32_Half running_arch_code=EM_SPARC;
#elif (defined __powerpc64__)
static Elf32_Half running_arch_code=EM_PPC64;
#elif (defined __powerpc__)
static Elf32_Half running_arch_code=EM_PPC;
#elif (defined ARM)
static Elf32_Half running_arch_code=EM_ARM;
#else
#error Method os::dll_load requires that one of following is defined:\
IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
#endif
// Identify compatability class for VM's architecture and library's architecture
// Obtain string descriptions for architectures
arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
int running_arch_index=-1;
for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
if (running_arch_code == arch_array[i].code) {
running_arch_index = i;
}
if (lib_arch.code == arch_array[i].code) {
lib_arch.compat_class = arch_array[i].compat_class;
lib_arch.name = arch_array[i].name;
}
}
assert(running_arch_index != -1,
"Didn't find running architecture code (running_arch_code) in arch_array");
if (running_arch_index == -1) {
// Even though running architecture detection failed
// we may still continue with reporting dlerror() message
return NULL;
}
if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
return NULL;
}
if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
return NULL;
}
if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
if ( lib_arch.name!=NULL ) {
::snprintf(diag_msg_buf, diag_msg_max_length-1,
" (Possible cause: can't load %s-bit .so on a %s-bit platform)",
lib_arch.name, arch_array[running_arch_index].name);
} else {
::snprintf(diag_msg_buf, diag_msg_max_length-1,
" (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
lib_arch.code,
arch_array[running_arch_index].name);
}
}
return NULL;
}
void* os::dll_lookup(void* handle, const char* name) {
return dlsym(handle, name);
}
void* os::get_default_process_handle() {
return (void*)::dlopen(NULL, RTLD_LAZY);
}
int os::stat(const char *path, struct stat *sbuf) {
char pathbuf[MAX_PATH];
if (strlen(path) > MAX_PATH - 1) {
errno = ENAMETOOLONG;
return -1;
}
os::native_path(strcpy(pathbuf, path));
return ::stat(pathbuf, sbuf);
}
static bool _print_ascii_file(const char* filename, outputStream* st) {
int fd = ::open(filename, O_RDONLY);
if (fd == -1) {
return false;
}
char buf[32];
int bytes;
while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
st->print_raw(buf, bytes);
}
::close(fd);
return true;
}
void os::print_os_info_brief(outputStream* st) {
os::Solaris::print_distro_info(st);
os::Posix::print_uname_info(st);
os::Solaris::print_libversion_info(st);
}
void os::print_os_info(outputStream* st) {
st->print("OS:");
os::Solaris::print_distro_info(st);
os::Posix::print_uname_info(st);
os::Solaris::print_libversion_info(st);
os::Posix::print_rlimit_info(st);
os::Posix::print_load_average(st);
}
void os::Solaris::print_distro_info(outputStream* st) {
if (!_print_ascii_file("/etc/release", st)) {
st->print("Solaris");
}
st->cr();
}
void os::Solaris::print_libversion_info(outputStream* st) {
if (os::Solaris::T2_libthread()) {
st->print(" (T2 libthread)");
}
else {
st->print(" (T1 libthread)");
}
st->cr();
}
static bool check_addr0(outputStream* st) {
jboolean status = false;
int fd = ::open("/proc/self/map",O_RDONLY);
if (fd >= 0) {
prmap_t p;
while(::read(fd, &p, sizeof(p)) > 0) {
if (p.pr_vaddr == 0x0) {
st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
st->print("Access:");
st->print("%s",(p.pr_mflags & MA_READ) ? "r" : "-");
st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
st->print("%s",(p.pr_mflags & MA_EXEC) ? "x" : "-");
st->cr();
status = true;
}
}
::close(fd);
}
return status;
}
void os::pd_print_cpu_info(outputStream* st) {
// Nothing to do for now.
}
void os::print_memory_info(outputStream* st) {
st->print("Memory:");
st->print(" %dk page", os::vm_page_size()>>10);
st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
st->cr();
if (VMError::fatal_error_in_progress()) {
(void) check_addr0(st);
}
}
void os::print_siginfo(outputStream* st, void* siginfo) {
const siginfo_t* si = (const siginfo_t*)siginfo;
os::Posix::print_siginfo_brief(st, si);
if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
UseSharedSpaces) {
FileMapInfo* mapinfo = FileMapInfo::current_info();
if (mapinfo->is_in_shared_space(si->si_addr)) {
st->print("\n\nError accessing class data sharing archive." \
" Mapped file inaccessible during execution, " \
" possible disk/network problem.");
}
}
st->cr();
}
// Moved from whole group, because we need them here for diagnostic
// prints.
#define OLDMAXSIGNUM 32
static int Maxsignum = 0;
static int *ourSigFlags = NULL;
extern "C" void sigINTRHandler(int, siginfo_t*, void*);
int os::Solaris::get_our_sigflags(int sig) {
assert(ourSigFlags!=NULL, "signal data structure not initialized");
assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
return ourSigFlags[sig];
}
void os::Solaris::set_our_sigflags(int sig, int flags) {
assert(ourSigFlags!=NULL, "signal data structure not initialized");
assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
ourSigFlags[sig] = flags;
}
static const char* get_signal_handler_name(address handler,
char* buf, int buflen) {
int offset;
bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
if (found) {
// skip directory names
const char *p1, *p2;
p1 = buf;
size_t len = strlen(os::file_separator());
while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
} else {
jio_snprintf(buf, buflen, PTR_FORMAT, handler);
}
return buf;
}
static void print_signal_handler(outputStream* st, int sig,
char* buf, size_t buflen) {
struct sigaction sa;
sigaction(sig, NULL, &sa);
st->print("%s: ", os::exception_name(sig, buf, buflen));
address handler = (sa.sa_flags & SA_SIGINFO)
? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
: CAST_FROM_FN_PTR(address, sa.sa_handler);
if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
st->print("SIG_DFL");
} else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
st->print("SIG_IGN");
} else {
st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
}
st->print(", sa_mask[0]=");
os::Posix::print_signal_set_short(st, &sa.sa_mask);
address rh = VMError::get_resetted_sighandler(sig);
// May be, handler was resetted by VMError?
if(rh != NULL) {
handler = rh;
sa.sa_flags = VMError::get_resetted_sigflags(sig);
}
st->print(", sa_flags=");
os::Posix::print_sa_flags(st, sa.sa_flags);
// Check: is it our handler?
if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
// It is our signal handler
// check for flags
if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
st->print(
", flags was changed from " PTR32_FORMAT ", consider using jsig library",
os::Solaris::get_our_sigflags(sig));
}
}
st->cr();
}
void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
st->print_cr("Signal Handlers:");
print_signal_handler(st, SIGSEGV, buf, buflen);
print_signal_handler(st, SIGBUS , buf, buflen);
print_signal_handler(st, SIGFPE , buf, buflen);
print_signal_handler(st, SIGPIPE, buf, buflen);
print_signal_handler(st, SIGXFSZ, buf, buflen);
print_signal_handler(st, SIGILL , buf, buflen);
print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
}
static char saved_jvm_path[MAXPATHLEN] = { 0 };
// Find the full path to the current module, libjvm.so
void os::jvm_path(char *buf, jint buflen) {
// Error checking.
if (buflen < MAXPATHLEN) {
assert(false, "must use a large-enough buffer");
buf[0] = '\0';
return;
}
// Lazy resolve the path to current module.
if (saved_jvm_path[0] != 0) {
strcpy(buf, saved_jvm_path);
return;
}
Dl_info dlinfo;
int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
assert(ret != 0, "cannot locate libjvm");
if (ret != 0 && dlinfo.dli_fname != NULL) {
realpath((char *)dlinfo.dli_fname, buf);
} else {
buf[0] = '\0';
return;
}
if (Arguments::created_by_gamma_launcher()) {
// Support for the gamma launcher. Typical value for buf is
// "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
// the right place in the string, then assume we are installed in a JDK and
// we're done. Otherwise, check for a JAVA_HOME environment variable and fix
// up the path so it looks like libjvm.so is installed there (append a
// fake suffix hotspot/libjvm.so).
const char *p = buf + strlen(buf) - 1;
for (int count = 0; p > buf && count < 5; ++count) {
for (--p; p > buf && *p != '/'; --p)
/* empty */ ;
}
if (strncmp(p, "/jre/lib/", 9) != 0) {
// Look for JAVA_HOME in the environment.
char* java_home_var = ::getenv("JAVA_HOME");
if (java_home_var != NULL && java_home_var[0] != 0) {
char cpu_arch[12];
char* jrelib_p;
int len;
sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
#ifdef _LP64
// If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
if (strcmp(cpu_arch, "sparc") == 0) {
strcat(cpu_arch, "v9");
} else if (strcmp(cpu_arch, "i386") == 0) {
strcpy(cpu_arch, "amd64");
}
#endif
// Check the current module name "libjvm.so".
p = strrchr(buf, '/');
assert(strstr(p, "/libjvm") == p, "invalid library name");
realpath(java_home_var, buf);
// determine if this is a legacy image or modules image
// modules image doesn't have "jre" subdirectory
len = strlen(buf);
assert(len < buflen, "Ran out of buffer space");
jrelib_p = buf + len;
snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
if (0 != access(buf, F_OK)) {
snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
}
if (0 == access(buf, F_OK)) {
// Use current module name "libjvm.so"
len = strlen(buf);
snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
} else {
// Go back to path of .so
realpath((char *)dlinfo.dli_fname, buf);
}
}
}
}
strncpy(saved_jvm_path, buf, MAXPATHLEN);
}
void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
// no prefix required, not even "_"
}
void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
// no suffix required
}
// This method is a copy of JDK's sysGetLastErrorString
// from src/solaris/hpi/src/system_md.c
size_t os::lasterror(char *buf, size_t len) {
if (errno == 0) return 0;
const char *s = ::strerror(errno);
size_t n = ::strlen(s);
if (n >= len) {
n = len - 1;
}
::strncpy(buf, s, n);
buf[n] = '\0';
return n;
}
// sun.misc.Signal
extern "C" {
static void UserHandler(int sig, void *siginfo, void *context) {
// Ctrl-C is pressed during error reporting, likely because the error
// handler fails to abort. Let VM die immediately.
if (sig == SIGINT && is_error_reported()) {
os::die();
}
os::signal_notify(sig);
// We do not need to reinstate the signal handler each time...
}
}
void* os::user_handler() {
return CAST_FROM_FN_PTR(void*, UserHandler);
}
class Semaphore : public StackObj {
public:
Semaphore();
~Semaphore();
void signal();
void wait();
bool trywait();
bool timedwait(unsigned int sec, int nsec);
private:
sema_t _semaphore;
};
Semaphore::Semaphore() {
sema_init(&_semaphore, 0, NULL, NULL);
}
Semaphore::~Semaphore() {
sema_destroy(&_semaphore);
}
void Semaphore::signal() {
sema_post(&_semaphore);
}
void Semaphore::wait() {
sema_wait(&_semaphore);
}
bool Semaphore::trywait() {
return sema_trywait(&_semaphore) == 0;
}
bool Semaphore::timedwait(unsigned int sec, int nsec) {
struct timespec ts;
unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
while (1) {
int result = sema_timedwait(&_semaphore, &ts);
if (result == 0) {
return true;
} else if (errno == EINTR) {
continue;
} else if (errno == ETIME) {
return false;
} else {
return false;
}
}
}
extern "C" {
typedef void (*sa_handler_t)(int);
typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
}
void* os::signal(int signal_number, void* handler) {
struct sigaction sigAct, oldSigAct;
sigfillset(&(sigAct.sa_mask));
sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
if (sigaction(signal_number, &sigAct, &oldSigAct))
// -1 means registration failed
return (void *)-1;
return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
}
void os::signal_raise(int signal_number) {
raise(signal_number);
}
/*
* The following code is moved from os.cpp for making this
* code platform specific, which it is by its very nature.
*/
// a counter for each possible signal value
static int Sigexit = 0;
static int Maxlibjsigsigs;
static jint *pending_signals = NULL;
static int *preinstalled_sigs = NULL;
static struct sigaction *chainedsigactions = NULL;
static sema_t sig_sem;
typedef int (*version_getting_t)();
version_getting_t os::Solaris::get_libjsig_version = NULL;
static int libjsigversion = NULL;
int os::sigexitnum_pd() {
assert(Sigexit > 0, "signal memory not yet initialized");
return Sigexit;
}
void os::Solaris::init_signal_mem() {
// Initialize signal structures
Maxsignum = SIGRTMAX;
Sigexit = Maxsignum+1;
assert(Maxsignum >0, "Unable to obtain max signal number");
Maxlibjsigsigs = Maxsignum;
// pending_signals has one int per signal
// The additional signal is for SIGEXIT - exit signal to signal_thread
pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
if (UseSignalChaining) {
chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
* (Maxsignum + 1), mtInternal);
memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
}
ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
}
void os::signal_init_pd() {
int ret;
ret = ::sema_init(&sig_sem, 0, NULL, NULL);
assert(ret == 0, "sema_init() failed");
}
void os::signal_notify(int signal_number) {
int ret;
Atomic::inc(&pending_signals[signal_number]);
ret = ::sema_post(&sig_sem);
assert(ret == 0, "sema_post() failed");
}
static int check_pending_signals(bool wait_for_signal) {
int ret;
while (true) {
for (int i = 0; i < Sigexit + 1; i++) {
jint n = pending_signals[i];
if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
return i;
}
}
if (!wait_for_signal) {
return -1;
}
JavaThread *thread = JavaThread::current();
ThreadBlockInVM tbivm(thread);
bool threadIsSuspended;
do {
thread->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
while((ret = ::sema_wait(&sig_sem)) == EINTR)
;
assert(ret == 0, "sema_wait() failed");
// were we externally suspended while we were waiting?
threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
if (threadIsSuspended) {
//
// The semaphore has been incremented, but while we were waiting
// another thread suspended us. We don't want to continue running
// while suspended because that would surprise the thread that
// suspended us.
