blob: 7b7d884d58be097610d1dc6fa83fc1be12dc5bc1 [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dccg.h"
#include "clk_mgr_internal.h"
// For dce12_get_dp_ref_freq_khz
#include "dce100/dce_clk_mgr.h"
// For dcn20_update_clocks_update_dpp_dto
#include "dcn20/dcn20_clk_mgr.h"
#include "dcn31_clk_mgr.h"
#include "reg_helper.h"
#include "core_types.h"
#include "dcn31_smu.h"
#include "dm_helpers.h"
/* TODO: remove this include once we ported over remaining clk mgr functions*/
#include "dcn30/dcn30_clk_mgr.h"
#include "dc_dmub_srv.h"
#define TO_CLK_MGR_DCN31(clk_mgr)\
container_of(clk_mgr, struct clk_mgr_dcn31, base)
int dcn31_get_active_display_cnt_wa(
struct dc *dc,
struct dc_state *context)
{
int i, display_count;
bool tmds_present = false;
display_count = 0;
for (i = 0; i < context->stream_count; i++) {
const struct dc_stream_state *stream = context->streams[i];
if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
tmds_present = true;
}
for (i = 0; i < dc->link_count; i++) {
const struct dc_link *link = dc->links[i];
/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc))
display_count++;
}
/* WA for hang on HDMI after display off back back on*/
if (display_count == 0 && tmds_present)
display_count = 1;
return display_count;
}
static void dcn31_disable_otg_wa(struct clk_mgr *clk_mgr_base, bool disable)
{
struct dc *dc = clk_mgr_base->ctx->dc;
int i;
for (i = 0; i < dc->res_pool->pipe_count; ++i) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->top_pipe || pipe->prev_odm_pipe)
continue;
if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))) {
if (disable)
pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
}
}
}
static void dcn31_update_clocks(struct clk_mgr *clk_mgr_base,
struct dc_state *context,
bool safe_to_lower)
{
union dmub_rb_cmd cmd;
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
struct dc *dc = clk_mgr_base->ctx->dc;
int display_count;
bool update_dppclk = false;
bool update_dispclk = false;
bool dpp_clock_lowered = false;
if (dc->work_arounds.skip_clock_update)
return;
/*
* if it is safe to lower, but we are already in the lower state, we don't have to do anything
* also if safe to lower is false, we just go in the higher state
*/
if (safe_to_lower) {
if (new_clocks->z9_support == DCN_Z9_SUPPORT_ALLOW &&
new_clocks->z9_support != clk_mgr_base->clks.z9_support) {
dcn31_smu_set_Z9_support(clk_mgr, true);
clk_mgr_base->clks.z9_support = new_clocks->z9_support;
}
if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) {
dcn31_smu_set_dtbclk(clk_mgr, false);
clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
}
/* check that we're not already in lower */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
display_count = dcn31_get_active_display_cnt_wa(dc, context);
/* if we can go lower, go lower */
if (display_count == 0) {
union display_idle_optimization_u idle_info = { 0 };
idle_info.idle_info.df_request_disabled = 1;
idle_info.idle_info.phy_ref_clk_off = 1;
dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
}
}
} else {
if (new_clocks->z9_support == DCN_Z9_SUPPORT_DISALLOW &&
new_clocks->z9_support != clk_mgr_base->clks.z9_support) {
dcn31_smu_set_Z9_support(clk_mgr, false);
clk_mgr_base->clks.z9_support = new_clocks->z9_support;
}
if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) {
dcn31_smu_set_dtbclk(clk_mgr, true);
clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
}
/* check that we're not already in D0 */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
union display_idle_optimization_u idle_info = { 0 };
dcn31_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
}
}
if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
dcn31_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
}
if (should_set_clock(safe_to_lower,
new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
dcn31_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
}
// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
if (new_clocks->dppclk_khz < 100000)
new_clocks->dppclk_khz = 100000;
}
if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
dpp_clock_lowered = true;
clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
update_dppclk = true;
}
if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
dcn31_disable_otg_wa(clk_mgr_base, true);
clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
dcn31_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
dcn31_disable_otg_wa(clk_mgr_base, false);
update_dispclk = true;
}
/* TODO: add back DTO programming when DPPCLK restore is fixed in FSDL*/
if (dpp_clock_lowered) {
// increase per DPP DTO before lowering global dppclk
dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
} else {
// increase global DPPCLK before lowering per DPP DTO
if (update_dppclk || update_dispclk)
dcn31_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
}
// notify DMCUB of latest clocks
memset(&cmd, 0, sizeof(cmd));
cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
clk_mgr_base->clks.dcfclk_deep_sleep_khz;
cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
}
