blob: 03738107fd10e09fc50de97d675487cdc84097ae [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
* Copyright (c) 2008, Jouni Malinen <j@w1.fi>
* Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
* Copyright (c) 2016 - 2017 Intel Deutschland GmbH
* Copyright (C) 2018 Intel Corporation
*/
/*
* TODO:
* - Add TSF sync and fix IBSS beacon transmission by adding
* competition for "air time" at TBTT
* - RX filtering based on filter configuration (data->rx_filter)
*/
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <net/dst.h>
#include <net/xfrm.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/debugfs.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <net/genetlink.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <linux/rhashtable.h>
#include <linux/nospec.h>
#include "mac80211_hwsim.h"
#define WARN_QUEUE 100
#define MAX_QUEUE 200
MODULE_AUTHOR("Jouni Malinen");
MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
MODULE_LICENSE("GPL");
static int radios = 2;
module_param(radios, int, 0444);
MODULE_PARM_DESC(radios, "Number of simulated radios");
static int channels = 1;
module_param(channels, int, 0444);
MODULE_PARM_DESC(channels, "Number of concurrent channels");
static bool paged_rx = false;
module_param(paged_rx, bool, 0644);
MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones");
static bool rctbl = false;
module_param(rctbl, bool, 0444);
MODULE_PARM_DESC(rctbl, "Handle rate control table");
static bool support_p2p_device = true;
module_param(support_p2p_device, bool, 0444);
MODULE_PARM_DESC(support_p2p_device, "Support P2P-Device interface type");
/**
* enum hwsim_regtest - the type of regulatory tests we offer
*
* These are the different values you can use for the regtest
* module parameter. This is useful to help test world roaming
* and the driver regulatory_hint() call and combinations of these.
* If you want to do specific alpha2 regulatory domain tests simply
* use the userspace regulatory request as that will be respected as
* well without the need of this module parameter. This is designed
* only for testing the driver regulatory request, world roaming
* and all possible combinations.
*
* @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
* this is the default value.
* @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
* hint, only one driver regulatory hint will be sent as such the
* secondary radios are expected to follow.
* @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
* request with all radios reporting the same regulatory domain.
* @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
* different regulatory domains requests. Expected behaviour is for
* an intersection to occur but each device will still use their
* respective regulatory requested domains. Subsequent radios will
* use the resulting intersection.
* @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
* this by using a custom beacon-capable regulatory domain for the first
* radio. All other device world roam.
* @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
* domain requests. All radios will adhere to this custom world regulatory
* domain.
* @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
* domain requests. The first radio will adhere to the first custom world
* regulatory domain, the second one to the second custom world regulatory
* domain. All other devices will world roam.
* @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
* settings, only the first radio will send a regulatory domain request
* and use strict settings. The rest of the radios are expected to follow.
* @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
* settings. All radios will adhere to this.
* @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
* domain settings, combined with secondary driver regulatory domain
* settings. The first radio will get a strict regulatory domain setting
* using the first driver regulatory request and the second radio will use
* non-strict settings using the second driver regulatory request. All
* other devices should follow the intersection created between the
* first two.
* @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
* at least 6 radios for a complete test. We will test in this order:
* 1 - driver custom world regulatory domain
* 2 - second custom world regulatory domain
* 3 - first driver regulatory domain request
* 4 - second driver regulatory domain request
* 5 - strict regulatory domain settings using the third driver regulatory
* domain request
* 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
* regulatory requests.