//
ret = ::sema_post(&sig_sem);
assert(ret == 0, "sema_post() failed");
thread->java_suspend_self();
}
} while (threadIsSuspended);
}
}
int os::signal_lookup() {
return check_pending_signals(false);
}
int os::signal_wait() {
return check_pending_signals(true);
}
////////////////////////////////////////////////////////////////////////////////
// Virtual Memory
static int page_size = -1;
// The mmap MAP_ALIGN flag is supported on Solaris 9 and later. init_2() will
// clear this var if support is not available.
static bool has_map_align = true;
int os::vm_page_size() {
assert(page_size != -1, "must call os::init");
return page_size;
}
// Solaris allocates memory by pages.
int os::vm_allocation_granularity() {
assert(page_size != -1, "must call os::init");
return page_size;
}
static bool recoverable_mmap_error(int err) {
// See if the error is one we can let the caller handle. This
// list of errno values comes from the Solaris mmap(2) man page.
switch (err) {
case EBADF:
case EINVAL:
case ENOTSUP:
// let the caller deal with these errors
return true;
default:
// Any remaining errors on this OS can cause our reserved mapping
// to be lost. That can cause confusion where different data
// structures think they have the same memory mapped. The worst
// scenario is if both the VM and a library think they have the
// same memory mapped.
return false;
}
}
static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
int err) {
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
strerror(err), err);
}
static void warn_fail_commit_memory(char* addr, size_t bytes,
size_t alignment_hint, bool exec,
int err) {
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
alignment_hint, exec, strerror(err), err);
}
int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
size_t size = bytes;
char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
if (res != NULL) {
if (UseNUMAInterleaving) {
numa_make_global(addr, bytes);
}
return 0;
}
int err = errno; // save errno from mmap() call in mmap_chunk()
if (!recoverable_mmap_error(err)) {
warn_fail_commit_memory(addr, bytes, exec, err);
vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
}
return err;
}
bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
}
void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
const char* mesg) {
assert(mesg != NULL, "mesg must be specified");
int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
if (err != 0) {
// the caller wants all commit errors to exit with the specified mesg:
warn_fail_commit_memory(addr, bytes, exec, err);
vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
}
}
size_t os::Solaris::page_size_for_alignment(size_t alignment) {
assert(is_size_aligned(alignment, (size_t) vm_page_size()),
err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
alignment, (size_t) vm_page_size()));
for (int i = 0; _page_sizes[i] != 0; i++) {
if (is_size_aligned(alignment, _page_sizes[i])) {
return _page_sizes[i];
}
}
return (size_t) vm_page_size();
}
int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
size_t alignment_hint, bool exec) {
int err = Solaris::commit_memory_impl(addr, bytes, exec);
if (err == 0 && UseLargePages && alignment_hint > 0) {
assert(is_size_aligned(bytes, alignment_hint),
err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint));
// The syscall memcntl requires an exact page size (see man memcntl for details).
size_t page_size = page_size_for_alignment(alignment_hint);
if (page_size > (size_t) vm_page_size()) {
(void)Solaris::setup_large_pages(addr, bytes, page_size);
}
}
return err;
}
bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
bool exec) {
return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
}
void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
size_t alignment_hint, bool exec,
const char* mesg) {
assert(mesg != NULL, "mesg must be specified");
int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
if (err != 0) {
// the caller wants all commit errors to exit with the specified mesg:
warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
}
}
// Uncommit the pages in a specified region.
void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
if (madvise(addr, bytes, MADV_FREE) < 0) {
debug_only(warning("MADV_FREE failed."));
return;
}
}
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
return os::commit_memory(addr, size, !ExecMem);
}
bool os::remove_stack_guard_pages(char* addr, size_t size) {
return os::uncommit_memory(addr, size);
}
// Change the page size in a given range.
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
if (UseLargePages) {
Solaris::setup_large_pages(addr, bytes, alignment_hint);
}
}
// Tell the OS to make the range local to the first-touching LWP
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
debug_only(warning("MADV_ACCESS_LWP failed."));
}
}
// Tell the OS that this range would be accessed from different LWPs.
void os::numa_make_global(char *addr, size_t bytes) {
assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
debug_only(warning("MADV_ACCESS_MANY failed."));
}
}
// Get the number of the locality groups.
size_t os::numa_get_groups_num() {
size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
return n != -1 ? n : 1;
}
// Get a list of leaf locality groups. A leaf lgroup is group that
// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
// board. An LWP is assigned to one of these groups upon creation.
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
ids[0] = 0;
return 1;
}
int result_size = 0, top = 1, bottom = 0, cur = 0;
for (int k = 0; k < size; k++) {
int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
(Solaris::lgrp_id_t*)&ids[top], size - top);
if (r == -1) {
ids[0] = 0;
return 1;
}
if (!r) {
// That's a leaf node.
assert (bottom <= cur, "Sanity check");
// Check if the node has memory
if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
NULL, 0, LGRP_RSRC_MEM) > 0) {
ids[bottom++] = ids[cur];
}
}
top += r;
cur++;
}
if (bottom == 0) {
// Handle a situation, when the OS reports no memory available.
// Assume UMA architecture.
ids[0] = 0;
return 1;
}
return bottom;
}
// Detect the topology change. Typically happens during CPU plugging-unplugging.
bool os::numa_topology_changed() {
int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
if (is_stale != -1 && is_stale) {
Solaris::lgrp_fini(Solaris::lgrp_cookie());
Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
assert(c != 0, "Failure to initialize LGRP API");
Solaris::set_lgrp_cookie(c);
return true;
}
return false;
}
// Get the group id of the current LWP.
int os::numa_get_group_id() {
int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
if (lgrp_id == -1) {
return 0;
}
const int size = os::numa_get_groups_num();
int *ids = (int*)alloca(size * sizeof(int));
// Get the ids of all lgroups with memory; r is the count.
int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
(Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
if (r <= 0) {
return 0;
}
return ids[os::random() % r];
}
// Request information about the page.
bool os::get_page_info(char *start, page_info* info) {
const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
uint64_t addr = (uintptr_t)start;
uint64_t outdata[2];
uint_t validity = 0;
if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
return false;
}
info->size = 0;
info->lgrp_id = -1;
if ((validity & 1) != 0) {
if ((validity & 2) != 0) {
info->lgrp_id = outdata[0];
}
if ((validity & 4) != 0) {
info->size = outdata[1];
}
return true;
}
return false;
}
// Scan the pages from start to end until a page different than
// the one described in the info parameter is encountered.
char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
const size_t types = sizeof(info_types) / sizeof(info_types[0]);
uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
uint_t validity[MAX_MEMINFO_CNT];
size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
uint64_t p = (uint64_t)start;
while (p < (uint64_t)end) {
addrs[0] = p;
size_t addrs_count = 1;
while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
addrs_count++;
}
if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
return NULL;
}
size_t i = 0;
for (; i < addrs_count; i++) {
if ((validity[i] & 1) != 0) {
if ((validity[i] & 4) != 0) {
if (outdata[types * i + 1] != page_expected->size) {
break;
}
} else
if (page_expected->size != 0) {
break;
}
if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
if (outdata[types * i] != page_expected->lgrp_id) {
break;
}
}
} else {
return NULL;
}
}
if (i < addrs_count) {
if ((validity[i] & 2) != 0) {
page_found->lgrp_id = outdata[types * i];
} else {
page_found->lgrp_id = -1;
}
if ((validity[i] & 4) != 0) {
page_found->size = outdata[types * i + 1];
} else {
page_found->size = 0;
}
return (char*)addrs[i];
}
p = addrs[addrs_count - 1] + page_size;
}
return end;
}
bool os::pd_uncommit_memory(char* addr, size_t bytes) {
size_t size = bytes;
// Map uncommitted pages PROT_NONE so we fail early if we touch an
// uncommitted page. Otherwise, the read/write might succeed if we
// have enough swap space to back the physical page.
return
NULL != Solaris::mmap_chunk(addr, size,
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
PROT_NONE);
}
char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
if (b == MAP_FAILED) {
return NULL;
}
return b;
}
char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
char* addr = requested_addr;
int flags = MAP_PRIVATE | MAP_NORESERVE;
assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
if (fixed) {
flags |= MAP_FIXED;
} else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
flags |= MAP_ALIGN;
addr = (char*) alignment_hint;
}
// Map uncommitted pages PROT_NONE so we fail early if we touch an
// uncommitted page. Otherwise, the read/write might succeed if we
// have enough swap space to back the physical page.
return mmap_chunk(addr, bytes, flags, PROT_NONE);
}
char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
guarantee(requested_addr == NULL || requested_addr == addr,
"OS failed to return requested mmap address.");
return addr;
}
// Reserve memory at an arbitrary address, only if that area is
// available (and not reserved for something else).
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
const int max_tries = 10;
char* base[max_tries];
size_t size[max_tries];
// Solaris adds a gap between mmap'ed regions. The size of the gap
// is dependent on the requested size and the MMU. Our initial gap
// value here is just a guess and will be corrected later.
bool had_top_overlap = false;
bool have_adjusted_gap = false;
size_t gap = 0x400000;
// Assert only that the size is a multiple of the page size, since
// that's all that mmap requires, and since that's all we really know
// about at this low abstraction level. If we need higher alignment,
// we can either pass an alignment to this method or verify alignment
// in one of the methods further up the call chain. See bug 5044738.
assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
// Since snv_84, Solaris attempts to honor the address hint - see 5003415.
// Give it a try, if the kernel honors the hint we can return immediately.
char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
volatile int err = errno;
if (addr == requested_addr) {
return addr;
} else if (addr != NULL) {
pd_unmap_memory(addr, bytes);
}
if (PrintMiscellaneous && Verbose) {
char buf[256];
buf[0] = '\0';
if (addr == NULL) {
jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
}
warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
"%s", bytes, requested_addr, addr, buf);
}
// Address hint method didn't work. Fall back to the old method.
// In theory, once SNV becomes our oldest supported platform, this
// code will no longer be needed.
//
// Repeatedly allocate blocks until the block is allocated at the
// right spot. Give up after max_tries.
int i;
for (i = 0; i < max_tries; ++i) {
base[i] = reserve_memory(bytes);
if (base[i] != NULL) {
// Is this the block we wanted?
if (base[i] == requested_addr) {
size[i] = bytes;
break;
}
// check that the gap value is right
if (had_top_overlap && !have_adjusted_gap) {
size_t actual_gap = base[i-1] - base[i] - bytes;
if (gap != actual_gap) {
// adjust the gap value and retry the last 2 allocations
assert(i > 0, "gap adjustment code problem");
have_adjusted_gap = true; // adjust the gap only once, just in case
gap = actual_gap;
if (PrintMiscellaneous && Verbose) {
warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
}
unmap_memory(base[i], bytes);
unmap_memory(base[i-1], size[i-1]);
i-=2;
continue;
}
}
// Does this overlap the block we wanted? Give back the overlapped
// parts and try again.
//
// There is still a bug in this code: if top_overlap == bytes,
// the overlap is offset from requested region by the value of gap.
// In this case giving back the overlapped part will not work,
// because we'll give back the entire block at base[i] and
// therefore the subsequent allocation will not generate a new gap.
// This could be fixed with a new algorithm that used larger
// or variable size chunks to find the requested region -
// but such a change would introduce additional complications.
// It's rare enough that the planets align for this bug,
// so we'll just wait for a fix for 6204603/5003415 which
// will provide a mmap flag to allow us to avoid this business.
size_t top_overlap = requested_addr + (bytes + gap) - base[i];
if (top_overlap >= 0 && top_overlap < bytes) {
had_top_overlap = true;
unmap_memory(base[i], top_overlap);
base[i] += top_overlap;
size[i] = bytes - top_overlap;
} else {
size_t bottom_overlap = base[i] + bytes - requested_addr;
if (bottom_overlap >= 0 && bottom_overlap < bytes) {
if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
warning("attempt_reserve_memory_at: possible alignment bug");
}
unmap_memory(requested_addr, bottom_overlap);
size[i] = bytes - bottom_overlap;
} else {
size[i] = bytes;
}
}
}
}
// Give back the unused reserved pieces.
for (int j = 0; j < i; ++j) {
if (base[j] != NULL) {
unmap_memory(base[j], size[j]);
}
}
return (i < max_tries) ? requested_addr : NULL;
}
bool os::pd_release_memory(char* addr, size_t bytes) {
size_t size = bytes;
return munmap(addr, size) == 0;
}
static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
"addr must be page aligned");
int retVal = mprotect(addr, bytes, prot);
return retVal == 0;
}
// Protect memory (Used to pass readonly pages through
// JNI GetArray<type>Elements with empty arrays.)
// Also, used for serialization page and for compressed oops null pointer
// checking.
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
bool is_committed) {
unsigned int p = 0;
switch (prot) {
case MEM_PROT_NONE: p = PROT_NONE; break;
case MEM_PROT_READ: p = PROT_READ; break;
case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
default:
ShouldNotReachHere();
}
// is_committed is unused.
return solaris_mprotect(addr, bytes, p);
}
// guard_memory and unguard_memory only happens within stack guard pages.
// Since ISM pertains only to the heap, guard and unguard memory should not
/// happen with an ISM region.
bool os::guard_memory(char* addr, size_t bytes) {
return solaris_mprotect(addr, bytes, PROT_NONE);
}
bool os::unguard_memory(char* addr, size_t bytes) {
return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
}
// Large page support
static size_t _large_page_size = 0;
// Insertion sort for small arrays (descending order).
static void insertion_sort_descending(size_t* array, int len) {
for (int i = 0; i < len; i++) {
size_t val = array[i];
for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
size_t tmp = array[key];
array[key] = array[key - 1];
array[key - 1] = tmp;
}
}
}
bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
const unsigned int usable_count = VM_Version::page_size_count();
if (usable_count == 1) {
return false;
}
// Find the right getpagesizes interface. When solaris 11 is the minimum
// build platform, getpagesizes() (without the '2') can be called directly.
typedef int (*gps_t)(size_t[], int);
gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
if (gps_func == NULL) {
gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
if (gps_func == NULL) {
if (warn) {
warning("MPSS is not supported by the operating system.");
}
return false;
}
}
// Fill the array of page sizes.
int n = (*gps_func)(_page_sizes, page_sizes_max);
assert(n > 0, "Solaris bug?");
if (n == page_sizes_max) {
// Add a sentinel value (necessary only if the array was completely filled
// since it is static (zeroed at initialization)).
_page_sizes[--n] = 0;
DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
}
assert(_page_sizes[n] == 0, "missing sentinel");
trace_page_sizes("available page sizes", _page_sizes, n);
if (n == 1) return false; // Only one page size available.
// Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
// select up to usable_count elements. First sort the array, find the first
// acceptable value, then copy the usable sizes to the top of the array and
// trim the rest. Make sure to include the default page size :-).
