blob: 37093cea24c59d2fcf028572b44975a446cd5b3b [file] [log] [blame]
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
* Christian König
*/
#include <drm/drm_debugfs.h>
#include <drm/drm_device.h>
#include <drm/drm_file.h>
#include "radeon.h"
/*
* Rings
* Most engines on the GPU are fed via ring buffers. Ring
* buffers are areas of GPU accessible memory that the host
* writes commands into and the GPU reads commands out of.
* There is a rptr (read pointer) that determines where the
* GPU is currently reading, and a wptr (write pointer)
* which determines where the host has written. When the
* pointers are equal, the ring is idle. When the host
* writes commands to the ring buffer, it increments the
* wptr. The GPU then starts fetching commands and executes
* them until the pointers are equal again.
*/
static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring);
/**
* radeon_ring_supports_scratch_reg - check if the ring supports
* writing to scratch registers
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Check if a specific ring supports writing to scratch registers (all asics).
* Returns true if the ring supports writing to scratch regs, false if not.
*/
bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev,
struct radeon_ring *ring)
{
switch (ring->idx) {
case RADEON_RING_TYPE_GFX_INDEX:
case CAYMAN_RING_TYPE_CP1_INDEX:
case CAYMAN_RING_TYPE_CP2_INDEX:
return true;
default:
return false;
}
}
/**
* radeon_ring_free_size - update the free size
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Update the free dw slots in the ring buffer (all asics).
*/
void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring)
{
uint32_t rptr = radeon_ring_get_rptr(rdev, ring);
/* This works because ring_size is a power of 2 */
ring->ring_free_dw = rptr + (ring->ring_size / 4);
ring->ring_free_dw -= ring->wptr;
ring->ring_free_dw &= ring->ptr_mask;
if (!ring->ring_free_dw) {
/* this is an empty ring */
ring->ring_free_dw = ring->ring_size / 4;
/* update lockup info to avoid false positive */
radeon_ring_lockup_update(rdev, ring);
}
}
/**
* radeon_ring_alloc - allocate space on the ring buffer
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
* @ndw: number of dwords to allocate in the ring buffer
*
* Allocate @ndw dwords in the ring buffer (all asics).
* Returns 0 on success, error on failure.
*/
int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
{
int r;
/* make sure we aren't trying to allocate more space than there is on the ring */
if (ndw > (ring->ring_size / 4))
return -ENOMEM;
/* Align requested size with padding so unlock_commit can
* pad safely */
radeon_ring_free_size(rdev, ring);
ndw = (ndw + ring->align_mask) & ~ring->align_mask;
while (ndw > (ring->ring_free_dw - 1)) {
radeon_ring_free_size(rdev, ring);
if (ndw < ring->ring_free_dw) {
break;
}
r = radeon_fence_wait_next(rdev, ring->idx);
if (r)
return r;
}
ring->count_dw = ndw;
ring->wptr_old = ring->wptr;
return 0;
}
/**
* radeon_ring_lock - lock the ring and allocate space on it
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
* @ndw: number of dwords to allocate in the ring buffer
*
* Lock the ring and allocate @ndw dwords in the ring buffer
* (all asics).
* Returns 0 on success, error on failure.
*/
int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
{
int r;
mutex_lock(&rdev->ring_lock);
r = radeon_ring_alloc(rdev, ring, ndw);
if (r) {
mutex_unlock(&rdev->ring_lock);
return r;
}
return 0;
}
/**
* radeon_ring_commit - tell the GPU to execute the new
* commands on the ring buffer
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
* @hdp_flush: Whether or not to perform an HDP cache flush
*
* Update the wptr (write pointer) to tell the GPU to
* execute new commands on the ring buffer (all asics).
*/
void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring,
bool hdp_flush)
{
/* If we are emitting the HDP flush via the ring buffer, we need to
* do it before padding.
*/
if (hdp_flush && rdev->asic->ring[ring->idx]->hdp_flush)
rdev->asic->ring[ring->idx]->hdp_flush(rdev, ring);
/* We pad to match fetch size */
while (ring->wptr & ring->align_mask) {
radeon_ring_write(ring, ring->nop);
}
mb();
/* If we are emitting the HDP flush via MMIO, we need to do it after
* all CPU writes to VRAM finished.
*/
if (hdp_flush && rdev->asic->mmio_hdp_flush)
rdev->asic->mmio_hdp_flush(rdev);
radeon_ring_set_wptr(rdev, ring);
}
/**
* radeon_ring_unlock_commit - tell the GPU to execute the new
* commands on the ring buffer and unlock it
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
* @hdp_flush: Whether or not to perform an HDP cache flush
*
* Call radeon_ring_commit() then unlock the ring (all asics).
*/
void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring,
bool hdp_flush)
{
radeon_ring_commit(rdev, ring, hdp_flush);
mutex_unlock(&rdev->ring_lock);
}
/**
* radeon_ring_undo - reset the wptr
*
* @ring: radeon_ring structure holding ring information
*
* Reset the driver's copy of the wptr (all asics).