*/
enum hwsim_regtest {
HWSIM_REGTEST_DISABLED = 0,
HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
HWSIM_REGTEST_DRIVER_REG_ALL = 2,
HWSIM_REGTEST_DIFF_COUNTRY = 3,
HWSIM_REGTEST_WORLD_ROAM = 4,
HWSIM_REGTEST_CUSTOM_WORLD = 5,
HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
HWSIM_REGTEST_STRICT_FOLLOW = 7,
HWSIM_REGTEST_STRICT_ALL = 8,
HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
HWSIM_REGTEST_ALL = 10,
};
/* Set to one of the HWSIM_REGTEST_* values above */
static int regtest = HWSIM_REGTEST_DISABLED;
module_param(regtest, int, 0444);
MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
static const char *hwsim_alpha2s[] = {
"FI",
"AL",
"US",
"DE",
"JP",
"AL",
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
.n_reg_rules = 5,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
REG_RULE(5855-10, 5925+10, 40, 0, 33, 0),
}
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
.n_reg_rules = 3,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
REG_RULE(5725-10, 5850+10, 40, 0, 30,
NL80211_RRF_NO_IR),
REG_RULE(5855-10, 5925+10, 40, 0, 33, 0),
}
};
static const struct ieee80211_regdomain *hwsim_world_regdom_custom[] = {
&hwsim_world_regdom_custom_01,
&hwsim_world_regdom_custom_02,
};
struct hwsim_vif_priv {
u32 magic;
u8 bssid[ETH_ALEN];
bool assoc;
bool bcn_en;
u16 aid;
};
#define HWSIM_VIF_MAGIC 0x69537748
static inline void hwsim_check_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
WARN(vp->magic != HWSIM_VIF_MAGIC,
"Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
vif, vp->magic, vif->addr, vif->type, vif->p2p);
}
static inline void hwsim_set_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
vp->magic = HWSIM_VIF_MAGIC;
}
static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
vp->magic = 0;
}
struct hwsim_sta_priv {
u32 magic;
};
#define HWSIM_STA_MAGIC 0x6d537749
static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
WARN_ON(sp->magic != HWSIM_STA_MAGIC);
}
static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
sp->magic = HWSIM_STA_MAGIC;
}
static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
sp->magic = 0;
}
struct hwsim_chanctx_priv {
u32 magic;
};
#define HWSIM_CHANCTX_MAGIC 0x6d53774a
static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
}
static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
cp->magic = HWSIM_CHANCTX_MAGIC;
}
static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
cp->magic = 0;
}
static unsigned int hwsim_net_id;
static DEFINE_IDA(hwsim_netgroup_ida);
struct hwsim_net {
int netgroup;
u32 wmediumd;
};
static inline int hwsim_net_get_netgroup(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
return hwsim_net->netgroup;
}
static inline int hwsim_net_set_netgroup(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
hwsim_net->netgroup = ida_simple_get(&hwsim_netgroup_ida,
0, 0, GFP_KERNEL);
return hwsim_net->netgroup >= 0 ? 0 : -ENOMEM;
}
static inline u32 hwsim_net_get_wmediumd(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
return hwsim_net->wmediumd;
}
static inline void hwsim_net_set_wmediumd(struct net *net, u32 portid)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
hwsim_net->wmediumd = portid;
}
static struct class *hwsim_class;
static struct net_device *hwsim_mon; /* global monitor netdev */
#define CHAN2G(_freq) { \
.band = NL80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
.max_power = 20, \
}
#define CHAN5G(_freq) { \
.band = NL80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
.max_power = 20, \
}
static const struct ieee80211_channel hwsim_channels_2ghz[] = {
CHAN2G(2412), /* Channel 1 */
CHAN2G(2417), /* Channel 2 */
CHAN2G(2422), /* Channel 3 */
CHAN2G(2427), /* Channel 4 */
CHAN2G(2432), /* Channel 5 */
CHAN2G(2437), /* Channel 6 */
CHAN2G(2442), /* Channel 7 */
CHAN2G(2447), /* Channel 8 */
CHAN2G(2452), /* Channel 9 */
CHAN2G(2457), /* Channel 10 */
CHAN2G(2462), /* Channel 11 */
CHAN2G(2467), /* Channel 12 */
CHAN2G(2472), /* Channel 13 */
CHAN2G(2484), /* Channel 14 */
};
static const struct ieee80211_channel hwsim_channels_5ghz[] = {
CHAN5G(5180), /* Channel 36 */
CHAN5G(5200), /* Channel 40 */
CHAN5G(5220), /* Channel 44 */
CHAN5G(5240), /* Channel 48 */
CHAN5G(5260), /* Channel 52 */
CHAN5G(5280), /* Channel 56 */
CHAN5G(5300), /* Channel 60 */
CHAN5G(5320), /* Channel 64 */
CHAN5G(5500), /* Channel 100 */
CHAN5G(5520), /* Channel 104 */
CHAN5G(5540), /* Channel 108 */
CHAN5G(5560), /* Channel 112 */
CHAN5G(5580), /* Channel 116 */
CHAN5G(5600), /* Channel 120 */
CHAN5G(5620), /* Channel 124 */
CHAN5G(5640), /* Channel 128 */
CHAN5G(5660), /* Channel 132 */
CHAN5G(5680), /* Channel 136 */
CHAN5G(5700), /* Channel 140 */
CHAN5G(5745), /* Channel 149 */
CHAN5G(5765), /* Channel 153 */
CHAN5G(5785), /* Channel 157 */
CHAN5G(5805), /* Channel 161 */
CHAN5G(5825), /* Channel 165 */
CHAN5G(5845), /* Channel 169 */
CHAN5G(5855), /* Channel 171 */
CHAN5G(5860), /* Channel 172 */
CHAN5G(5865), /* Channel 173 */