//
// A better policy could get rid of the 4M limit by taking the sizes of the
// important VM memory regions (java heap and possibly the code cache) into
// account.
insertion_sort_descending(_page_sizes, n);
const size_t size_limit =
FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
int beg;
for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
const int end = MIN2((int)usable_count, n) - 1;
for (int cur = 0; cur < end; ++cur, ++beg) {
_page_sizes[cur] = _page_sizes[beg];
}
_page_sizes[end] = vm_page_size();
_page_sizes[end + 1] = 0;
if (_page_sizes[end] > _page_sizes[end - 1]) {
// Default page size is not the smallest; sort again.
insertion_sort_descending(_page_sizes, end + 1);
}
*page_size = _page_sizes[0];
trace_page_sizes("usable page sizes", _page_sizes, end + 1);
return true;
}
void os::large_page_init() {
if (UseLargePages) {
// print a warning if any large page related flag is specified on command line
bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
!FLAG_IS_DEFAULT(LargePageSizeInBytes);
UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
}
}
bool os::Solaris::is_valid_page_size(size_t bytes) {
for (int i = 0; _page_sizes[i] != 0; i++) {
if (_page_sizes[i] == bytes) {
return true;
}
}
return false;
}
bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
assert(is_valid_page_size(align), err_msg(SIZE_FORMAT " is not a valid page size", align));
assert(is_ptr_aligned((void*) start, align),
err_msg(PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align));
assert(is_size_aligned(bytes, align),
err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align));
// Signal to OS that we want large pages for addresses
// from addr, addr + bytes
struct memcntl_mha mpss_struct;
mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
mpss_struct.mha_pagesize = align;
mpss_struct.mha_flags = 0;
// Upon successful completion, memcntl() returns 0
if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
debug_only(warning("Attempt to use MPSS failed."));
return false;
}
return true;
}
char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
fatal("os::reserve_memory_special should not be called on Solaris.");
return NULL;
}
bool os::release_memory_special(char* base, size_t bytes) {
fatal("os::release_memory_special should not be called on Solaris.");
return false;
}
size_t os::large_page_size() {
return _large_page_size;
}
// MPSS allows application to commit large page memory on demand; with ISM
// the entire memory region must be allocated as shared memory.
bool os::can_commit_large_page_memory() {
return true;
}
bool os::can_execute_large_page_memory() {
return true;
}
static int os_sleep(jlong millis, bool interruptible) {
const jlong limit = INT_MAX;
jlong prevtime;
int res;
while (millis > limit) {
if ((res = os_sleep(limit, interruptible)) != OS_OK)
return res;
millis -= limit;
}
// Restart interrupted polls with new parameters until the proper delay
// has been completed.
prevtime = getTimeMillis();
while (millis > 0) {
jlong newtime;
if (!interruptible) {
// Following assert fails for os::yield_all:
// assert(!thread->is_Java_thread(), "must not be java thread");
res = poll(NULL, 0, millis);
} else {
JavaThread *jt = JavaThread::current();
INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
os::Solaris::clear_interrupted);
}
// INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
// thread.Interrupt.
// See c/r 6751923. Poll can return 0 before time
// has elapsed if time is set via clock_settime (as NTP does).
// res == 0 if poll timed out (see man poll RETURN VALUES)
// using the logic below checks that we really did
// sleep at least "millis" if not we'll sleep again.
if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
newtime = getTimeMillis();
assert(newtime >= prevtime, "time moving backwards");
/* Doing prevtime and newtime in microseconds doesn't help precision,
and trying to round up to avoid lost milliseconds can result in a
too-short delay. */
millis -= newtime - prevtime;
if(millis <= 0)
return OS_OK;
prevtime = newtime;
} else
return res;
}
return OS_OK;
}
// Read calls from inside the vm need to perform state transitions
size_t os::read(int fd, void *buf, unsigned int nBytes) {
INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
}
size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
}
int os::sleep(Thread* thread, jlong millis, bool interruptible) {
assert(thread == Thread::current(), "thread consistency check");
// TODO-FIXME: this should be removed.
// On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
// situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
// a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
// thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
// is fooled into believing that the system is making progress. In the code below we block the
// the watcher thread while safepoint is in progress so that it would not appear as though the
// system is making progress.
if (!Solaris::T2_libthread() &&
thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
// We now try to acquire the threads lock. Since this lock is held by the VM thread during
// the entire safepoint, the watcher thread will line up here during the safepoint.
Threads_lock->lock_without_safepoint_check();
Threads_lock->unlock();
}
if (thread->is_Java_thread()) {
// This is a JavaThread so we honor the _thread_blocked protocol
// even for sleeps of 0 milliseconds. This was originally done
// as a workaround for bug 4338139. However, now we also do it
// to honor the suspend-equivalent protocol.
JavaThread *jt = (JavaThread *) thread;
ThreadBlockInVM tbivm(jt);
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or
// java_suspend_self() via check_and_wait_while_suspended()
int ret_code;
if (millis <= 0) {
thr_yield();
ret_code = 0;
} else {
// The original sleep() implementation did not create an
// OSThreadWaitState helper for sleeps of 0 milliseconds.
// I'm preserving that decision for now.
OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
ret_code = os_sleep(millis, interruptible);
}
// were we externally suspended while we were waiting?
jt->check_and_wait_while_suspended();
return ret_code;
}
// non-JavaThread from this point on:
if (millis <= 0) {
thr_yield();
return 0;
}
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
return os_sleep(millis, interruptible);
}
void os::naked_short_sleep(jlong ms) {
assert(ms < 1000, "Un-interruptable sleep, short time use only");
// usleep is deprecated and removed from POSIX, in favour of nanosleep, but
// Solaris requires -lrt for this.
usleep((ms * 1000));
return;
}
// Sleep forever; naked call to OS-specific sleep; use with CAUTION
void os::infinite_sleep() {
while (true) { // sleep forever ...
::sleep(100); // ... 100 seconds at a time
}
}
// Used to convert frequent JVM_Yield() to nops
bool os::dont_yield() {
if (DontYieldALot) {
static hrtime_t last_time = 0;
hrtime_t diff = getTimeNanos() - last_time;
if (diff < DontYieldALotInterval * 1000000)
return true;
last_time += diff;
return false;
}
else {
return false;
}
}
// Caveat: Solaris os::yield() causes a thread-state transition whereas
// the linux and win32 implementations do not. This should be checked.
void os::yield() {
// Yields to all threads with same or greater priority
os::sleep(Thread::current(), 0, false);
}
// Note that yield semantics are defined by the scheduling class to which
// the thread currently belongs. Typically, yield will _not yield to
// other equal or higher priority threads that reside on the dispatch queues
// of other CPUs.
os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
// On Solaris we found that yield_all doesn't always yield to all other threads.
// There have been cases where there is a thread ready to execute but it doesn't
// get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
// The 1 millisecond wait doesn't seem long enough for the kernel to issue a
// SIGWAITING signal which will cause a new lwp to be created. So we count the
// number of times yield_all is called in the one loop and increase the sleep
// time after 8 attempts. If this fails too we increase the concurrency level
// so that the starving thread would get an lwp
void os::yield_all(int attempts) {
// Yields to all threads, including threads with lower priorities
if (attempts == 0) {
os::sleep(Thread::current(), 1, false);
} else {
int iterations = attempts % 30;
if (iterations == 0 && !os::Solaris::T2_libthread()) {
// thr_setconcurrency and _getconcurrency make sense only under T1.
int noofLWPS = thr_getconcurrency();
if (noofLWPS < (Threads::number_of_threads() + 2)) {
thr_setconcurrency(thr_getconcurrency() + 1);
}
} else if (iterations < 25) {
os::sleep(Thread::current(), 1, false);
} else {
os::sleep(Thread::current(), 10, false);
}
}
}
// Called from the tight loops to possibly influence time-sharing heuristics
void os::loop_breaker(int attempts) {
os::yield_all(attempts);
}
// Interface for setting lwp priorities. If we are using T2 libthread,
// which forces the use of BoundThreads or we manually set UseBoundThreads,
// all of our threads will be assigned to real lwp's. Using the thr_setprio
// function is meaningless in this mode so we must adjust the real lwp's priority
// The routines below implement the getting and setting of lwp priorities.
//
// Note: There are three priority scales used on Solaris. Java priotities
// which range from 1 to 10, libthread "thr_setprio" scale which range
// from 0 to 127, and the current scheduling class of the process we
// are running in. This is typically from -60 to +60.
// The setting of the lwp priorities in done after a call to thr_setprio
// so Java priorities are mapped to libthread priorities and we map from
// the latter to lwp priorities. We don't keep priorities stored in
// Java priorities since some of our worker threads want to set priorities
// higher than all Java threads.
//
// For related information:
// (1) man -s 2 priocntl
// (2) man -s 4 priocntl
// (3) man dispadmin
// = librt.so
// = libthread/common/rtsched.c - thrp_setlwpprio().
// = ps -cL <pid> ... to validate priority.
// = sched_get_priority_min and _max
// pthread_create
// sched_setparam
// pthread_setschedparam
//
// Assumptions:
// + We assume that all threads in the process belong to the same
// scheduling class. IE. an homogenous process.
// + Must be root or in IA group to change change "interactive" attribute.
// Priocntl() will fail silently. The only indication of failure is when
// we read-back the value and notice that it hasn't changed.
// + Interactive threads enter the runq at the head, non-interactive at the tail.
// + For RT, change timeslice as well. Invariant:
// constant "priority integral"
// Konst == TimeSlice * (60-Priority)
// Given a priority, compute appropriate timeslice.
// + Higher numerical values have higher priority.
// sched class attributes
typedef struct {
int schedPolicy; // classID
int maxPrio;
int minPrio;
} SchedInfo;
static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
#ifdef ASSERT
static int ReadBackValidate = 1;
#endif
static int myClass = 0;
static int myMin = 0;
static int myMax = 0;
static int myCur = 0;
static bool priocntl_enable = false;
static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
static int java_MaxPriority_to_os_priority = 0; // Saved mapping
// lwp_priocntl_init
//
// Try to determine the priority scale for our process.
//
// Return errno or 0 if OK.
//
static int lwp_priocntl_init () {
int rslt;
pcinfo_t ClassInfo;
pcparms_t ParmInfo;
int i;
if (!UseThreadPriorities) return 0;
// We are using Bound threads, we need to determine our priority ranges
if (os::Solaris::T2_libthread() || UseBoundThreads) {
// If ThreadPriorityPolicy is 1, switch tables
if (ThreadPriorityPolicy == 1) {
for (i = 0 ; i < CriticalPriority+1; i++)
os::java_to_os_priority[i] = prio_policy1[i];
}
if (UseCriticalJavaThreadPriority) {
// MaxPriority always maps to the FX scheduling class and criticalPrio.
// See set_native_priority() and set_lwp_class_and_priority().
// Save original MaxPriority mapping in case attempt to
// use critical priority fails.
java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
// Set negative to distinguish from other priorities
os::java_to_os_priority[MaxPriority] = -criticalPrio;
}
}
// Not using Bound Threads, set to ThreadPolicy 1
else {
for ( i = 0 ; i < CriticalPriority+1; i++ ) {
os::java_to_os_priority[i] = prio_policy1[i];
}
return 0;
}
// Get IDs for a set of well-known scheduling classes.
// TODO-FIXME: GETCLINFO returns the current # of classes in the
// the system. We should have a loop that iterates over the
// classID values, which are known to be "small" integers.
strcpy(ClassInfo.pc_clname, "TS");
ClassInfo.pc_cid = -1;
rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
if (rslt < 0) return errno;
assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
tsLimits.schedPolicy = ClassInfo.pc_cid;
tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
tsLimits.minPrio = -tsLimits.maxPrio;
strcpy(ClassInfo.pc_clname, "IA");
ClassInfo.pc_cid = -1;
rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
if (rslt < 0) return errno;
assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
iaLimits.schedPolicy = ClassInfo.pc_cid;
iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
iaLimits.minPrio = -iaLimits.maxPrio;
strcpy(ClassInfo.pc_clname, "RT");
ClassInfo.pc_cid = -1;
rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
if (rslt < 0) return errno;
assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
rtLimits.schedPolicy = ClassInfo.pc_cid;
rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
rtLimits.minPrio = 0;
strcpy(ClassInfo.pc_clname, "FX");
ClassInfo.pc_cid = -1;
rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
if (rslt < 0) return errno;
assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
fxLimits.schedPolicy = ClassInfo.pc_cid;
fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
fxLimits.minPrio = 0;
// Query our "current" scheduling class.
// This will normally be IA, TS or, rarely, FX or RT.
memset(&ParmInfo, 0, sizeof(ParmInfo));
ParmInfo.pc_cid = PC_CLNULL;
rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
if (rslt < 0) return errno;
myClass = ParmInfo.pc_cid;
// We now know our scheduling classId, get specific information
// about the class.
ClassInfo.pc_cid = myClass;
ClassInfo.pc_clname[0] = 0;
rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
if (rslt < 0) return errno;
if (ThreadPriorityVerbose) {
tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
}
memset(&ParmInfo, 0, sizeof(pcparms_t));
ParmInfo.pc_cid = PC_CLNULL;
rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
if (rslt < 0) return errno;
if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
myMin = rtLimits.minPrio;
myMax = rtLimits.maxPrio;
} else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
iaparms_t *iaInfo = (iaparms_t*)ParmInfo.pc_clparms;
myMin = iaLimits.minPrio;
myMax = iaLimits.maxPrio;
myMax = MIN2(myMax, (int)iaInfo->ia_uprilim); // clamp - restrict
} else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
tsparms_t *tsInfo = (tsparms_t*)ParmInfo.pc_clparms;
myMin = tsLimits.minPrio;
myMax = tsLimits.maxPrio;
myMax = MIN2(myMax, (int)tsInfo->ts_uprilim); // clamp - restrict
} else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
myMin = fxLimits.minPrio;
myMax = fxLimits.maxPrio;
myMax = MIN2(myMax, (int)fxInfo->fx_uprilim); // clamp - restrict
} else {
// No clue - punt
if (ThreadPriorityVerbose)
tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
return EINVAL; // no clue, punt
}
if (ThreadPriorityVerbose) {
tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
}
priocntl_enable = true; // Enable changing priorities
return 0;
}
#define IAPRI(x) ((iaparms_t *)((x).pc_clparms))
#define RTPRI(x) ((rtparms_t *)((x).pc_clparms))
#define TSPRI(x) ((tsparms_t *)((x).pc_clparms))
#define FXPRI(x) ((fxparms_t *)((x).pc_clparms))
// scale_to_lwp_priority
//
// Convert from the libthread "thr_setprio" scale to our current
// lwp scheduling class scale.
//
static
int scale_to_lwp_priority (int rMin, int rMax, int x)
{
int v;
if (x == 127) return rMax; // avoid round-down
v = (((x*(rMax-rMin)))/128)+rMin;
return v;
}
// set_lwp_class_and_priority
//
// Set the class and priority of the lwp. This call should only
// be made when using bound threads (T2 threads are bound by default).
//
int set_lwp_class_and_priority(int ThreadID, int lwpid,
int newPrio, int new_class, bool scale) {
int rslt;
int Actual, Expected, prv;
pcparms_t ParmInfo; // for GET-SET
#ifdef ASSERT
pcparms_t ReadBack; // for readback
#endif
// Set priority via PC_GETPARMS, update, PC_SETPARMS
// Query current values.