*/
void radeon_ring_undo(struct radeon_ring *ring)
{
ring->wptr = ring->wptr_old;
}
/**
* radeon_ring_unlock_undo - reset the wptr and unlock the ring
*
* @ring: radeon_ring structure holding ring information
*
* Call radeon_ring_undo() then unlock the ring (all asics).
*/
void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring)
{
radeon_ring_undo(ring);
mutex_unlock(&rdev->ring_lock);
}
/**
* radeon_ring_lockup_update - update lockup variables
*
* @ring: radeon_ring structure holding ring information
*
* Update the last rptr value and timestamp (all asics).
*/
void radeon_ring_lockup_update(struct radeon_device *rdev,
struct radeon_ring *ring)
{
atomic_set(&ring->last_rptr, radeon_ring_get_rptr(rdev, ring));
atomic64_set(&ring->last_activity, jiffies_64);
}
/**
* radeon_ring_test_lockup() - check if ring is lockedup by recording information
* @rdev: radeon device structure
* @ring: radeon_ring structure holding ring information
*
*/
bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
uint32_t rptr = radeon_ring_get_rptr(rdev, ring);
uint64_t last = atomic64_read(&ring->last_activity);
uint64_t elapsed;
if (rptr != atomic_read(&ring->last_rptr)) {
/* ring is still working, no lockup */
radeon_ring_lockup_update(rdev, ring);
return false;
}
elapsed = jiffies_to_msecs(jiffies_64 - last);
if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) {
dev_err(rdev->dev, "ring %d stalled for more than %llumsec\n",
ring->idx, elapsed);
return true;
}
/* give a chance to the GPU ... */
return false;
}
/**
* radeon_ring_backup - Back up the content of a ring
*
* @rdev: radeon_device pointer
* @ring: the ring we want to back up
*
* Saves all unprocessed commits from a ring, returns the number of dwords saved.
*/
unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring,
uint32_t **data)
{
unsigned size, ptr, i;
/* just in case lock the ring */
mutex_lock(&rdev->ring_lock);
*data = NULL;
if (ring->ring_obj == NULL) {
mutex_unlock(&rdev->ring_lock);
return 0;
}
/* it doesn't make sense to save anything if all fences are signaled */
if (!radeon_fence_count_emitted(rdev, ring->idx)) {
mutex_unlock(&rdev->ring_lock);
return 0;
}
/* calculate the number of dw on the ring */
if (ring->rptr_save_reg)
ptr = RREG32(ring->rptr_save_reg);
else if (rdev->wb.enabled)
ptr = le32_to_cpu(*ring->next_rptr_cpu_addr);
else {
/* no way to read back the next rptr */
mutex_unlock(&rdev->ring_lock);
return 0;
}
size = ring->wptr + (ring->ring_size / 4);
size -= ptr;
size &= ring->ptr_mask;
if (size == 0) {
mutex_unlock(&rdev->ring_lock);
return 0;
}
/* and then save the content of the ring */
*data = kvmalloc_array(size, sizeof(uint32_t), GFP_KERNEL);
if (!*data) {
mutex_unlock(&rdev->ring_lock);
return 0;
}
for (i = 0; i < size; ++i) {
(*data)[i] = ring->ring[ptr++];
ptr &= ring->ptr_mask;
}
mutex_unlock(&rdev->ring_lock);
return size;
}
/**
* radeon_ring_restore - append saved commands to the ring again
*
* @rdev: radeon_device pointer
* @ring: ring to append commands to
* @size: number of dwords we want to write
* @data: saved commands
*
* Allocates space on the ring and restore the previously saved commands.
*/
int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring,
unsigned size, uint32_t *data)
{
int i, r;
if (!size || !data)
return 0;
/* restore the saved ring content */
r = radeon_ring_lock(rdev, ring, size);
if (r)
return r;
for (i = 0; i < size; ++i) {
radeon_ring_write(ring, data[i]);
}
radeon_ring_unlock_commit(rdev, ring, false);
kvfree(data);
return 0;
}
/**
* radeon_ring_init - init driver ring struct.
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
* @ring_size: size of the ring
* @rptr_offs: offset of the rptr writeback location in the WB buffer
* @nop: nop packet for this ring
*
* Initialize the driver information for the selected ring (all asics).
* Returns 0 on success, error on failure.