CHAN5G(5870), /* Channel 174 */
CHAN5G(5875), /* Channel 175 */
CHAN5G(5880), /* Channel 176 */
CHAN5G(5885), /* Channel 177 */
CHAN5G(5890), /* Channel 178 */
CHAN5G(5895), /* Channel 179 */
CHAN5G(5900), /* Channel 180 */
CHAN5G(5905), /* Channel 181 */
CHAN5G(5910), /* Channel 182 */
CHAN5G(5915), /* Channel 183 */
CHAN5G(5920), /* Channel 184 */
CHAN5G(5925), /* Channel 185 */
};
static const struct ieee80211_rate hwsim_rates[] = {
{ .bitrate = 10 },
{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60 },
{ .bitrate = 90 },
{ .bitrate = 120 },
{ .bitrate = 180 },
{ .bitrate = 240 },
{ .bitrate = 360 },
{ .bitrate = 480 },
{ .bitrate = 540 }
};
static const u32 hwsim_ciphers[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_CCMP_256,
WLAN_CIPHER_SUITE_GCMP,
WLAN_CIPHER_SUITE_GCMP_256,
WLAN_CIPHER_SUITE_AES_CMAC,
WLAN_CIPHER_SUITE_BIP_CMAC_256,
WLAN_CIPHER_SUITE_BIP_GMAC_128,
WLAN_CIPHER_SUITE_BIP_GMAC_256,
};
#define OUI_QCA 0x001374
#define QCA_NL80211_SUBCMD_TEST 1
enum qca_nl80211_vendor_subcmds {
QCA_WLAN_VENDOR_ATTR_TEST = 8,
QCA_WLAN_VENDOR_ATTR_MAX = QCA_WLAN_VENDOR_ATTR_TEST
};
static const struct nla_policy
hwsim_vendor_test_policy[QCA_WLAN_VENDOR_ATTR_MAX + 1] = {
[QCA_WLAN_VENDOR_ATTR_MAX] = { .type = NLA_U32 },
};
static int mac80211_hwsim_vendor_cmd_test(struct wiphy *wiphy,
struct wireless_dev *wdev,
const void *data, int data_len)
{
struct sk_buff *skb;
struct nlattr *tb[QCA_WLAN_VENDOR_ATTR_MAX + 1];
int err;
u32 val;
err = nla_parse_deprecated(tb, QCA_WLAN_VENDOR_ATTR_MAX, data,
data_len, hwsim_vendor_test_policy, NULL);
if (err)
return err;
if (!tb[QCA_WLAN_VENDOR_ATTR_TEST])
return -EINVAL;
val = nla_get_u32(tb[QCA_WLAN_VENDOR_ATTR_TEST]);
wiphy_dbg(wiphy, "%s: test=%u\n", __func__, val);
/* Send a vendor event as a test. Note that this would not normally be
* done within a command handler, but rather, based on some other
* trigger. For simplicity, this command is used to trigger the event
* here.
*
* event_idx = 0 (index in mac80211_hwsim_vendor_commands)
*/
skb = cfg80211_vendor_event_alloc(wiphy, wdev, 100, 0, GFP_KERNEL);
if (skb) {
/* skb_put() or nla_put() will fill up data within
* NL80211_ATTR_VENDOR_DATA.
*/
/* Add vendor data */
nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_TEST, val + 1);
/* Send the event - this will call nla_nest_end() */
cfg80211_vendor_event(skb, GFP_KERNEL);
}
/* Send a response to the command */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, 10);
if (!skb)
return -ENOMEM;
/* skb_put() or nla_put() will fill up data within
* NL80211_ATTR_VENDOR_DATA
*/
nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_TEST, val + 2);
return cfg80211_vendor_cmd_reply(skb);
}
static struct wiphy_vendor_command mac80211_hwsim_vendor_commands[] = {
{
.info = { .vendor_id = OUI_QCA,
.subcmd = QCA_NL80211_SUBCMD_TEST },
.flags = WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = mac80211_hwsim_vendor_cmd_test,
.policy = hwsim_vendor_test_policy,
.maxattr = QCA_WLAN_VENDOR_ATTR_MAX,
}
};
/* Advertise support vendor specific events */
static const struct nl80211_vendor_cmd_info mac80211_hwsim_vendor_events[] = {
{ .vendor_id = OUI_QCA, .subcmd = 1 },
};
static spinlock_t hwsim_radio_lock;
static LIST_HEAD(hwsim_radios);
static struct rhashtable hwsim_radios_rht;
static int hwsim_radio_idx;
static int hwsim_radios_generation = 1;
static struct platform_driver mac80211_hwsim_driver = {
.driver = {
.name = "mac80211_hwsim",
},
};
struct mac80211_hwsim_data {
struct list_head list;
struct rhash_head rht;
struct ieee80211_hw *hw;
struct device *dev;
struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
struct ieee80211_iface_combination if_combination;
struct ieee80211_iface_limit if_limits[3];
int n_if_limits;
u32 ciphers[ARRAY_SIZE(hwsim_ciphers)];
struct mac_address addresses[2];
int channels, idx;
bool use_chanctx;
bool destroy_on_close;
u32 portid;
char alpha2[2];
const struct ieee80211_regdomain *regd;
struct ieee80211_channel *tmp_chan;
struct ieee80211_channel *roc_chan;
u32 roc_duration;
struct delayed_work roc_start;
struct delayed_work roc_done;
struct delayed_work hw_scan;
struct cfg80211_scan_request *hw_scan_request;
struct ieee80211_vif *hw_scan_vif;
int scan_chan_idx;
u8 scan_addr[ETH_ALEN];
struct {
struct ieee80211_channel *channel;
unsigned long next_start, start, end;
} survey_data[ARRAY_SIZE(hwsim_channels_2ghz) +
ARRAY_SIZE(hwsim_channels_5ghz)];
struct ieee80211_channel *channel;
u64 beacon_int /* beacon interval in us */;
unsigned int rx_filter;
bool started, idle, scanning;
struct mutex mutex;
struct hrtimer beacon_timer;
enum ps_mode {
PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
} ps;
bool ps_poll_pending;
struct dentry *debugfs;
uintptr_t pending_cookie;
struct sk_buff_head pending; /* packets pending */
/*
* Only radios in the same group can communicate together (the
* channel has to match too). Each bit represents a group. A
* radio can be in more than one group.