// TODO: accelerate this by eliminating the PC_GETPARMS call.
// Cache "pcparms_t" in global ParmCache.
// TODO: elide set-to-same-value
// If something went wrong on init, don't change priorities.
if ( !priocntl_enable ) {
if (ThreadPriorityVerbose)
tty->print_cr("Trying to set priority but init failed, ignoring");
return EINVAL;
}
// If lwp hasn't started yet, just return
// the _start routine will call us again.
if ( lwpid <= 0 ) {
if (ThreadPriorityVerbose) {
tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
INTPTR_FORMAT " to %d, lwpid not set",
ThreadID, newPrio);
}
return 0;
}
if (ThreadPriorityVerbose) {
tty->print_cr ("set_lwp_class_and_priority("
INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
ThreadID, lwpid, newPrio);
}
memset(&ParmInfo, 0, sizeof(pcparms_t));
ParmInfo.pc_cid = PC_CLNULL;
rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
if (rslt < 0) return errno;
int cur_class = ParmInfo.pc_cid;
ParmInfo.pc_cid = (id_t)new_class;
if (new_class == rtLimits.schedPolicy) {
rtparms_t *rtInfo = (rtparms_t*)ParmInfo.pc_clparms;
rtInfo->rt_pri = scale ? scale_to_lwp_priority(rtLimits.minPrio,
rtLimits.maxPrio, newPrio)
: newPrio;
rtInfo->rt_tqsecs = RT_NOCHANGE;
rtInfo->rt_tqnsecs = RT_NOCHANGE;
if (ThreadPriorityVerbose) {
tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
}
} else if (new_class == iaLimits.schedPolicy) {
iaparms_t* iaInfo = (iaparms_t*)ParmInfo.pc_clparms;
int maxClamped = MIN2(iaLimits.maxPrio,
cur_class == new_class
? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
iaInfo->ia_upri = scale ? scale_to_lwp_priority(iaLimits.minPrio,
maxClamped, newPrio)
: newPrio;
iaInfo->ia_uprilim = cur_class == new_class
? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
iaInfo->ia_mode = IA_NOCHANGE;
if (ThreadPriorityVerbose) {
tty->print_cr("IA: [%d...%d] %d->%d\n",
iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
}
} else if (new_class == tsLimits.schedPolicy) {
tsparms_t* tsInfo = (tsparms_t*)ParmInfo.pc_clparms;
int maxClamped = MIN2(tsLimits.maxPrio,
cur_class == new_class
? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
tsInfo->ts_upri = scale ? scale_to_lwp_priority(tsLimits.minPrio,
maxClamped, newPrio)
: newPrio;
tsInfo->ts_uprilim = cur_class == new_class
? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
if (ThreadPriorityVerbose) {
tty->print_cr("TS: [%d...%d] %d->%d\n",
tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
}
} else if (new_class == fxLimits.schedPolicy) {
fxparms_t* fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
int maxClamped = MIN2(fxLimits.maxPrio,
cur_class == new_class
? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
fxInfo->fx_upri = scale ? scale_to_lwp_priority(fxLimits.minPrio,
maxClamped, newPrio)
: newPrio;
fxInfo->fx_uprilim = cur_class == new_class
? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
fxInfo->fx_tqsecs = FX_NOCHANGE;
fxInfo->fx_tqnsecs = FX_NOCHANGE;
if (ThreadPriorityVerbose) {
tty->print_cr("FX: [%d...%d] %d->%d\n",
fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
}
} else {
if (ThreadPriorityVerbose) {
tty->print_cr("Unknown new scheduling class %d\n", new_class);
}
return EINVAL; // no clue, punt
}
rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
if (ThreadPriorityVerbose && rslt) {
tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
}
if (rslt < 0) return errno;
#ifdef ASSERT
// Sanity check: read back what we just attempted to set.
// In theory it could have changed in the interim ...
//
// The priocntl system call is tricky.
// Sometimes it'll validate the priority value argument and
// return EINVAL if unhappy. At other times it fails silently.
// Readbacks are prudent.
if (!ReadBackValidate) return 0;
memset(&ReadBack, 0, sizeof(pcparms_t));
ReadBack.pc_cid = PC_CLNULL;
rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
assert(rslt >= 0, "priocntl failed");
Actual = Expected = 0xBAD;
assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
Actual = RTPRI(ReadBack)->rt_pri;
Expected = RTPRI(ParmInfo)->rt_pri;
} else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
Actual = IAPRI(ReadBack)->ia_upri;
Expected = IAPRI(ParmInfo)->ia_upri;
} else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
Actual = TSPRI(ReadBack)->ts_upri;
Expected = TSPRI(ParmInfo)->ts_upri;
} else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
Actual = FXPRI(ReadBack)->fx_upri;
Expected = FXPRI(ParmInfo)->fx_upri;
} else {
if (ThreadPriorityVerbose) {
tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
ParmInfo.pc_cid);
}
}
if (Actual != Expected) {
if (ThreadPriorityVerbose) {
tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
}
}
#endif
return 0;
}
// Solaris only gives access to 128 real priorities at a time,
// so we expand Java's ten to fill this range. This would be better
// if we dynamically adjusted relative priorities.
//
// The ThreadPriorityPolicy option allows us to select 2 different
// priority scales.
//
// ThreadPriorityPolicy=0
// Since the Solaris' default priority is MaximumPriority, we do not
// set a priority lower than Max unless a priority lower than
// NormPriority is requested.
//
// ThreadPriorityPolicy=1
// This mode causes the priority table to get filled with
// linear values. NormPriority get's mapped to 50% of the
// Maximum priority an so on. This will cause VM threads
// to get unfair treatment against other Solaris processes
// which do not explicitly alter their thread priorities.
//
int os::java_to_os_priority[CriticalPriority + 1] = {
-99999, // 0 Entry should never be used
0, // 1 MinPriority
32, // 2
64, // 3
96, // 4
127, // 5 NormPriority
127, // 6
127, // 7
127, // 8
127, // 9 NearMaxPriority
127, // 10 MaxPriority
-criticalPrio // 11 CriticalPriority
};
OSReturn os::set_native_priority(Thread* thread, int newpri) {
OSThread* osthread = thread->osthread();
// Save requested priority in case the thread hasn't been started
osthread->set_native_priority(newpri);
// Check for critical priority request
bool fxcritical = false;
if (newpri == -criticalPrio) {
fxcritical = true;
newpri = criticalPrio;
}
assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
if (!UseThreadPriorities) return OS_OK;
int status = 0;
if (!fxcritical) {
// Use thr_setprio only if we have a priority that thr_setprio understands
status = thr_setprio(thread->osthread()->thread_id(), newpri);
}
if (os::Solaris::T2_libthread() ||
(UseBoundThreads && osthread->is_vm_created())) {
int lwp_status =
set_lwp_class_and_priority(osthread->thread_id(),
osthread->lwp_id(),
newpri,
fxcritical ? fxLimits.schedPolicy : myClass,
!fxcritical);
if (lwp_status != 0 && fxcritical) {
// Try again, this time without changing the scheduling class
newpri = java_MaxPriority_to_os_priority;
lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
osthread->lwp_id(),
newpri, myClass, false);
}
status |= lwp_status;
}
return (status == 0) ? OS_OK : OS_ERR;
}
OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
int p;
if ( !UseThreadPriorities ) {
*priority_ptr = NormalPriority;
return OS_OK;
}
int status = thr_getprio(thread->osthread()->thread_id(), &p);
if (status != 0) {
return OS_ERR;
}
*priority_ptr = p;
return OS_OK;
}
// Hint to the underlying OS that a task switch would not be good.
// Void return because it's a hint and can fail.
void os::hint_no_preempt() {
schedctl_start(schedctl_init());
}
static void resume_clear_context(OSThread *osthread) {
osthread->set_ucontext(NULL);
}
static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
osthread->set_ucontext(context);
}
static Semaphore sr_semaphore;
void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
// Save and restore errno to avoid confusing native code with EINTR
// after sigsuspend.
int old_errno = errno;
OSThread* osthread = thread->osthread();
assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
os::SuspendResume::State current = osthread->sr.state();
if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
suspend_save_context(osthread, uc);
// attempt to switch the state, we assume we had a SUSPEND_REQUEST
os::SuspendResume::State state = osthread->sr.suspended();
if (state == os::SuspendResume::SR_SUSPENDED) {
sigset_t suspend_set; // signals for sigsuspend()
// get current set of blocked signals and unblock resume signal
thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
sigdelset(&suspend_set, os::Solaris::SIGasync());
sr_semaphore.signal();
// wait here until we are resumed
while (1) {
sigsuspend(&suspend_set);
os::SuspendResume::State result = osthread->sr.running();
if (result == os::SuspendResume::SR_RUNNING) {
sr_semaphore.signal();
break;
}
}
} else if (state == os::SuspendResume::SR_RUNNING) {
// request was cancelled, continue
} else {
ShouldNotReachHere();
}
resume_clear_context(osthread);
} else if (current == os::SuspendResume::SR_RUNNING) {
// request was cancelled, continue
} else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
// ignore
} else {
// ignore
}
errno = old_errno;
}
void os::interrupt(Thread* thread) {
assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
OSThread* osthread = thread->osthread();
int isInterrupted = osthread->interrupted();
if (!isInterrupted) {
osthread->set_interrupted(true);
OrderAccess::fence();
// os::sleep() is implemented with either poll (NULL,0,timeout) or
// by parking on _SleepEvent. If the former, thr_kill will unwedge
// the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
ParkEvent * const slp = thread->_SleepEvent ;
if (slp != NULL) slp->unpark() ;
}
// For JSR166: unpark after setting status but before thr_kill -dl
if (thread->is_Java_thread()) {
((JavaThread*)thread)->parker()->unpark();
}
// Handle interruptible wait() ...
ParkEvent * const ev = thread->_ParkEvent ;
if (ev != NULL) ev->unpark() ;
// When events are used everywhere for os::sleep, then this thr_kill
// will only be needed if UseVMInterruptibleIO is true.
if (!isInterrupted) {
int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
assert_status(status == 0, status, "thr_kill");
// Bump thread interruption counter
RuntimeService::record_thread_interrupt_signaled_count();
}
}
bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
OSThread* osthread = thread->osthread();
bool res = osthread->interrupted();
// NOTE that since there is no "lock" around these two operations,
// there is the possibility that the interrupted flag will be
// "false" but that the interrupt event will be set. This is
// intentional. The effect of this is that Object.wait() will appear
// to have a spurious wakeup, which is not harmful, and the
// possibility is so rare that it is not worth the added complexity
// to add yet another lock. It has also been recommended not to put
// the interrupted flag into the os::Solaris::Event structure,
// because it hides the issue.
if (res && clear_interrupted) {
osthread->set_interrupted(false);
}
return res;
}
void os::print_statistics() {
}
int os::message_box(const char* title, const char* message) {
int i;
fdStream err(defaultStream::error_fd());
for (i = 0; i < 78; i++) err.print_raw("=");
err.cr();
err.print_raw_cr(title);
for (i = 0; i < 78; i++) err.print_raw("-");
err.cr();
err.print_raw_cr(message);
for (i = 0; i < 78; i++) err.print_raw("=");
err.cr();
char buf[16];
// Prevent process from exiting upon "read error" without consuming all CPU
while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
return buf[0] == 'y' || buf[0] == 'Y';
}
static int sr_notify(OSThread* osthread) {
int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
assert_status(status == 0, status, "thr_kill");
return status;
}
// "Randomly" selected value for how long we want to spin
// before bailing out on suspending a thread, also how often
// we send a signal to a thread we want to resume
static const int RANDOMLY_LARGE_INTEGER = 1000000;
static const int RANDOMLY_LARGE_INTEGER2 = 100;
static bool do_suspend(OSThread* osthread) {
assert(osthread->sr.is_running(), "thread should be running");
assert(!sr_semaphore.trywait(), "semaphore has invalid state");
// mark as suspended and send signal
if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
// failed to switch, state wasn't running?
ShouldNotReachHere();
return false;
}
if (sr_notify(osthread) != 0) {
ShouldNotReachHere();
}
// managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
while (true) {
if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
break;
} else {
// timeout
os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
if (cancelled == os::SuspendResume::SR_RUNNING) {
return false;
} else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
// make sure that we consume the signal on the semaphore as well
sr_semaphore.wait();
break;
} else {
ShouldNotReachHere();
return false;
}
}
}
guarantee(osthread->sr.is_suspended(), "Must be suspended");
return true;
}
static void do_resume(OSThread* osthread) {
assert(osthread->sr.is_suspended(), "thread should be suspended");
assert(!sr_semaphore.trywait(), "invalid semaphore state");
if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
// failed to switch to WAKEUP_REQUEST
ShouldNotReachHere();
return;
}
while (true) {
if (sr_notify(osthread) == 0) {
if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
if (osthread->sr.is_running()) {
return;
}
}
} else {
ShouldNotReachHere();
}
}
guarantee(osthread->sr.is_running(), "Must be running!");
}
void os::SuspendedThreadTask::internal_do_task() {
if (do_suspend(_thread->osthread())) {
SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
do_task(context);
do_resume(_thread->osthread());
}
}
class PcFetcher : public os::SuspendedThreadTask {
public:
PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
ExtendedPC result();
protected:
void do_task(const os::SuspendedThreadTaskContext& context);
private:
ExtendedPC _epc;
};
ExtendedPC PcFetcher::result() {
guarantee(is_done(), "task is not done yet.");
return _epc;
}
void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
Thread* thread = context.thread();
OSThread* osthread = thread->osthread();
if (osthread->ucontext() != NULL) {
_epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
} else {
// NULL context is unexpected, double-check this is the VMThread
guarantee(thread->is_VM_thread(), "can only be called for VMThread");
}
}
// A lightweight implementation that does not suspend the target thread and
// thus returns only a hint. Used for profiling only!
ExtendedPC os::get_thread_pc(Thread* thread) {
// Make sure that it is called by the watcher and the Threads lock is owned.
assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
// For now, is only used to profile the VM Thread
assert(thread->is_VM_thread(), "Can only be called for VMThread");
PcFetcher fetcher(thread);
fetcher.run();
return fetcher.result();
}
// This does not do anything on Solaris. This is basically a hook for being
// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
f(value, method, args, thread);
}
// This routine may be used by user applications as a "hook" to catch signals.
// The user-defined signal handler must pass unrecognized signals to this
// routine, and if it returns true (non-zero), then the signal handler must
// return immediately. If the flag "abort_if_unrecognized" is true, then this
// routine will never retun false (zero), but instead will execute a VM panic
// routine kill the process.