static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
{
return 0;
}
static void dcn31_enable_pme_wa(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
dcn31_smu_enable_pme_wa(clk_mgr);
}
static void dcn31_init_clocks(struct clk_mgr *clk_mgr)
{
memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
// Assumption is that boot state always supports pstate
clk_mgr->clks.p_state_change_support = true;
clk_mgr->clks.prev_p_state_change_support = true;
clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
clk_mgr->clks.z9_support = DCN_Z9_SUPPORT_UNKNOWN;
}
static bool dcn31_are_clock_states_equal(struct dc_clocks *a,
struct dc_clocks *b)
{
if (a->dispclk_khz != b->dispclk_khz)
return false;
else if (a->dppclk_khz != b->dppclk_khz)
return false;
else if (a->dcfclk_khz != b->dcfclk_khz)
return false;
else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
return false;
else if (a->z9_support != b->z9_support)
return false;
else if (a->dtbclk_en != b->dtbclk_en)
return false;
return true;
}
static void dcn31_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
{
return;
}
static struct clk_bw_params dcn31_bw_params = {
.vram_type = Ddr4MemType,
.num_channels = 1,
.clk_table = {
.num_entries = 4,
},
};
static struct wm_table ddr4_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 6.09,
.sr_enter_plus_exit_time_us = 7.14,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 10.12,
.sr_enter_plus_exit_time_us = 11.48,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 10.12,
.sr_enter_plus_exit_time_us = 11.48,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 10.12,
.sr_enter_plus_exit_time_us = 11.48,
.valid = true,
},
}
};
static struct wm_table lpddr5_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 5.32,
.sr_enter_plus_exit_time_us = 6.38,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 9.82,
.sr_enter_plus_exit_time_us = 11.196,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 9.89,
.sr_enter_plus_exit_time_us = 11.24,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 9.748,
.sr_enter_plus_exit_time_us = 11.102,
.valid = true,
},
}
};
static DpmClocks_t dummy_clocks;
static struct dcn31_watermarks dummy_wms = { 0 };
static void dcn31_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn31_watermarks *table)
{
int i, num_valid_sets;
num_valid_sets = 0;
for (i = 0; i < WM_SET_COUNT; i++) {
/* skip empty entries, the smu array has no holes*/
if (!bw_params->wm_table.entries[i].valid)
continue;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
/* We will not select WM based on fclk, so leave it as unconstrained */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
if (i == 0)
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
else {
/* add 1 to make it non-overlapping with next lvl */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
}
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
bw_params->clk_table.entries[i].dcfclk_mhz;
} else {
/* unconstrained for memory retraining */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
/* Modify previous watermark range to cover up to max */
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
}
num_valid_sets++;
}
ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
/* modify the min and max to make sure we cover the whole range*/
table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
/* This is for writeback only, does not matter currently as no writeback support*/
table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
}
static void dcn31_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct clk_mgr_dcn31 *clk_mgr_dcn31 = TO_CLK_MGR_DCN31(clk_mgr);
struct dcn31_watermarks *table = clk_mgr_dcn31->smu_wm_set.wm_set;
if (!clk_mgr->smu_ver)
return;
if (!table || clk_mgr_dcn31->smu_wm_set.mc_address.quad_part == 0)
return;
memset(table, 0, sizeof(*table));
dcn31_build_watermark_ranges(clk_mgr_base->bw_params, table);
dcn31_smu_set_dram_addr_high(clk_mgr,
clk_mgr_dcn31->smu_wm_set.mc_address.high_part);
dcn31_smu_set_dram_addr_low(clk_mgr,
clk_mgr_dcn31->smu_wm_set.mc_address.low_part);
dcn31_smu_transfer_wm_table_dram_2_smu(clk_mgr);
}
static void dcn31_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
struct dcn31_smu_dpm_clks *smu_dpm_clks)
{
DpmClocks_t *table = smu_dpm_clks->dpm_clks;
if (!clk_mgr->smu_ver)
return;
if (!table || smu_dpm_clks->mc_address.quad_part == 0)
return;
memset(table, 0, sizeof(*table));
dcn31_smu_set_dram_addr_high(clk_mgr,
smu_dpm_clks->mc_address.high_part);
dcn31_smu_set_dram_addr_low(clk_mgr,
smu_dpm_clks->mc_address.low_part);
dcn31_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
}
static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
{
uint32_t max = 0;
int i;
for (i = 0; i < num_clocks; ++i) {
if (clocks[i] > max)
max = clocks[i];
}
return max;
}
static unsigned int find_clk_for_voltage(
const DpmClocks_t *clock_table,
const uint32_t clocks[],
unsigned int voltage)
{
int i;
for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++) {
if (clock_table->SocVoltage[i] == voltage)
return clocks[i];
}
ASSERT(0);
return 0;
}