*/
u64 group;
/* group shared by radios created in the same netns */
int netgroup;
/* wmediumd portid responsible for netgroup of this radio */
u32 wmediumd;
/* difference between this hw's clock and the real clock, in usecs */
s64 tsf_offset;
s64 bcn_delta;
/* absolute beacon transmission time. Used to cover up "tx" delay. */
u64 abs_bcn_ts;
/* Stats */
u64 tx_pkts;
u64 rx_pkts;
u64 tx_bytes;
u64 rx_bytes;
u64 tx_dropped;
u64 tx_failed;
};
static const struct rhashtable_params hwsim_rht_params = {
.nelem_hint = 2,
.automatic_shrinking = true,
.key_len = ETH_ALEN,
.key_offset = offsetof(struct mac80211_hwsim_data, addresses[1]),
.head_offset = offsetof(struct mac80211_hwsim_data, rht),
};
struct hwsim_radiotap_hdr {
struct ieee80211_radiotap_header hdr;
__le64 rt_tsft;
u8 rt_flags;
u8 rt_rate;
__le16 rt_channel;
__le16 rt_chbitmask;
} __packed;
struct hwsim_radiotap_ack_hdr {
struct ieee80211_radiotap_header hdr;
u8 rt_flags;
u8 pad;
__le16 rt_channel;
__le16 rt_chbitmask;
} __packed;
/* MAC80211_HWSIM netlink family */
static struct genl_family hwsim_genl_family;
enum hwsim_multicast_groups {
HWSIM_MCGRP_CONFIG,
};
static const struct genl_multicast_group hwsim_mcgrps[] = {
[HWSIM_MCGRP_CONFIG] = { .name = "config", },
};
/* MAC80211_HWSIM netlink policy */
static const struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
[HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
[HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
[HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_DATA_LEN },
[HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
[HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
[HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
[HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC,
.len = IEEE80211_TX_MAX_RATES *
sizeof(struct hwsim_tx_rate)},
[HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
[HWSIM_ATTR_CHANNELS] = { .type = NLA_U32 },
[HWSIM_ATTR_RADIO_ID] = { .type = NLA_U32 },
[HWSIM_ATTR_REG_HINT_ALPHA2] = { .type = NLA_STRING, .len = 2 },
[HWSIM_ATTR_REG_CUSTOM_REG] = { .type = NLA_U32 },
[HWSIM_ATTR_REG_STRICT_REG] = { .type = NLA_FLAG },
[HWSIM_ATTR_SUPPORT_P2P_DEVICE] = { .type = NLA_FLAG },
[HWSIM_ATTR_DESTROY_RADIO_ON_CLOSE] = { .type = NLA_FLAG },
[HWSIM_ATTR_RADIO_NAME] = { .type = NLA_STRING },
[HWSIM_ATTR_NO_VIF] = { .type = NLA_FLAG },
[HWSIM_ATTR_FREQ] = { .type = NLA_U32 },
[HWSIM_ATTR_PERM_ADDR] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
[HWSIM_ATTR_IFTYPE_SUPPORT] = { .type = NLA_U32 },
[HWSIM_ATTR_CIPHER_SUPPORT] = { .type = NLA_BINARY },
};
static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan);
/* sysfs attributes */
static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct sk_buff *skb;
struct ieee80211_pspoll *pspoll;
if (!vp->assoc)
return;
wiphy_dbg(data->hw->wiphy,
"%s: send PS-Poll to %pM for aid %d\n",
__func__, vp->bssid, vp->aid);
skb = dev_alloc_skb(sizeof(*pspoll));
if (!skb)
return;
pspoll = skb_put(skb, sizeof(*pspoll));
pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_PSPOLL |
IEEE80211_FCTL_PM);
pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
memcpy(pspoll->ta, mac, ETH_ALEN);
rcu_read_lock();
mac80211_hwsim_tx_frame(data->hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
rcu_read_unlock();
}
static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
struct ieee80211_vif *vif, int ps)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
if (!vp->assoc)
return;
wiphy_dbg(data->hw->wiphy,
"%s: send data::nullfunc to %pM ps=%d\n",
__func__, vp->bssid, ps);
skb = dev_alloc_skb(sizeof(*hdr));
if (!skb)
return;
hdr = skb_put(skb, sizeof(*hdr) - ETH_ALEN);
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_TODS |
(ps ? IEEE80211_FCTL_PM : 0));
hdr->duration_id = cpu_to_le16(0);
memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
memcpy(hdr->addr2, mac, ETH_ALEN);
memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
rcu_read_lock();
mac80211_hwsim_tx_frame(data->hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
rcu_read_unlock();
}
static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
hwsim_send_nullfunc(data, mac, vif, 1);
}
static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
hwsim_send_nullfunc(data, mac, vif, 0);
}
static int hwsim_fops_ps_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->ps;