//
// If this routine returns false, it is OK to call it again. This allows
// the user-defined signal handler to perform checks either before or after
// the VM performs its own checks. Naturally, the user code would be making
// a serious error if it tried to handle an exception (such as a null check
// or breakpoint) that the VM was generating for its own correct operation.
//
// This routine may recognize any of the following kinds of signals:
// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
// os::Solaris::SIGasync
// It should be consulted by handlers for any of those signals.
// It explicitly does not recognize os::Solaris::SIGinterrupt
//
// The caller of this routine must pass in the three arguments supplied
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
// field of the structure passed to sigaction(). This routine assumes that
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
//
// Note that the VM will print warnings if it detects conflicting signal
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
//
extern "C" JNIEXPORT int
JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
int abort_if_unrecognized);
void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
int orig_errno = errno; // Preserve errno value over signal handler.
JVM_handle_solaris_signal(sig, info, ucVoid, true);
errno = orig_errno;
}
/* Do not delete - if guarantee is ever removed, a signal handler (even empty)
is needed to provoke threads blocked on IO to return an EINTR
Note: this explicitly does NOT call JVM_handle_solaris_signal and
does NOT participate in signal chaining due to requirement for
NOT setting SA_RESTART to make EINTR work. */
extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
if (UseSignalChaining) {
struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
if (actp && actp->sa_handler) {
vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
}
}
}
// This boolean allows users to forward their own non-matching signals
// to JVM_handle_solaris_signal, harmlessly.
bool os::Solaris::signal_handlers_are_installed = false;
// For signal-chaining
bool os::Solaris::libjsig_is_loaded = false;
typedef struct sigaction *(*get_signal_t)(int);
get_signal_t os::Solaris::get_signal_action = NULL;
struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
struct sigaction *actp = NULL;
if ((libjsig_is_loaded) && (sig <= Maxlibjsigsigs)) {
// Retrieve the old signal handler from libjsig
actp = (*get_signal_action)(sig);
}
if (actp == NULL) {
// Retrieve the preinstalled signal handler from jvm
actp = get_preinstalled_handler(sig);
}
return actp;
}
static bool call_chained_handler(struct sigaction *actp, int sig,
siginfo_t *siginfo, void *context) {
// Call the old signal handler
if (actp->sa_handler == SIG_DFL) {
// It's more reasonable to let jvm treat it as an unexpected exception
// instead of taking the default action.
return false;
} else if (actp->sa_handler != SIG_IGN) {
if ((actp->sa_flags & SA_NODEFER) == 0) {
// automaticlly block the signal
sigaddset(&(actp->sa_mask), sig);
}
sa_handler_t hand;
sa_sigaction_t sa;
bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
// retrieve the chained handler
if (siginfo_flag_set) {
sa = actp->sa_sigaction;
} else {
hand = actp->sa_handler;
}
if ((actp->sa_flags & SA_RESETHAND) != 0) {
actp->sa_handler = SIG_DFL;
}
// try to honor the signal mask
sigset_t oset;
thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
// call into the chained handler
if (siginfo_flag_set) {
(*sa)(sig, siginfo, context);
} else {
(*hand)(sig);
}
// restore the signal mask
thr_sigsetmask(SIG_SETMASK, &oset, 0);
}
// Tell jvm's signal handler the signal is taken care of.
return true;
}
bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
bool chained = false;
// signal-chaining
if (UseSignalChaining) {
struct sigaction *actp = get_chained_signal_action(sig);
if (actp != NULL) {
chained = call_chained_handler(actp, sig, siginfo, context);
}
}
return chained;
}
struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
if (preinstalled_sigs[sig] != 0) {
return &chainedsigactions[sig];
}
return NULL;
}
void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
chainedsigactions[sig] = oldAct;
preinstalled_sigs[sig] = 1;
}
void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
// Check for overwrite.
struct sigaction oldAct;
sigaction(sig, (struct sigaction*)NULL, &oldAct);
void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
if (AllowUserSignalHandlers || !set_installed) {
// Do not overwrite; user takes responsibility to forward to us.
return;
} else if (UseSignalChaining) {
if (oktochain) {
// save the old handler in jvm
save_preinstalled_handler(sig, oldAct);
} else {
vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
}
// libjsig also interposes the sigaction() call below and saves the
// old sigaction on it own.
} else {
fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
"%#lx for signal %d.", (long)oldhand, sig));
}
}
struct sigaction sigAct;
sigfillset(&(sigAct.sa_mask));
sigAct.sa_handler = SIG_DFL;
sigAct.sa_sigaction = signalHandler;
// Handle SIGSEGV on alternate signal stack if
// not using stack banging
if (!UseStackBanging && sig == SIGSEGV) {
sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
// Interruptible i/o requires SA_RESTART cleared so EINTR
// is returned instead of restarting system calls
} else if (sig == os::Solaris::SIGinterrupt()) {
sigemptyset(&sigAct.sa_mask);
sigAct.sa_handler = NULL;
sigAct.sa_flags = SA_SIGINFO;
sigAct.sa_sigaction = sigINTRHandler;
} else {
sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
}
os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
sigaction(sig, &sigAct, &oldAct);
void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
assert(oldhand2 == oldhand, "no concurrent signal handler installation");
}
#define DO_SIGNAL_CHECK(sig) \
if (!sigismember(&check_signal_done, sig)) \
os::Solaris::check_signal_handler(sig)
// This method is a periodic task to check for misbehaving JNI applications
// under CheckJNI, we can add any periodic checks here
void os::run_periodic_checks() {
// A big source of grief is hijacking virt. addr 0x0 on Solaris,
// thereby preventing a NULL checks.
if(!check_addr0_done) check_addr0_done = check_addr0(tty);
if (check_signals == false) return;
// SEGV and BUS if overridden could potentially prevent
// generation of hs*.log in the event of a crash, debugging
// such a case can be very challenging, so we absolutely
// check for the following for a good measure:
DO_SIGNAL_CHECK(SIGSEGV);
DO_SIGNAL_CHECK(SIGILL);
DO_SIGNAL_CHECK(SIGFPE);
DO_SIGNAL_CHECK(SIGBUS);
DO_SIGNAL_CHECK(SIGPIPE);
DO_SIGNAL_CHECK(SIGXFSZ);
// ReduceSignalUsage allows the user to override these handlers
// see comments at the very top and jvm_solaris.h
if (!ReduceSignalUsage) {
DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
DO_SIGNAL_CHECK(BREAK_SIGNAL);
}
// See comments above for using JVM1/JVM2 and UseAltSigs
DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
DO_SIGNAL_CHECK(os::Solaris::SIGasync());
}
typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
static os_sigaction_t os_sigaction = NULL;
void os::Solaris::check_signal_handler(int sig) {
char buf[O_BUFLEN];
address jvmHandler = NULL;
struct sigaction act;
if (os_sigaction == NULL) {
// only trust the default sigaction, in case it has been interposed
os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
if (os_sigaction == NULL) return;
}
os_sigaction(sig, (struct sigaction*)NULL, &act);
address thisHandler = (act.sa_flags & SA_SIGINFO)
? CAST_FROM_FN_PTR(address, act.sa_sigaction)
: CAST_FROM_FN_PTR(address, act.sa_handler) ;
switch(sig) {
case SIGSEGV:
case SIGBUS:
case SIGFPE:
case SIGPIPE:
case SIGXFSZ:
case SIGILL:
jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
break;
case SHUTDOWN1_SIGNAL:
case SHUTDOWN2_SIGNAL:
case SHUTDOWN3_SIGNAL:
case BREAK_SIGNAL:
jvmHandler = (address)user_handler();
break;
default:
int intrsig = os::Solaris::SIGinterrupt();
int asynsig = os::Solaris::SIGasync();
if (sig == intrsig) {
jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
} else if (sig == asynsig) {
jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
} else {
return;
}
break;
}
if (thisHandler != jvmHandler) {
tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
// No need to check this sig any longer
sigaddset(&check_signal_done, sig);
// Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
exception_name(sig, buf, O_BUFLEN));
}
} else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
// No need to check this sig any longer
sigaddset(&check_signal_done, sig);
}
// Print all the signal handler state
if (sigismember(&check_signal_done, sig)) {
print_signal_handlers(tty, buf, O_BUFLEN);
}
}
void os::Solaris::install_signal_handlers() {
bool libjsigdone = false;
signal_handlers_are_installed = true;
// signal-chaining
typedef void (*signal_setting_t)();
signal_setting_t begin_signal_setting = NULL;
signal_setting_t end_signal_setting = NULL;
begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
if (begin_signal_setting != NULL) {
end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
get_signal_action = CAST_TO_FN_PTR(get_signal_t,
dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
libjsig_is_loaded = true;
if (os::Solaris::get_libjsig_version != NULL) {
libjsigversion = (*os::Solaris::get_libjsig_version)();
}
assert(UseSignalChaining, "should enable signal-chaining");
}
if (libjsig_is_loaded) {
// Tell libjsig jvm is setting signal handlers
(*begin_signal_setting)();
}
set_signal_handler(SIGSEGV, true, true);
set_signal_handler(SIGPIPE, true, true);
set_signal_handler(SIGXFSZ, true, true);
set_signal_handler(SIGBUS, true, true);
set_signal_handler(SIGILL, true, true);
set_signal_handler(SIGFPE, true, true);
if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
// Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
// can not register overridable signals which might be > 32
if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
// Tell libjsig jvm has finished setting signal handlers
(*end_signal_setting)();
libjsigdone = true;
}
}
// Never ok to chain our SIGinterrupt
set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
set_signal_handler(os::Solaris::SIGasync(), true, true);
if (libjsig_is_loaded && !libjsigdone) {
// Tell libjsig jvm finishes setting signal handlers
(*end_signal_setting)();
}
// We don't activate signal checker if libjsig is in place, we trust ourselves
// and if UserSignalHandler is installed all bets are off.
// Log that signal checking is off only if -verbose:jni is specified.
if (CheckJNICalls) {
if (libjsig_is_loaded) {
if (PrintJNIResolving) {
tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
}
check_signals = false;
}
if (AllowUserSignalHandlers) {
if (PrintJNIResolving) {
tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
}
check_signals = false;
}
}
}
void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
const char * signames[] = {
"SIG0",
"SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
"SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
"SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
"SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
"SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
"SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
"SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
"SIGCANCEL", "SIGLOST"
};
const char* os::exception_name(int exception_code, char* buf, size_t size) {
if (0 < exception_code && exception_code <= SIGRTMAX) {
// signal
if (exception_code < sizeof(signames)/sizeof(const char*)) {
jio_snprintf(buf, size, "%s", signames[exception_code]);
} else {
jio_snprintf(buf, size, "SIG%d", exception_code);
}
return buf;
} else {
return NULL;
}
}
// (Static) wrappers for the new libthread API
int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
int_fnP_thread_t_i os::Solaris::_thr_setmutator;
int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
int_fnP_thread_t os::Solaris::_thr_continue_mutator;
// (Static) wrapper for getisax(2) call.
os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
// (Static) wrappers for the liblgrp API
os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
// (Static) wrapper for meminfo() call.
os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
static address resolve_symbol_lazy(const char* name) {
address addr = (address) dlsym(RTLD_DEFAULT, name);
if(addr == NULL) {
// RTLD_DEFAULT was not defined on some early versions of 2.5.1
addr = (address) dlsym(RTLD_NEXT, name);
}
return addr;
}
static address resolve_symbol(const char* name) {
address addr = resolve_symbol_lazy(name);
if(addr == NULL) {
fatal(dlerror());
}
return addr;
}
// isT2_libthread()
//
// Routine to determine if we are currently using the new T2 libthread.
//
// We determine if we are using T2 by reading /proc/self/lstatus and
// looking for a thread with the ASLWP bit set. If we find this status
// bit set, we must assume that we are NOT using T2. The T2 team
// has approved this algorithm.
//
// We need to determine if we are running with the new T2 libthread
// since setting native thread priorities is handled differently
// when using this library. All threads created using T2 are bound
// threads. Calling thr_setprio is meaningless in this case.
//
bool isT2_libthread() {
static prheader_t * lwpArray = NULL;
static int lwpSize = 0;
static int lwpFile = -1;
lwpstatus_t * that;
char lwpName [128];
bool isT2 = false;
#define ADR(x) ((uintptr_t)(x))
#define LWPINDEX(ary,ix) ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
if (lwpFile < 0) {
if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
return false;
}
lwpSize = 16*1024;
for (;;) {
::lseek64 (lwpFile, 0, SEEK_SET);
lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
if (::read(lwpFile, lwpArray, lwpSize) < 0) {
if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
break;
}
if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
// We got a good snapshot - now iterate over the list.
int aslwpcount = 0;
for (int i = 0; i < lwpArray->pr_nent; i++ ) {
that = LWPINDEX(lwpArray,i);
if (that->pr_flags & PR_ASLWP) {
aslwpcount++;
}
}
if (aslwpcount == 0) isT2 = true;
break;
}
lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal); // retry.