*/
int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size,
unsigned rptr_offs, u32 nop)
{
int r;
ring->ring_size = ring_size;
ring->rptr_offs = rptr_offs;
ring->nop = nop;
/* Allocate ring buffer */
if (ring->ring_obj == NULL) {
r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_GTT, 0, NULL,
NULL, &ring->ring_obj);
if (r) {
dev_err(rdev->dev, "(%d) ring create failed\n", r);
return r;
}
r = radeon_bo_reserve(ring->ring_obj, false);
if (unlikely(r != 0))
return r;
r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT,
&ring->gpu_addr);
if (r) {
radeon_bo_unreserve(ring->ring_obj);
dev_err(rdev->dev, "(%d) ring pin failed\n", r);
return r;
}
r = radeon_bo_kmap(ring->ring_obj,
(void **)&ring->ring);
radeon_bo_unreserve(ring->ring_obj);
if (r) {
dev_err(rdev->dev, "(%d) ring map failed\n", r);
return r;
}
}
ring->ptr_mask = (ring->ring_size / 4) - 1;
ring->ring_free_dw = ring->ring_size / 4;
if (rdev->wb.enabled) {
u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4);
ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index;
ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4];
}
if (radeon_debugfs_ring_init(rdev, ring)) {
DRM_ERROR("Failed to register debugfs file for rings !\n");
}
radeon_ring_lockup_update(rdev, ring);
return 0;
}
/**
* radeon_ring_fini - tear down the driver ring struct.
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Tear down the driver information for the selected ring (all asics).
*/
void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring)
{
int r;
struct radeon_bo *ring_obj;
mutex_lock(&rdev->ring_lock);
ring_obj = ring->ring_obj;
ring->ready = false;
ring->ring = NULL;
ring->ring_obj = NULL;
mutex_unlock(&rdev->ring_lock);
if (ring_obj) {
r = radeon_bo_reserve(ring_obj, false);
if (likely(r == 0)) {
radeon_bo_kunmap(ring_obj);
radeon_bo_unpin(ring_obj);
radeon_bo_unreserve(ring_obj);
}
radeon_bo_unref(&ring_obj);
}
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static int radeon_debugfs_ring_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
int ridx = *(int*)node->info_ent->data;
struct radeon_ring *ring = &rdev->ring[ridx];
uint32_t rptr, wptr, rptr_next;
unsigned count, i, j;
radeon_ring_free_size(rdev, ring);
count = (ring->ring_size / 4) - ring->ring_free_dw;
wptr = radeon_ring_get_wptr(rdev, ring);
seq_printf(m, "wptr: 0x%08x [%5d]\n",
wptr, wptr);
rptr = radeon_ring_get_rptr(rdev, ring);
seq_printf(m, "rptr: 0x%08x [%5d]\n",
rptr, rptr);
if (ring->rptr_save_reg) {
rptr_next = RREG32(ring->rptr_save_reg);
seq_printf(m, "rptr next(0x%04x): 0x%08x [%5d]\n",
ring->rptr_save_reg, rptr_next, rptr_next);
} else
rptr_next = ~0;
seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n",
ring->wptr, ring->wptr);
seq_printf(m, "last semaphore signal addr : 0x%016llx\n",
ring->last_semaphore_signal_addr);
seq_printf(m, "last semaphore wait addr : 0x%016llx\n",
ring->last_semaphore_wait_addr);
seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw);
seq_printf(m, "%u dwords in ring\n", count);
if (!ring->ring)
return 0;
/* print 8 dw before current rptr as often it's the last executed
* packet that is the root issue
*/
i = (rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask;
for (j = 0; j <= (count + 32); j++) {
seq_printf(m, "r[%5d]=0x%08x", i, ring->ring[i]);
if (rptr == i)
seq_puts(m, " *");
if (rptr_next == i)
seq_puts(m, " #");
seq_puts(m, "\n");
i = (i + 1) & ring->ptr_mask;
}
return 0;
}
static int radeon_gfx_index = RADEON_RING_TYPE_GFX_INDEX;
static int cayman_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX;
static int cayman_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX;
static int radeon_dma1_index = R600_RING_TYPE_DMA_INDEX;
static int radeon_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX;
static int r600_uvd_index = R600_RING_TYPE_UVD_INDEX;
static int si_vce1_index = TN_RING_TYPE_VCE1_INDEX;
static int si_vce2_index = TN_RING_TYPE_VCE2_INDEX;
static struct drm_info_list radeon_debugfs_ring_info_list[] = {
{"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_gfx_index},
{"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_cp1_index},
{"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_cp2_index},
{"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_dma1_index},
{"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_dma2_index},
{"radeon_ring_uvd", radeon_debugfs_ring_info, 0, &r600_uvd_index},
{"radeon_ring_vce1", radeon_debugfs_ring_info, 0, &si_vce1_index},
{"radeon_ring_vce2", radeon_debugfs_ring_info, 0, &si_vce2_index},
};
#endif
static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring)
{
#if defined(CONFIG_DEBUG_FS)
unsigned i;
for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) {
struct drm_info_list *info = &radeon_debugfs_ring_info_list[i];
int ridx = *(int*)radeon_debugfs_ring_info_list[i].data;
unsigned r;
if (&rdev->ring[ridx] != ring)
continue;
r = radeon_debugfs_add_files(rdev, info, 1);
if (r)
return r;
}
#endif
return 0;
}