return 0;
}
static int hwsim_fops_ps_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
enum ps_mode old_ps;
if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
val != PS_MANUAL_POLL)
return -EINVAL;
if (val == PS_MANUAL_POLL) {
if (data->ps != PS_ENABLED)
return -EINVAL;
local_bh_disable();
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_ps_poll, data);
local_bh_enable();
return 0;
}
old_ps = data->ps;
data->ps = val;
local_bh_disable();
if (old_ps == PS_DISABLED && val != PS_DISABLED) {
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_nullfunc_ps, data);
} else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_nullfunc_no_ps, data);
}
local_bh_enable();
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
"%llu\n");
static int hwsim_write_simulate_radar(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
ieee80211_radar_detected(data->hw);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(hwsim_simulate_radar, NULL,
hwsim_write_simulate_radar, "%llu\n");
static int hwsim_fops_group_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->group;
return 0;
}
static int hwsim_fops_group_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
data->group = val;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(hwsim_fops_group,
hwsim_fops_group_read, hwsim_fops_group_write,
"%llx\n");
static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
struct net_device *dev)
{
/* TODO: allow packet injection */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static inline u64 mac80211_hwsim_get_tsf_raw(void)
{
return ktime_to_us(ktime_get_real());
}
static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
{
u64 now = mac80211_hwsim_get_tsf_raw();
return cpu_to_le64(now + data->tsf_offset);
}
static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = hw->priv;
return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
}
static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u64 tsf)
{
struct mac80211_hwsim_data *data = hw->priv;
u64 now = mac80211_hwsim_get_tsf(hw, vif);
u32 bcn_int = data->beacon_int;
u64 delta = abs(tsf - now);
/* adjust after beaconing with new timestamp at old TBTT */
if (tsf > now) {
data->tsf_offset += delta;
data->bcn_delta = do_div(delta, bcn_int);
} else {
data->tsf_offset -= delta;
data->bcn_delta = -(s64)do_div(delta, bcn_int);
}
}
static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
struct sk_buff *tx_skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv;
struct sk_buff *skb;
struct hwsim_radiotap_hdr *hdr;
u16 flags;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
if (WARN_ON(!txrate))
return;
if (!netif_running(hwsim_mon))
return;
skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
if (skb == NULL)
return;
hdr = skb_push(skb, sizeof(*hdr));
hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->hdr.it_pad = 0;
hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_RATE) |
(1 << IEEE80211_RADIOTAP_TSFT) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
hdr->rt_flags = 0;
hdr->rt_rate = txrate->bitrate / 5;
hdr->rt_channel = cpu_to_le16(chan->center_freq);
flags = IEEE80211_CHAN_2GHZ;
if (txrate->flags & IEEE80211_RATE_ERP_G)
flags |= IEEE80211_CHAN_OFDM;
else
flags |= IEEE80211_CHAN_CCK;
hdr->rt_chbitmask = cpu_to_le16(flags);
skb->dev = hwsim_mon;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
const u8 *addr)
{
struct sk_buff *skb;
struct hwsim_radiotap_ack_hdr *hdr;
u16 flags;
struct ieee80211_hdr *hdr11;
if (!netif_running(hwsim_mon))
return;
skb = dev_alloc_skb(100);
if (skb == NULL)
return;
hdr = skb_put(skb, sizeof(*hdr));
hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->hdr.it_pad = 0;
hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
hdr->rt_flags = 0;
hdr->pad = 0;
hdr->rt_channel = cpu_to_le16(chan->center_freq);
flags = IEEE80211_CHAN_2GHZ;
hdr->rt_chbitmask = cpu_to_le16(flags);
hdr11 = skb_put(skb, 10);
hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_ACK);
hdr11->duration_id = cpu_to_le16(0);
memcpy(hdr11->addr1, addr, ETH_ALEN);
skb->dev = hwsim_mon;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
struct mac80211_hwsim_addr_match_data {
u8 addr[ETH_ALEN];
bool ret;
};
static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_addr_match_data *md = data;