}
FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
::close (lwpFile);
if (ThreadPriorityVerbose) {
if (isT2) tty->print_cr("We are running with a T2 libthread\n");
else tty->print_cr("We are not running with a T2 libthread\n");
}
return isT2;
}
void os::Solaris::libthread_init() {
address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
// Determine if we are running with the new T2 libthread
os::Solaris::set_T2_libthread(isT2_libthread());
lwp_priocntl_init();
// RTLD_DEFAULT was not defined on some early versions of 5.5.1
if(func == NULL) {
func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
// Guarantee that this VM is running on an new enough OS (5.6 or
// later) that it will have a new enough libthread.so.
guarantee(func != NULL, "libthread.so is too old.");
}
// Initialize the new libthread getstate API wrappers
func = resolve_symbol("thr_getstate");
os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
func = resolve_symbol("thr_setstate");
os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
func = resolve_symbol("thr_setmutator");
os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
func = resolve_symbol("thr_suspend_mutator");
os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
func = resolve_symbol("thr_continue_mutator");
os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
int size;
void (*handler_info_func)(address *, int *);
handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
handler_info_func(&handler_start, &size);
handler_end = handler_start + size;
}
int_fnP_mutex_tP os::Solaris::_mutex_lock;
int_fnP_mutex_tP os::Solaris::_mutex_trylock;
int_fnP_mutex_tP os::Solaris::_mutex_unlock;
int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
int_fnP_mutex_tP os::Solaris::_mutex_destroy;
int os::Solaris::_mutex_scope = USYNC_THREAD;
int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
int_fnP_cond_tP os::Solaris::_cond_signal;
int_fnP_cond_tP os::Solaris::_cond_broadcast;
int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
int_fnP_cond_tP os::Solaris::_cond_destroy;
int os::Solaris::_cond_scope = USYNC_THREAD;
void os::Solaris::synchronization_init() {
if(UseLWPSynchronization) {
os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
os::Solaris::set_mutex_init(lwp_mutex_init);
os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
os::Solaris::set_mutex_scope(USYNC_THREAD);
os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
os::Solaris::set_cond_init(lwp_cond_init);
os::Solaris::set_cond_destroy(lwp_cond_destroy);
os::Solaris::set_cond_scope(USYNC_THREAD);
}
else {
os::Solaris::set_mutex_scope(USYNC_THREAD);
os::Solaris::set_cond_scope(USYNC_THREAD);
if(UsePthreads) {
os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
os::Solaris::set_mutex_init(pthread_mutex_default_init);
os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
os::Solaris::set_cond_init(pthread_cond_default_init);
os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
}
else {
os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
os::Solaris::set_mutex_init(::mutex_init);
os::Solaris::set_mutex_destroy(::mutex_destroy);
os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
os::Solaris::set_cond_init(::cond_init);
os::Solaris::set_cond_destroy(::cond_destroy);
}
}
}
bool os::Solaris::liblgrp_init() {
void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
if (handle != NULL) {
os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
dlsym(handle, "lgrp_cookie_stale")));
lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
set_lgrp_cookie(c);
return true;
}
return false;
}
void os::Solaris::misc_sym_init() {
address func;
// getisax
func = resolve_symbol_lazy("getisax");
if (func != NULL) {
os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
}
// meminfo
func = resolve_symbol_lazy("meminfo");
if (func != NULL) {
os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
}
}
uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
assert(_getisax != NULL, "_getisax not set");
return _getisax(array, n);
}
// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
static pset_getloadavg_type pset_getloadavg_ptr = NULL;
void init_pset_getloadavg_ptr(void) {
pset_getloadavg_ptr =
(pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
warning("pset_getloadavg function not found");
}
}
int os::Solaris::_dev_zero_fd = -1;
// this is called _before_ the global arguments have been parsed
void os::init(void) {
_initial_pid = getpid();
max_hrtime = first_hrtime = gethrtime();
init_random(1234567);
page_size = sysconf(_SC_PAGESIZE);
if (page_size == -1)
fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
strerror(errno)));
init_page_sizes((size_t) page_size);
Solaris::initialize_system_info();
// Initialize misc. symbols as soon as possible, so we can use them
// if we need them.
Solaris::misc_sym_init();
int fd = ::open("/dev/zero", O_RDWR);
if (fd < 0) {
fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
} else {
Solaris::set_dev_zero_fd(fd);
// Close on exec, child won't inherit.
fcntl(fd, F_SETFD, FD_CLOEXEC);
}
clock_tics_per_sec = CLK_TCK;
// check if dladdr1() exists; dladdr1 can provide more information than
// dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
// and is available on linker patches for 5.7 and 5.8.
// libdl.so must have been loaded, this call is just an entry lookup
void * hdl = dlopen("libdl.so", RTLD_NOW);
if (hdl)
dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
// (Solaris only) this switches to calls that actually do locking.
ThreadCritical::initialize();
main_thread = thr_self();
// Constant minimum stack size allowed. It must be at least
// the minimum of what the OS supports (thr_min_stack()), and
// enough to allow the thread to get to user bytecode execution.
Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
// If the pagesize of the VM is greater than 8K determine the appropriate
// number of initial guard pages. The user can change this with the
// command line arguments, if needed.
if (vm_page_size() > 8*K) {
StackYellowPages = 1;
StackRedPages = 1;
StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
}
}
// To install functions for atexit system call
extern "C" {
static void perfMemory_exit_helper() {
perfMemory_exit();
}
}
// this is called _after_ the global arguments have been parsed
jint os::init_2(void) {
// try to enable extended file IO ASAP, see 6431278
os::Solaris::try_enable_extended_io();
// Allocate a single page and mark it as readable for safepoint polling. Also
// use this first mmap call to check support for MAP_ALIGN.
address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
page_size,
MAP_PRIVATE | MAP_ALIGN,
PROT_READ);
if (polling_page == NULL) {
has_map_align = false;
polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
PROT_READ);
}
os::set_polling_page(polling_page);
#ifndef PRODUCT
if( Verbose && PrintMiscellaneous )
tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
#endif
if (!UseMembar) {
address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
os::set_memory_serialize_page( mem_serialize_page );
#ifndef PRODUCT
if(Verbose && PrintMiscellaneous)
tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
#endif
}
// Check minimum allowable stack size for thread creation and to initialize
// the java system classes, including StackOverflowError - depends on page
// size. Add a page for compiler2 recursion in main thread.
// Add in 2*BytesPerWord times page size to account for VM stack during
// class initialization depending on 32 or 64 bit VM.
os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
(size_t)(StackYellowPages+StackRedPages+StackShadowPages+
2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
size_t threadStackSizeInBytes = ThreadStackSize * K;
if (threadStackSizeInBytes != 0 &&
threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
os::Solaris::min_stack_allowed/K);
return JNI_ERR;
}
// For 64kbps there will be a 64kb page size, which makes
// the usable default stack size quite a bit less. Increase the
// stack for 64kb (or any > than 8kb) pages, this increases
// virtual memory fragmentation (since we're not creating the
// stack on a power of 2 boundary. The real fix for this
// should be to fix the guard page mechanism.
if (vm_page_size() > 8*K) {
threadStackSizeInBytes = (threadStackSizeInBytes != 0)
? threadStackSizeInBytes +
((StackYellowPages + StackRedPages) * vm_page_size())
: 0;
ThreadStackSize = threadStackSizeInBytes/K;
}
// Make the stack size a multiple of the page size so that
// the yellow/red zones can be guarded.
JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
vm_page_size()));
Solaris::libthread_init();
if (UseNUMA) {
if (!Solaris::liblgrp_init()) {
UseNUMA = false;
} else {
size_t lgrp_limit = os::numa_get_groups_num();
int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
if (lgrp_num < 2) {
// There's only one locality group, disable NUMA.
UseNUMA = false;
}
}
if (!UseNUMA && ForceNUMA) {
UseNUMA = true;
}
}
Solaris::signal_sets_init();
Solaris::init_signal_mem();
Solaris::install_signal_handlers();
if (libjsigversion < JSIG_VERSION_1_4_1) {
Maxlibjsigsigs = OLDMAXSIGNUM;
}
// initialize synchronization primitives to use either thread or
// lwp synchronization (controlled by UseLWPSynchronization)
Solaris::synchronization_init();
if (MaxFDLimit) {
// set the number of file descriptors to max. print out error
// if getrlimit/setrlimit fails but continue regardless.
struct rlimit nbr_files;
int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
if (status != 0) {
if (PrintMiscellaneous && (Verbose || WizardMode))
perror("os::init_2 getrlimit failed");
} else {
nbr_files.rlim_cur = nbr_files.rlim_max;
status = setrlimit(RLIMIT_NOFILE, &nbr_files);
if (status != 0) {
if (PrintMiscellaneous && (Verbose || WizardMode))
perror("os::init_2 setrlimit failed");
}
}
}
// Calculate theoretical max. size of Threads to guard gainst
// artifical out-of-memory situations, where all available address-
// space has been reserved by thread stacks. Default stack size is 1Mb.
size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
JavaThread::stack_size_at_create() : (1*K*K);
assert(pre_thread_stack_size != 0, "Must have a stack");
// Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
// we should start doing Virtual Memory banging. Currently when the threads will
// have used all but 200Mb of space.
size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
// at-exit methods are called in the reverse order of their registration.
// In Solaris 7 and earlier, atexit functions are called on return from
// main or as a result of a call to exit(3C). There can be only 32 of
// these functions registered and atexit() does not set errno. In Solaris
// 8 and later, there is no limit to the number of functions registered
// and atexit() sets errno. In addition, in Solaris 8 and later, atexit
// functions are called upon dlclose(3DL) in addition to return from main
// and exit(3C).
if (PerfAllowAtExitRegistration) {
// only register atexit functions if PerfAllowAtExitRegistration is set.
// atexit functions can be delayed until process exit time, which
// can be problematic for embedded VM situations. Embedded VMs should
// call DestroyJavaVM() to assure that VM resources are released.
// note: perfMemory_exit_helper atexit function may be removed in
// the future if the appropriate cleanup code can be added to the
// VM_Exit VMOperation's doit method.
if (atexit(perfMemory_exit_helper) != 0) {
warning("os::init2 atexit(perfMemory_exit_helper) failed");
}
}
// Init pset_loadavg function pointer
init_pset_getloadavg_ptr();
return JNI_OK;
}
// Mark the polling page as unreadable
void os::make_polling_page_unreadable(void) {
if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
fatal("Could not disable polling page");
};
// Mark the polling page as readable
void os::make_polling_page_readable(void) {
if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
fatal("Could not enable polling page");
};
// OS interface.
bool os::check_heap(bool force) { return true; }
typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
static vsnprintf_t sol_vsnprintf = NULL;
int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
if (!sol_vsnprintf) {
//search for the named symbol in the objects that were loaded after libjvm
void* where = RTLD_NEXT;
if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
if (!sol_vsnprintf){
//search for the named symbol in the objects that were loaded before libjvm
where = RTLD_DEFAULT;
if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
assert(sol_vsnprintf != NULL, "vsnprintf not found");
}
}
return (*sol_vsnprintf)(buf, count, fmt, argptr);
}
// Is a (classpath) directory empty?
bool os::dir_is_empty(const char* path) {
DIR *dir = NULL;
struct dirent *ptr;
dir = opendir(path);
if (dir == NULL) return true;
/* Scan the directory */
bool result = true;
char buf[sizeof(struct dirent) + MAX_PATH];
struct dirent *dbuf = (struct dirent *) buf;
while (result && (ptr = readdir(dir, dbuf)) != NULL) {
if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
result = false;
}
}
closedir(dir);
return result;
}
// This code originates from JDK's sysOpen and open64_w
// from src/solaris/hpi/src/system_md.c
#ifndef O_DELETE
#define O_DELETE 0x10000
#endif
// Open a file. Unlink the file immediately after open returns
// if the specified oflag has the O_DELETE flag set.
// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
int os::open(const char *path, int oflag, int mode) {
if (strlen(path) > MAX_PATH - 1) {
errno = ENAMETOOLONG;
return -1;
}
int fd;
int o_delete = (oflag & O_DELETE);
oflag = oflag & ~O_DELETE;
fd = ::open64(path, oflag, mode);
if (fd == -1) return -1;
//If the open succeeded, the file might still be a directory
{
struct stat64 buf64;
int ret = ::fstat64(fd, &buf64);
int st_mode = buf64.st_mode;
if (ret != -1) {
if ((st_mode & S_IFMT) == S_IFDIR) {
errno = EISDIR;
::close(fd);
return -1;
}
} else {
::close(fd);
return -1;
}
}
/*
* 32-bit Solaris systems suffer from:
*
* - an historical default soft limit of 256 per-process file
* descriptors that is too low for many Java programs.
*
* - a design flaw where file descriptors created using stdio
* fopen must be less than 256, _even_ when the first limit above
* has been raised. This can cause calls to fopen (but not calls to
* open, for example) to fail mysteriously, perhaps in 3rd party
* native code (although the JDK itself uses fopen). One can hardly
* criticize them for using this most standard of all functions.
*
* We attempt to make everything work anyways by:
*
* - raising the soft limit on per-process file descriptors beyond
* 256
*
* - As of Solaris 10u4, we can request that Solaris raise the 256
* stdio fopen limit by calling function enable_extended_FILE_stdio.
* This is done in init_2 and recorded in enabled_extended_FILE_stdio
*
* - If we are stuck on an old (pre 10u4) Solaris system, we can
* workaround the bug by remapping non-stdio file descriptors below
* 256 to ones beyond 256, which is done below.
*
* See:
* 1085341: 32-bit stdio routines should support file descriptors >255
* 6533291: Work around 32-bit Solaris stdio limit of 256 open files
* 6431278: Netbeans crash on 32 bit Solaris: need to call
* enable_extended_FILE_stdio() in VM initialisation
* Giri Mandalika's blog
* http://technopark02.blogspot.com/2005_05_01_archive.html
*/
#ifndef _LP64
if ((!enabled_extended_FILE_stdio) && fd < 256) {
int newfd = ::fcntl(fd, F_DUPFD, 256);
if (newfd != -1) {
::close(fd);
fd = newfd;
}
}
#endif // 32-bit Solaris
/*
* All file descriptors that are opened in the JVM and not
* specifically destined for a subprocess should have the
* close-on-exec flag set. If we don't set it, then careless 3rd
* party native code might fork and exec without closing all
* appropriate file descriptors (e.g. as we do in closeDescriptors in
* UNIXProcess.c), and this in turn might:
*
* - cause end-of-file to fail to be detected on some file
* descriptors, resulting in mysterious hangs, or
*
* - might cause an fopen in the subprocess to fail on a system
* suffering from bug 1085341.
*
* (Yes, the default setting of the close-on-exec flag is a Unix
* design flaw)
*
* See:
* 1085341: 32-bit stdio routines should support file descriptors >255
* 4843136: (process) pipe file descriptor from Runtime.exec not being closed
* 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
*/
#ifdef FD_CLOEXEC
{
int flags = ::fcntl(fd, F_GETFD);
if (flags != -1)
::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
}
#endif
if (o_delete != 0) {
::unlink(path);
}
return fd;
}
// create binary file, rewriting existing file if required
int os::create_binary_file(const char* path, bool rewrite_existing) {
int oflags = O_WRONLY | O_CREAT;
if (!rewrite_existing) {
oflags |= O_EXCL;
}
return ::open64(path, oflags, S_IREAD | S_IWRITE);
}
// return current position of file pointer
jlong os::current_file_offset(int fd) {
return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
}
// move file pointer to the specified offset
jlong os::seek_to_file_offset(int fd, jlong offset) {
return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
}
jlong os::lseek(int fd, jlong offset, int whence) {
return (jlong) ::lseek64(fd, offset, whence);
}
char * os::native_path(char *path) {
return path;
}
int os::ftruncate(int fd, jlong length) {
return ::ftruncate64(fd, length);
}
int os::fsync(int fd) {
RESTARTABLE_RETURN_INT(::fsync(fd));
}
int os::available(int fd, jlong *bytes) {
jlong cur, end;
int mode;
struct stat64 buf64;
if (::fstat64(fd, &buf64) >= 0) {
mode = buf64.st_mode;
if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
/*
* XXX: is the following call interruptible? If so, this might
* need to go through the INTERRUPT_IO() wrapper as for other
* blocking, interruptible calls in this file.
*/
int n,ioctl_return;
INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
if (ioctl_return>= 0) {
*bytes = n;
return 1;
}
}
}
if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
return 0;
} else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
return 0;
} else if (::lseek64(fd, cur, SEEK_SET) == -1) {
return 0;
}
*bytes = end - cur;
return 1;
}
// Map a block of memory.