void dcn31_clk_mgr_helper_populate_bw_params(
struct clk_mgr_internal *clk_mgr,
struct integrated_info *bios_info,
const DpmClocks_t *clock_table)
{
int i, j;
struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
uint32_t max_dispclk = 0, max_dppclk = 0;
j = -1;
ASSERT(NUM_DF_PSTATE_LEVELS <= MAX_NUM_DPM_LVL);
/* Find lowest DPM, FCLK is filled in reverse order*/
for (i = NUM_DF_PSTATE_LEVELS - 1; i >= 0; i--) {
if (clock_table->DfPstateTable[i].FClk != 0) {
j = i;
break;
}
}
if (j == -1) {
/* clock table is all 0s, just use our own hardcode */
ASSERT(0);
return;
}
bw_params->clk_table.num_entries = j + 1;
/* dispclk and dppclk can be max at any voltage, same number of levels for both */
if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS &&
clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) {
max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled);
max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled);
} else {
ASSERT(0);
}
for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].FClk;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].MemClk;
bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].Voltage;
switch (clock_table->DfPstateTable[j].WckRatio) {
case WCK_RATIO_1_2:
bw_params->clk_table.entries[i].wck_ratio = 2;
break;
case WCK_RATIO_1_4:
bw_params->clk_table.entries[i].wck_ratio = 4;
break;
default:
bw_params->clk_table.entries[i].wck_ratio = 1;
}
bw_params->clk_table.entries[i].dcfclk_mhz = find_clk_for_voltage(clock_table, clock_table->DcfClocks, clock_table->DfPstateTable[j].Voltage);
bw_params->clk_table.entries[i].socclk_mhz = find_clk_for_voltage(clock_table, clock_table->SocClocks, clock_table->DfPstateTable[j].Voltage);
bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
}
bw_params->vram_type = bios_info->memory_type;
bw_params->num_channels = bios_info->ma_channel_number;
for (i = 0; i < WM_SET_COUNT; i++) {
bw_params->wm_table.entries[i].wm_inst = i;
if (i >= bw_params->clk_table.num_entries) {
bw_params->wm_table.entries[i].valid = false;
continue;
}
bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
bw_params->wm_table.entries[i].valid = true;
}
}
static struct clk_mgr_funcs dcn31_funcs = {
.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
.update_clocks = dcn31_update_clocks,
.init_clocks = dcn31_init_clocks,
.enable_pme_wa = dcn31_enable_pme_wa,
.are_clock_states_equal = dcn31_are_clock_states_equal,
.notify_wm_ranges = dcn31_notify_wm_ranges
};
extern struct clk_mgr_funcs dcn3_fpga_funcs;
void dcn31_clk_mgr_construct(
struct dc_context *ctx,
struct clk_mgr_dcn31 *clk_mgr,
struct pp_smu_funcs *pp_smu,
struct dccg *dccg)
{
struct dcn31_smu_dpm_clks smu_dpm_clks = { 0 };
clk_mgr->base.base.ctx = ctx;
clk_mgr->base.base.funcs = &dcn31_funcs;
clk_mgr->base.pp_smu = pp_smu;
clk_mgr->base.dccg = dccg;
clk_mgr->base.dfs_bypass_disp_clk = 0;
clk_mgr->base.dprefclk_ss_percentage = 0;
clk_mgr->base.dprefclk_ss_divider = 1000;
clk_mgr->base.ss_on_dprefclk = false;
clk_mgr->smu_wm_set.wm_set = (struct dcn31_watermarks *)dm_helpers_allocate_gpu_mem(
clk_mgr->base.base.ctx,
DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
sizeof(struct dcn31_watermarks),
&clk_mgr->smu_wm_set.mc_address.quad_part);
if (clk_mgr->smu_wm_set.wm_set == 0) {
clk_mgr->smu_wm_set.wm_set = &dummy_wms;
clk_mgr->smu_wm_set.mc_address.quad_part = 0;
}
ASSERT(clk_mgr->smu_wm_set.wm_set);
smu_dpm_clks.dpm_clks = (DpmClocks_t *)dm_helpers_allocate_gpu_mem(
clk_mgr->base.base.ctx,
DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
sizeof(DpmClocks_t),
&smu_dpm_clks.mc_address.quad_part);
if (smu_dpm_clks.dpm_clks == NULL) {
smu_dpm_clks.dpm_clks = &dummy_clocks;
smu_dpm_clks.mc_address.quad_part = 0;
}
ASSERT(smu_dpm_clks.dpm_clks);
if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
clk_mgr->base.base.funcs = &dcn3_fpga_funcs;
} else {
struct clk_log_info log_info = {0};
clk_mgr->base.smu_ver = dcn31_smu_get_smu_version(&clk_mgr->base);
if (clk_mgr->base.smu_ver)
clk_mgr->base.smu_present = true;
/* TODO: Check we get what we expect during bringup */
clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
dcn31_bw_params.wm_table = lpddr5_wm_table;
} else {
dcn31_bw_params.wm_table = ddr4_wm_table;
}
/* Saved clocks configured at boot for debug purposes */
dcn31_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info);
}
clk_mgr->base.base.dprefclk_khz = 600000;
clk_mgr->base.dccg->ref_dtbclk_khz = 600000;
dce_clock_read_ss_info(&clk_mgr->base);
clk_mgr->base.base.bw_params = &dcn31_bw_params;
if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
dcn31_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
dcn31_clk_mgr_helper_populate_bw_params(
&clk_mgr->base,
ctx->dc_bios->integrated_info,
smu_dpm_clks.dpm_clks);
}
}
if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
smu_dpm_clks.dpm_clks);
}
void dcn31_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
{
struct clk_mgr_dcn31 *clk_mgr = TO_CLK_MGR_DCN31(clk_mgr_int);
if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
clk_mgr->smu_wm_set.wm_set);
}