if (memcmp(mac, md->addr, ETH_ALEN) == 0)
md->ret = true;
}
static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
const u8 *addr)
{
struct mac80211_hwsim_addr_match_data md = {
.ret = false,
};
if (data->scanning && memcmp(addr, data->scan_addr, ETH_ALEN) == 0)
return true;
memcpy(md.addr, addr, ETH_ALEN);
ieee80211_iterate_active_interfaces_atomic(data->hw,
IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_addr_iter,
&md);
return md.ret;
}
static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
struct sk_buff *skb)
{
switch (data->ps) {
case PS_DISABLED:
return true;
case PS_ENABLED:
return false;
case PS_AUTO_POLL:
/* TODO: accept (some) Beacons by default and other frames only
* if pending PS-Poll has been sent */
return true;
case PS_MANUAL_POLL:
/* Allow unicast frames to own address if there is a pending
* PS-Poll */
if (data->ps_poll_pending &&
mac80211_hwsim_addr_match(data, skb->data + 4)) {
data->ps_poll_pending = false;
return true;
}
return false;
}
return true;
}
static int hwsim_unicast_netgroup(struct mac80211_hwsim_data *data,
struct sk_buff *skb, int portid)
{
struct net *net;
bool found = false;
int res = -ENOENT;
rcu_read_lock();
for_each_net_rcu(net) {
if (data->netgroup == hwsim_net_get_netgroup(net)) {
res = genlmsg_unicast(net, skb, portid);
found = true;
break;
}
}
rcu_read_unlock();
if (!found)
nlmsg_free(skb);
return res;
}
static inline u16 trans_tx_rate_flags_ieee2hwsim(struct ieee80211_tx_rate *rate)
{
u16 result = 0;
if (rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)
result |= MAC80211_HWSIM_TX_RC_USE_RTS_CTS;
if (rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
result |= MAC80211_HWSIM_TX_RC_USE_CTS_PROTECT;
if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
result |= MAC80211_HWSIM_TX_RC_USE_SHORT_PREAMBLE;
if (rate->flags & IEEE80211_TX_RC_MCS)
result |= MAC80211_HWSIM_TX_RC_MCS;
if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
result |= MAC80211_HWSIM_TX_RC_GREEN_FIELD;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_40_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_DUP_DATA)
result |= MAC80211_HWSIM_TX_RC_DUP_DATA;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
result |= MAC80211_HWSIM_TX_RC_SHORT_GI;
if (rate->flags & IEEE80211_TX_RC_VHT_MCS)
result |= MAC80211_HWSIM_TX_RC_VHT_MCS;
if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_80_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_160_MHZ_WIDTH;
return result;
}
static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
struct sk_buff *my_skb,
int dst_portid)
{
struct sk_buff *skb;
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
void *msg_head;
unsigned int hwsim_flags = 0;
int i;
struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
struct hwsim_tx_rate_flag tx_attempts_flags[IEEE80211_TX_MAX_RATES];
uintptr_t cookie;
if (data->ps != PS_DISABLED)
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
/* If the queue contains MAX_QUEUE skb's drop some */
if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
/* Droping until WARN_QUEUE level */
while (skb_queue_len(&data->pending) >= WARN_QUEUE) {
ieee80211_free_txskb(hw, skb_dequeue(&data->pending));
data->tx_dropped++;
}
}
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (skb == NULL)
goto nla_put_failure;
msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_FRAME);
if (msg_head == NULL) {
pr_debug("mac80211_hwsim: problem with msg_head\n");
goto nla_put_failure;
}
if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
ETH_ALEN, data->addresses[1].addr))
goto nla_put_failure;
/* We get the skb->data */
if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
goto nla_put_failure;
/* We get the flags for this transmission, and we translate them to
wmediumd flags */
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
goto nla_put_failure;
if (nla_put_u32(skb, HWSIM_ATTR_FREQ, data->channel->center_freq))
goto nla_put_failure;
/* We get the tx control (rate and retries) info*/
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
tx_attempts[i].idx = info->status.rates[i].idx;
tx_attempts_flags[i].idx = info->status.rates[i].idx;
tx_attempts[i].count = info->status.rates[i].count;
tx_attempts_flags[i].flags =
trans_tx_rate_flags_ieee2hwsim(
&info->status.rates[i]);
}
if (nla_put(skb, HWSIM_ATTR_TX_INFO,
sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
tx_attempts))
goto nla_put_failure;
if (nla_put(skb, HWSIM_ATTR_TX_INFO_FLAGS,
sizeof(struct hwsim_tx_rate_flag) * IEEE80211_TX_MAX_RATES,
tx_attempts_flags))
goto nla_put_failure;
/* We create a cookie to identify this skb */
data->pending_cookie++;
cookie = data->pending_cookie;
info->rate_driver_data[0] = (void *)cookie;
if (nla_put_u64_64bit(skb, HWSIM_ATTR_COOKIE, cookie, HWSIM_ATTR_PAD))
goto nla_put_failure;
genlmsg_end(skb, msg_head);
if (hwsim_unicast_netgroup(data, skb, dst_portid))
goto err_free_txskb;
/* Enqueue the packet */
skb_queue_tail(&data->pending, my_skb);
data->tx_pkts++;
data->tx_bytes += my_skb->len;
return;
nla_put_failure:
nlmsg_free(skb);
err_free_txskb:
pr_debug("mac80211_hwsim: error occurred in %s\n", __func__);
ieee80211_free_txskb(hw, my_skb);
data->tx_failed++;
}
static bool hwsim_chans_compat(struct ieee80211_channel *c1,
struct ieee80211_channel *c2)
{
if (!c1 || !c2)
return false;
return c1->center_freq == c2->center_freq;
}
struct tx_iter_data {
struct ieee80211_channel *channel;
bool receive;
};
static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
struct ieee80211_vif *vif)
{
struct tx_iter_data *data = _data;
if (!vif->chanctx_conf)
return;
if (!hwsim_chans_compat(data->channel,
rcu_dereference(vif->chanctx_conf)->def.chan))
return;
data->receive = true;
}
static void mac80211_hwsim_add_vendor_rtap(struct sk_buff *skb)
{
/*
* To enable this code, #define the HWSIM_RADIOTAP_OUI,
* e.g. like this:
* #define HWSIM_RADIOTAP_OUI "\x02\x00\x00"
* (but you should use a valid OUI, not that)
*
* If anyone wants to 'donate' a radiotap OUI/subns code
* please send a patch removing this #ifdef and changing
* the values accordingly.
*/
#ifdef HWSIM_RADIOTAP_OUI
struct ieee80211_vendor_radiotap *rtap;
/*
* Note that this code requires the headroom in the SKB
* that was allocated earlier.
*/
rtap = skb_push(skb, sizeof(*rtap) + 8 + 4);
rtap->oui[0] = HWSIM_RADIOTAP_OUI[0];
rtap->oui[1] = HWSIM_RADIOTAP_OUI[1];
rtap->oui[2] = HWSIM_RADIOTAP_OUI[2];
rtap->subns = 127;
/*
* Radiotap vendor namespaces can (and should) also be
* split into fields by using the standard radiotap
* presence bitmap mechanism. Use just BIT(0) here for
* the presence bitmap.
*/
rtap->present = BIT(0);
/* We have 8 bytes of (dummy) data */
rtap->len = 8;
/* For testing, also require it to be aligned */
rtap->align = 8;
/* And also test that padding works, 4 bytes */
rtap->pad = 4;
/* push the data */
memcpy(rtap->data, "ABCDEFGH", 8);
/* make sure to clear padding, mac80211 doesn't */
memset(rtap->data + 8, 0, 4);
IEEE80211_SKB_RXCB(skb)->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
#endif
}
static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv, *data2;
bool ack = false;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_rx_status rx_status;
u64 now;
memset(&rx_status, 0, sizeof(rx_status));
rx_status.flag |= RX_FLAG_MACTIME_START;
rx_status.freq = chan->center_freq;
rx_status.band = chan->band;
if (info->control.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) {
rx_status.rate_idx =
ieee80211_rate_get_vht_mcs(&info->control.rates[0]);
rx_status.nss =
ieee80211_rate_get_vht_nss(&info->control.rates[0]);
rx_status.encoding = RX_ENC_VHT;
} else {
rx_status.rate_idx = info->control.rates[0].idx;
if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
rx_status.encoding = RX_ENC_HT;
}
if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_40;
else if (info->control.rates[0].flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_80;
else if (info->control.rates[0].flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_160;
else
rx_status.bw = RATE_INFO_BW_20;
if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
/* TODO: simulate real signal strength (and optional packet loss) */
rx_status.signal = -50;
if (info->control.vif)
rx_status.signal += info->control.vif->bss_conf.txpower;
if (data->ps != PS_DISABLED)
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
/* release the skb's source info */
skb_orphan(skb);
skb_dst_drop(skb);
skb->mark = 0;
skb_ext_reset(skb);
nf_reset_ct(skb);
/*
* Get absolute mactime here so all HWs RX at the "same time", and
* absolute TX time for beacon mactime so the timestamp matches.