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
char *addr, size_t bytes, bool read_only,
bool allow_exec) {
int prot;
int flags;
if (read_only) {
prot = PROT_READ;
flags = MAP_SHARED;
} else {
prot = PROT_READ | PROT_WRITE;
flags = MAP_PRIVATE;
}
if (allow_exec) {
prot |= PROT_EXEC;
}
if (addr != NULL) {
flags |= MAP_FIXED;
}
char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
fd, file_offset);
if (mapped_address == MAP_FAILED) {
return NULL;
}
return mapped_address;
}
// Remap a block of memory.
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
char *addr, size_t bytes, bool read_only,
bool allow_exec) {
// same as map_memory() on this OS
return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
allow_exec);
}
// Unmap a block of memory.
bool os::pd_unmap_memory(char* addr, size_t bytes) {
return munmap(addr, bytes) == 0;
}
void os::pause() {
char filename[MAX_PATH];
if (PauseAtStartupFile && PauseAtStartupFile[0]) {
jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
} else {
jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
}
int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd != -1) {
struct stat buf;
::close(fd);
while (::stat(filename, &buf) == 0) {
(void)::poll(NULL, 0, 100);
}
} else {
jio_fprintf(stderr,
"Could not open pause file '%s', continuing immediately.\n", filename);
}
}
#ifndef PRODUCT
#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
// Turn this on if you need to trace synch operations.
// Set RECORD_SYNCH_LIMIT to a large-enough value,
// and call record_synch_enable and record_synch_disable
// around the computation of interest.
void record_synch(char* name, bool returning); // defined below
class RecordSynch {
char* _name;
public:
RecordSynch(char* name) :_name(name)
{ record_synch(_name, false); }
~RecordSynch() { record_synch(_name, true); }
};
#define CHECK_SYNCH_OP(ret, name, params, args, inner) \
extern "C" ret name params { \
typedef ret name##_t params; \
static name##_t* implem = NULL; \
static int callcount = 0; \
if (implem == NULL) { \
implem = (name##_t*) dlsym(RTLD_NEXT, #name); \
if (implem == NULL) fatal(dlerror()); \
} \
++callcount; \
RecordSynch _rs(#name); \
inner; \
return implem args; \
}
// in dbx, examine callcounts this way:
// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
#define CHECK_POINTER_OK(p) \
(!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
#define CHECK_MU \
if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
#define CHECK_CV \
if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
#define CHECK_P(p) \
if (!CHECK_POINTER_OK(p)) fatal(false, "Pointer must be in C heap only.");
#define CHECK_MUTEX(mutex_op) \
CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
CHECK_MUTEX( mutex_lock)
CHECK_MUTEX( _mutex_lock)
CHECK_MUTEX( mutex_unlock)
CHECK_MUTEX(_mutex_unlock)
CHECK_MUTEX( mutex_trylock)
CHECK_MUTEX(_mutex_trylock)
#define CHECK_COND(cond_op) \
CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
CHECK_COND( cond_wait);
CHECK_COND(_cond_wait);
CHECK_COND(_cond_wait_cancel);
#define CHECK_COND2(cond_op) \
CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
CHECK_COND2( cond_timedwait);
CHECK_COND2(_cond_timedwait);
CHECK_COND2(_cond_timedwait_cancel);
// do the _lwp_* versions too
#define mutex_t lwp_mutex_t
#define cond_t lwp_cond_t
CHECK_MUTEX( _lwp_mutex_lock)
CHECK_MUTEX( _lwp_mutex_unlock)
CHECK_MUTEX( _lwp_mutex_trylock)
CHECK_MUTEX( __lwp_mutex_lock)
CHECK_MUTEX( __lwp_mutex_unlock)
CHECK_MUTEX( __lwp_mutex_trylock)
CHECK_MUTEX(___lwp_mutex_lock)
CHECK_MUTEX(___lwp_mutex_unlock)
CHECK_COND( _lwp_cond_wait);
CHECK_COND( __lwp_cond_wait);
CHECK_COND(___lwp_cond_wait);
CHECK_COND2( _lwp_cond_timedwait);
CHECK_COND2( __lwp_cond_timedwait);
#undef mutex_t
#undef cond_t
CHECK_SYNCH_OP(int, _lwp_suspend2, (int lwp, int *n), (lwp, n), 0);
CHECK_SYNCH_OP(int,__lwp_suspend2, (int lwp, int *n), (lwp, n), 0);
CHECK_SYNCH_OP(int, _lwp_kill, (int lwp, int n), (lwp, n), 0);
CHECK_SYNCH_OP(int,__lwp_kill, (int lwp, int n), (lwp, n), 0);
CHECK_SYNCH_OP(int, _lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p));
CHECK_SYNCH_OP(int,__lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p));
CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV);
CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV);
// recording machinery:
enum { RECORD_SYNCH_LIMIT = 200 };
char* record_synch_name[RECORD_SYNCH_LIMIT];
void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
bool record_synch_returning[RECORD_SYNCH_LIMIT];
thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
int record_synch_count = 0;
bool record_synch_enabled = false;
// in dbx, examine recorded data this way:
// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
void record_synch(char* name, bool returning) {
if (record_synch_enabled) {
if (record_synch_count < RECORD_SYNCH_LIMIT) {
record_synch_name[record_synch_count] = name;
record_synch_returning[record_synch_count] = returning;
record_synch_thread[record_synch_count] = thr_self();
record_synch_arg0ptr[record_synch_count] = &name;
record_synch_count++;
}
// put more checking code here:
// ...
}
}
void record_synch_enable() {
// start collecting trace data, if not already doing so
if (!record_synch_enabled) record_synch_count = 0;
record_synch_enabled = true;
}
void record_synch_disable() {
// stop collecting trace data
record_synch_enabled = false;
}
#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
#endif // PRODUCT
const intptr_t thr_time_off = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
(intptr_t)(&((prusage_t *)(NULL))->pr_utime);
// JVMTI & JVM monitoring and management support
// The thread_cpu_time() and current_thread_cpu_time() are only
// supported if is_thread_cpu_time_supported() returns true.
// They are not supported on Solaris T1.
// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
// of a thread.
//
// current_thread_cpu_time() and thread_cpu_time(Thread *)
// returns the fast estimate available on the platform.
// hrtime_t gethrvtime() return value includes
// user time but does not include system time
jlong os::current_thread_cpu_time() {
return (jlong) gethrvtime();
}
jlong os::thread_cpu_time(Thread *thread) {
// return user level CPU time only to be consistent with
// what current_thread_cpu_time returns.
// thread_cpu_time_info() must be changed if this changes
return os::thread_cpu_time(thread, false /* user time only */);
}
jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
if (user_sys_cpu_time) {
return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
} else {
return os::current_thread_cpu_time();
}
}
jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
char proc_name[64];
int count;
prusage_t prusage;
jlong lwp_time;
int fd;
sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
getpid(),
thread->osthread()->lwp_id());
fd = ::open(proc_name, O_RDONLY);
if ( fd == -1 ) return -1;
do {
count = ::pread(fd,
(void *)&prusage.pr_utime,
thr_time_size,
thr_time_off);
} while (count < 0 && errno == EINTR);
::close(fd);
if ( count < 0 ) return -1;
if (user_sys_cpu_time) {
// user + system CPU time
lwp_time = (((jlong)prusage.pr_stime.tv_sec +
(jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
(jlong)prusage.pr_stime.tv_nsec +
(jlong)prusage.pr_utime.tv_nsec;
} else {
// user level CPU time only
lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
(jlong)prusage.pr_utime.tv_nsec;
}
return(lwp_time);
}
void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
info_ptr->may_skip_backward = false; // elapsed time not wall time
info_ptr->may_skip_forward = false; // elapsed time not wall time
info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned
}
void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
info_ptr->may_skip_backward = false; // elapsed time not wall time
info_ptr->may_skip_forward = false; // elapsed time not wall time
info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned
}
bool os::is_thread_cpu_time_supported() {
if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
return true;
} else {
return false;
}
}
// System loadavg support. Returns -1 if load average cannot be obtained.
// Return the load average for our processor set if the primitive exists
// (Solaris 9 and later). Otherwise just return system wide loadavg.
int os::loadavg(double loadavg[], int nelem) {
if (pset_getloadavg_ptr != NULL) {
return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
} else {
return ::getloadavg(loadavg, nelem);
}
}
//---------------------------------------------------------------------------------
bool os::find(address addr, outputStream* st) {
Dl_info dlinfo;
memset(&dlinfo, 0, sizeof(dlinfo));
if (dladdr(addr, &dlinfo) != 0) {
st->print(PTR_FORMAT ": ", addr);
if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
} else if (dlinfo.dli_fbase != NULL)
st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
else
st->print("<absolute address>");
if (dlinfo.dli_fname != NULL) {
st->print(" in %s", dlinfo.dli_fname);
}
if (dlinfo.dli_fbase != NULL) {
st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
}
st->cr();
if (Verbose) {
// decode some bytes around the PC
address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
address end = clamp_address_in_page(addr+40, addr, os::vm_page_size());
address lowest = (address) dlinfo.dli_sname;
if (!lowest) lowest = (address) dlinfo.dli_fbase;
if (begin < lowest) begin = lowest;
Dl_info dlinfo2;
if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
&& end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
end = (address) dlinfo2.dli_saddr;
Disassembler::decode(begin, end, st);
}
return true;
}
return false;
}
// Following function has been added to support HotSparc's libjvm.so running
// under Solaris production JDK 1.2.2 / 1.3.0. These came from
// src/solaris/hpi/native_threads in the EVM codebase.
//
// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
// libraries and should thus be removed. We will leave it behind for a while
// until we no longer want to able to run on top of 1.3.0 Solaris production
// JDK. See 4341971.
#define STACK_SLACK 0x800
extern "C" {
intptr_t sysThreadAvailableStackWithSlack() {
stack_t st;
intptr_t retval, stack_top;
retval = thr_stksegment(&st);
assert(retval == 0, "incorrect return value from thr_stksegment");
assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
stack_top=(intptr_t)st.ss_sp-st.ss_size;
return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
}
}
// ObjectMonitor park-unpark infrastructure ...
//
// We implement Solaris and Linux PlatformEvents with the
// obvious condvar-mutex-flag triple.
// Another alternative that works quite well is pipes:
// Each PlatformEvent consists of a pipe-pair.
// The thread associated with the PlatformEvent
// calls park(), which reads from the input end of the pipe.
// Unpark() writes into the other end of the pipe.
// The write-side of the pipe must be set NDELAY.
// Unfortunately pipes consume a large # of handles.
// Native solaris lwp_park() and lwp_unpark() work nicely, too.
// Using pipes for the 1st few threads might be workable, however.
//
// park() is permitted to return spuriously.
// Callers of park() should wrap the call to park() in
// an appropriate loop. A litmus test for the correct
// usage of park is the following: if park() were modified
// to immediately return 0 your code should still work,
// albeit degenerating to a spin loop.
//
// An interesting optimization for park() is to use a trylock()
// to attempt to acquire the mutex. If the trylock() fails
// then we know that a concurrent unpark() operation is in-progress.
// in that case the park() code could simply set _count to 0
// and return immediately. The subsequent park() operation *might*
// return immediately. That's harmless as the caller of park() is
// expected to loop. By using trylock() we will have avoided a
// avoided a context switch caused by contention on the per-thread mutex.
//
// TODO-FIXME:
// 1. Reconcile Doug's JSR166 j.u.c park-unpark with the
// objectmonitor implementation.
// 2. Collapse the JSR166 parker event, and the
// objectmonitor ParkEvent into a single "Event" construct.
// 3. In park() and unpark() add:
// assert (Thread::current() == AssociatedWith).
// 4. add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
// 1-out-of-N park() operations will return immediately.
//
// _Event transitions in park()
// -1 => -1 : illegal
// 1 => 0 : pass - return immediately
// 0 => -1 : block
//
// _Event serves as a restricted-range semaphore.
//
// Another possible encoding of _Event would be with
// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
//
// TODO-FIXME: add DTRACE probes for:
// 1. Tx parks
// 2. Ty unparks Tx
// 3. Tx resumes from park
// value determined through experimentation
#define ROUNDINGFIX 11
// utility to compute the abstime argument to timedwait.
// TODO-FIXME: switch from compute_abstime() to unpackTime().
static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
// millis is the relative timeout time
// abstime will be the absolute timeout time
if (millis < 0) millis = 0;
struct timeval now;
int status = gettimeofday(&now, NULL);
assert(status == 0, "gettimeofday");
jlong seconds = millis / 1000;
jlong max_wait_period;
if (UseLWPSynchronization) {
// forward port of fix for 4275818 (not sleeping long enough)
// There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
// _lwp_cond_timedwait() used a round_down algorithm rather
// than a round_up. For millis less than our roundfactor
// it rounded down to 0 which doesn't meet the spec.
// For millis > roundfactor we may return a bit sooner, but
// since we can not accurately identify the patch level and
// this has already been fixed in Solaris 9 and 8 we will
// leave it alone rather than always rounding down.
if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
// It appears that when we go directly through Solaris _lwp_cond_timedwait()
// the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
max_wait_period = 21000000;
} else {
max_wait_period = 50000000;
}
millis %= 1000;
if (seconds > max_wait_period) { // see man cond_timedwait(3T)
seconds = max_wait_period;
}
abstime->tv_sec = now.tv_sec + seconds;
long usec = now.tv_usec + millis * 1000;
if (usec >= 1000000) {
abstime->tv_sec += 1;
usec -= 1000000;
}
abstime->tv_nsec = usec * 1000;
return abstime;
}
// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
// Conceptually TryPark() should be equivalent to park(0).
int os::PlatformEvent::TryPark() {
for (;;) {
const int v = _Event ;
guarantee ((v == 0) || (v == 1), "invariant") ;
if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
}
}
void os::PlatformEvent::park() { // AKA: down()
// Invariant: Only the thread associated with the Event/PlatformEvent
// may call park().
int v ;
for (;;) {
v = _Event ;
if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
}
guarantee (v >= 0, "invariant") ;
if (v == 0) {
// Do this the hard way by blocking ...
// See http://monaco.sfbay/detail.jsf?cr=5094058.
// TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
// Only for SPARC >= V8PlusA
#if defined(__sparc) && defined(COMPILER2)
if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
#endif
int status = os::Solaris::mutex_lock(_mutex);
assert_status(status == 0, status, "mutex_lock");
guarantee (_nParked == 0, "invariant") ;
++ _nParked ;
while (_Event < 0) {
// for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
// Treat this the same as if the wait was interrupted
// With usr/lib/lwp going to kernel, always handle ETIME
status = os::Solaris::cond_wait(_cond, _mutex);
if (status == ETIME) status = EINTR ;
assert_status(status == 0 || status == EINTR, status, "cond_wait");
}
-- _nParked ;
_Event = 0 ;
status = os::Solaris::mutex_unlock(_mutex);
assert_status(status == 0, status, "mutex_unlock");
// Paranoia to ensure our locked and lock-free paths interact
// correctly with each other.
OrderAccess::fence();
}
}
int os::PlatformEvent::park(jlong millis) {
guarantee (_nParked == 0, "invariant") ;
int v ;
for (;;) {
v = _Event ;
if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
}
guarantee (v >= 0, "invariant") ;
if (v != 0) return OS_OK ;
int ret = OS_TIMEOUT;
timestruc_t abst;
compute_abstime (&abst, millis);
// See http://monaco.sfbay/detail.jsf?cr=5094058.
// For Solaris SPARC set fprs.FEF=0 prior to parking.
// Only for SPARC >= V8PlusA
#if defined(__sparc) && defined(COMPILER2)
if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
#endif
int status = os::Solaris::mutex_lock(_mutex);
assert_status(status == 0, status, "mutex_lock");
guarantee (_nParked == 0, "invariant") ;
++ _nParked ;
while (_Event < 0) {
int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
assert_status(status == 0 || status == EINTR ||
status == ETIME || status == ETIMEDOUT,
status, "cond_timedwait");
if (!FilterSpuriousWakeups) break ; // previous semantics
if (status == ETIME || status == ETIMEDOUT) break ;
// We consume and ignore EINTR and spurious wakeups.
}
-- _nParked ;
if (_Event >= 0) ret = OS_OK ;
_Event = 0 ;
status = os::Solaris::mutex_unlock(_mutex);
assert_status(status == 0, status, "mutex_unlock");
// Paranoia to ensure our locked and lock-free paths interact
// correctly with each other.
OrderAccess::fence();
return ret;
}
void os::PlatformEvent::unpark() {
// Transitions for _Event:
// 0 :=> 1
// 1 :=> 1
// -1 :=> either 0 or 1; must signal target thread
// That is, we can safely transition _Event from -1 to either
// 0 or 1. Forcing 1 is slightly more efficient for back-to-back
// unpark() calls.
// See also: "Semaphores in Plan 9" by Mullender & Cox
//
// Note: Forcing a transition from "-1" to "1" on an unpark() means
// that it will take two back-to-back park() calls for the owning
// thread to block. This has the benefit of forcing a spurious return
// from the first park() call after an unpark() call which will help
// shake out uses of park() and unpark() without condition variables.
if (Atomic::xchg(1, &_Event) >= 0) return;
// If the thread associated with the event was parked, wake it.
// Wait for the thread assoc with the PlatformEvent to vacate.
int status = os::Solaris::mutex_lock(_mutex);
assert_status(status == 0, status, "mutex_lock");
int AnyWaiters = _nParked;
status = os::Solaris::mutex_unlock(_mutex);
assert_status(status == 0, status, "mutex_unlock");
guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
if (AnyWaiters != 0) {
// We intentional signal *after* dropping the lock
// to avoid a common class of futile wakeups.
status = os::Solaris::cond_signal(_cond);
assert_status(status == 0, status, "cond_signal");
}
}
// JSR166
// -------------------------------------------------------
/*
* The solaris and linux implementations of park/unpark are fairly
* conservative for now, but can be improved. They currently use a
* mutex/condvar pair, plus _counter.
* Park decrements _counter if > 0, else does a condvar wait. Unpark
* sets count to 1 and signals condvar. Only one thread ever waits
* on the condvar. Contention seen when trying to park implies that someone
* is unparking you, so don't wait. And spurious returns are fine, so there
* is no need to track notifications.
*/
#define MAX_SECS 100000000
/*
* This code is common to linux and solaris and will be moved to a
* common place in dolphin.
*
* The passed in time value is either a relative time in nanoseconds
* or an absolute time in milliseconds. Either way it has to be unpacked
* into suitable seconds and nanoseconds components and stored in the
* given timespec structure.
* Given time is a 64-bit value and the time_t used in the timespec is only
* a signed-32-bit value (except on 64-bit Linux) we have to watch for
* overflow if times way in the future are given. Further on Solaris versions
* prior to 10 there is a restriction (see cond_timedwait) that the specified
* number of seconds, in abstime, is less than current_time + 100,000,000.
* As it will be 28 years before "now + 100000000" will overflow we can
* ignore overflow and just impose a hard-limit on seconds using the value
* of "now + 100,000,000". This places a limit on the timeout of about 3.17
* years from "now".
*/
static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
assert (time > 0, "convertTime");
struct timeval now;
int status = gettimeofday(&now, NULL);
assert(status == 0, "gettimeofday");
time_t max_secs = now.tv_sec + MAX_SECS;
if (isAbsolute) {
jlong secs = time / 1000;
if (secs > max_secs) {
absTime->tv_sec = max_secs;
}
else {
absTime->tv_sec = secs;
}
absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
}
else {
jlong secs = time / NANOSECS_PER_SEC;
if (secs >= MAX_SECS) {
absTime->tv_sec = max_secs;
absTime->tv_nsec = 0;
}
else {
absTime->tv_sec = now.tv_sec + secs;
absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
absTime->tv_nsec -= NANOSECS_PER_SEC;
++absTime->tv_sec; // note: this must be <= max_secs
}
}
}
assert(absTime->tv_sec >= 0, "tv_sec < 0");
assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
}
void Parker::park(bool isAbsolute, jlong time) {
// Ideally we'd do something useful while spinning, such
// as calling unpackTime().
// Optional fast-path check:
// Return immediately if a permit is available.
// We depend on Atomic::xchg() having full barrier semantics
// since we are doing a lock-free update to _counter.
if (Atomic::xchg(0, &_counter) > 0) return;
// Optional fast-exit: Check interrupt before trying to wait
Thread* thread = Thread::current();
assert(thread->is_Java_thread(), "Must be JavaThread");
JavaThread *jt = (JavaThread *)thread;
if (Thread::is_interrupted(thread, false)) {
return;
}
// First, demultiplex/decode time arguments
timespec absTime;
if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
return;
}
if (time > 0) {
// Warning: this code might be exposed to the old Solaris time
// round-down bugs. Grep "roundingFix" for details.
unpackTime(&absTime, isAbsolute, time);
}
// Enter safepoint region
// Beware of deadlocks such as 6317397.
// The per-thread Parker:: _mutex is a classic leaf-lock.
// In particular a thread must never block on the Threads_lock while
// holding the Parker:: mutex. If safepoints are pending both the
// the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
ThreadBlockInVM tbivm(jt);
// Don't wait if cannot get lock since interference arises from
// unblocking. Also. check interrupt before trying wait
if (Thread::is_interrupted(thread, false) ||
os::Solaris::mutex_trylock(_mutex) != 0) {
return;
}
int status ;
if (_counter > 0) { // no wait needed
_counter = 0;
status = os::Solaris::mutex_unlock(_mutex);
assert (status == 0, "invariant") ;
// Paranoia to ensure our locked and lock-free paths interact
// correctly with each other and Java-level accesses.
OrderAccess::fence();
return;
}
#ifdef ASSERT
// Don't catch signals while blocked; let the running threads have the signals.
// (This allows a debugger to break into the running thread.)
sigset_t oldsigs;
sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
#endif
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
// Do this the hard way by blocking ...
// See http://monaco.sfbay/detail.jsf?cr=5094058.
// TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
// Only for SPARC >= V8PlusA
#if defined(__sparc) && defined(COMPILER2)
if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
#endif
if (time == 0) {
status = os::Solaris::cond_wait (_cond, _mutex) ;
} else {
status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
}
// Note that an untimed cond_wait() can sometimes return ETIME on older
// versions of the Solaris.
assert_status(status == 0 || status == EINTR ||
status == ETIME || status == ETIMEDOUT,
status, "cond_timedwait");
#ifdef ASSERT
thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
#endif
_counter = 0 ;
status = os::Solaris::mutex_unlock(_mutex);
assert_status(status == 0, status, "mutex_unlock") ;
// Paranoia to ensure our locked and lock-free paths interact
// correctly with each other and Java-level accesses.
OrderAccess::fence();
// If externally suspended while waiting, re-suspend
if (jt->handle_special_suspend_equivalent_condition()) {
jt->java_suspend_self();
}
}
void Parker::unpark() {
int s, status ;
status = os::Solaris::mutex_lock (_mutex) ;
assert (status == 0, "invariant") ;
s = _counter;
_counter = 1;
status = os::Solaris::mutex_unlock (_mutex) ;
assert (status == 0, "invariant") ;
if (s < 1) {
status = os::Solaris::cond_signal (_cond) ;
assert (status == 0, "invariant") ;
}
}
extern char** environ;
// Run the specified command in a separate process. Return its exit value,
// or -1 on failure (e.g. can't fork a new process).
// Unlike system(), this function can be called from signal handler. It
// doesn't block SIGINT et al.
int os::fork_and_exec(char* cmd) {
char * argv[4];
argv[0] = (char *)"sh";
argv[1] = (char *)"-c";
argv[2] = cmd;
argv[3] = NULL;
// fork is async-safe, fork1 is not so can't use in signal handler
pid_t pid;
Thread* t = ThreadLocalStorage::get_thread_slow();
if (t != NULL && t->is_inside_signal_handler()) {
pid = fork();
} else {
pid = fork1();
}
if (pid < 0) {
// fork failed
warning("fork failed: %s", strerror(errno));
return -1;
} else if (pid == 0) {
// child process
// try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
execve("/usr/bin/sh", argv, environ);
// execve failed
_exit(-1);
} else {
// copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
// care about the actual exit code, for now.
int status;
// Wait for the child process to exit. This returns immediately if
// the child has already exited. */
while (waitpid(pid, &status, 0) < 0) {
switch (errno) {
case ECHILD: return 0;
case EINTR: break;
default: return -1;
}
}
if (WIFEXITED(status)) {
// The child exited normally; get its exit code.
return WEXITSTATUS(status);
} else if (WIFSIGNALED(status)) {
// The child exited because of a signal
// The best value to return is 0x80 + signal number,
// because that is what all Unix shells do, and because
// it allows callers to distinguish between process exit and
// process death by signal.
return 0x80 + WTERMSIG(status);
} else {
// Unknown exit code; pass it through
return status;
}
}
}
// is_headless_jre()
//
// Test for the existence of xawt/libmawt.so or libawt_xawt.so
// in order to report if we are running in a headless jre
//
// Since JDK8 xawt/libmawt.so was moved into the same directory
// as libawt.so, and renamed libawt_xawt.so
//
bool os::is_headless_jre() {
struct stat statbuf;
char buf[MAXPATHLEN];
char libmawtpath[MAXPATHLEN];
const char *xawtstr = "/xawt/libmawt.so";
const char *new_xawtstr = "/libawt_xawt.so";
char *p;
// Get path to libjvm.so
os::jvm_path(buf, sizeof(buf));
// Get rid of libjvm.so
p = strrchr(buf, '/');
if (p == NULL) return false;
else *p = '\0';
// Get rid of client or server
p = strrchr(buf, '/');
if (p == NULL) return false;
else *p = '\0';
// check xawt/libmawt.so
strcpy(libmawtpath, buf);
strcat(libmawtpath, xawtstr);
if (::stat(libmawtpath, &statbuf) == 0) return false;
// check libawt_xawt.so
strcpy(libmawtpath, buf);
strcat(libmawtpath, new_xawtstr);
if (::stat(libmawtpath, &statbuf) == 0) return false;
return true;
}
size_t os::write(int fd, const void *buf, unsigned int nBytes) {
INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
}
int os::close(int fd) {
return ::close(fd);
}
int os::socket_close(int fd) {
return ::close(fd);
}
int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
}
int os::send(int fd, char* buf, size_t nBytes, uint flags) {
INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
}
int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
}
// As both poll and select can be interrupted by signals, we have to be
// prepared to restart the system call after updating the timeout, unless
// a poll() is done with timeout == -1, in which case we repeat with this
// "wait forever" value.
int os::timeout(int fd, long timeout) {
int res;
struct timeval t;
julong prevtime, newtime;
static const char* aNull = 0;
struct pollfd pfd;
pfd.fd = fd;
pfd.events = POLLIN;
gettimeofday(&t, &aNull);
prevtime = ((julong)t.tv_sec * 1000) + t.tv_usec / 1000;
for(;;) {
INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
if(res == OS_ERR && errno == EINTR) {
if(timeout != -1) {
gettimeofday(&t, &aNull);
newtime = ((julong)t.tv_sec * 1000) + t.tv_usec /1000;
timeout -= newtime - prevtime;
if(timeout <= 0)
return OS_OK;
prevtime = newtime;
}
} else return res;
}
}
int os::connect(int fd, struct sockaddr *him, socklen_t len) {
int _result;
INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
os::Solaris::clear_interrupted);
// Depending on when thread interruption is reset, _result could be
// one of two values when errno == EINTR
if (((_result == OS_INTRPT) || (_result == OS_ERR))
&& (errno == EINTR)) {
/* restarting a connect() changes its errno semantics */
INTERRUPTIBLE(::connect(fd, him, len), _result,\
os::Solaris::clear_interrupted);
/* undo these changes */
if (_result == OS_ERR) {
if (errno == EALREADY) {
errno = EINPROGRESS; /* fall through */
} else if (errno == EISCONN) {
errno = 0;
return OS_OK;
}
}
}
return _result;
}
int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
if (fd < 0) {
return OS_ERR;
}
INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
os::Solaris::clear_interrupted);
}
int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
sockaddr* from, socklen_t* fromlen) {
INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
os::Solaris::clear_interrupted);
}
int os::sendto(int fd, char* buf, size_t len, uint flags,
struct sockaddr* to, socklen_t tolen) {
INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
os::Solaris::clear_interrupted);
}
int os::socket_available(int fd, jint *pbytes) {
if (fd < 0) {
return OS_OK;
}
int ret;
RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
// note: ioctl can return 0 when successful, JVM_SocketAvailable
// is expected to return 0 on failure and 1 on success to the jdk.
return (ret == OS_ERR) ? 0 : 1;
}
int os::bind(int fd, struct sockaddr* him, socklen_t len) {
INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
os::Solaris::clear_interrupted);
}
// Get the default path to the core file
// Returns the length of the string
int os::get_core_path(char* buffer, size_t bufferSize) {
const char* p = get_current_directory(buffer, bufferSize);
if (p == NULL) {
assert(p != NULL, "failed to get current directory");
return 0;
}
return strlen(buffer);
}
#ifndef PRODUCT
void TestReserveMemorySpecial_test() {
// No tests available for this platform
}
#endif