* Giving beacons a different mactime than non-beacons looks messy, but
* it helps the Toffset be exact and a ~10us mactime discrepancy
* probably doesn't really matter.
*/
if (ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control)) {
rx_status.boottime_ns = ktime_get_boottime_ns();
now = data->abs_bcn_ts;
} else {
now = mac80211_hwsim_get_tsf_raw();
}
/* Copy skb to all enabled radios that are on the current frequency */
spin_lock(&hwsim_radio_lock);
list_for_each_entry(data2, &hwsim_radios, list) {
struct sk_buff *nskb;
struct tx_iter_data tx_iter_data = {
.receive = false,
.channel = chan,
};
if (data == data2)
continue;
if (!data2->started || (data2->idle && !data2->tmp_chan) ||
!hwsim_ps_rx_ok(data2, skb))
continue;
if (!(data->group & data2->group))
continue;
if (data->netgroup != data2->netgroup)
continue;
if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
!hwsim_chans_compat(chan, data2->channel)) {
ieee80211_iterate_active_interfaces_atomic(
data2->hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_tx_iter, &tx_iter_data);
if (!tx_iter_data.receive)
continue;
}
/*
* reserve some space for our vendor and the normal
* radiotap header, since we're copying anyway
*/
if (skb->len < PAGE_SIZE && paged_rx) {
struct page *page = alloc_page(GFP_ATOMIC);
if (!page)
continue;
nskb = dev_alloc_skb(128);
if (!nskb) {
__free_page(page);
continue;
}
memcpy(page_address(page), skb->data, skb->len);
skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len);
} else {
nskb = skb_copy(skb, GFP_ATOMIC);
if (!nskb)
continue;
}
if (mac80211_hwsim_addr_match(data2, hdr->addr1))
ack = true;
rx_status.mactime = now + data2->tsf_offset;
memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status));
mac80211_hwsim_add_vendor_rtap(nskb);
data2->rx_pkts++;
data2->rx_bytes += nskb->len;
ieee80211_rx_irqsafe(data2->hw, nskb);
}
spin_unlock(&hwsim_radio_lock);
return ack;
}
static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_channel *channel;
bool ack;
u32 _portid;
if (WARN_ON(skb->len < 10)) {
/* Should not happen; just a sanity check for addr1 use */
ieee80211_free_txskb(hw, skb);
return;
}
if (!data->use_chanctx) {
channel = data->channel;
} else if (txi->hw_queue == 4) {
channel = data->tmp_chan;
} else {
chanctx_conf = rcu_dereference(txi->control.vif->chanctx_conf);
if (chanctx_conf)
channel = chanctx_conf->def.chan;
else
channel = NULL;
}
if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
ieee80211_free_txskb(hw, skb);
return;
}
if (data->idle && !data->tmp_chan) {
wiphy_dbg(hw->wiphy, "Trying to TX when idle - reject\n");
ieee80211_free_txskb(hw, skb);
return;
}
if (txi->control.vif)
hwsim_check_magic(txi->control.vif);
if (control->sta)
hwsim_check_sta_magic(control->sta);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE))
ieee80211_get_tx_rates(txi->control.vif, control->sta, skb,
txi->control.rates,
ARRAY_SIZE(txi->control.rates));
if (skb->len >= 24 + 8 &&
ieee80211_is_probe_resp(hdr->frame_control)) {
/* fake header transmission time */
struct ieee80211_mgmt *mgmt;
struct ieee80211_rate *txrate;
u64 ts;
mgmt = (struct ieee80211_mgmt *)skb->data;
txrate = ieee80211_get_tx_rate(hw, txi);
ts = mac80211_hwsim_get_tsf_raw();
mgmt->u.probe_resp.timestamp =
cpu_to_le64(ts + data->tsf_offset +
24 * 8 * 10 / txrate->bitrate);
}
mac80211_hwsim_monitor_rx(hw, skb, channel);
/* wmediumd mode check */
_portid = READ_ONCE(data->wmediumd);
if (_portid)
return mac80211_hwsim_tx_frame_nl(hw, skb, _portid);
/* NO wmediumd detected, perfect medium simulation */
data->tx_pkts++;
data->tx_bytes += skb->len;
ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
if (ack && skb->len >= 16)
mac80211_hwsim_monitor_ack(channel, hdr->addr2);
ieee80211_tx_info_clear_status(txi);
/* frame was transmitted at most favorable rate at first attempt */
txi->control.rates[0].count = 1;
txi->control.rates[1].idx = -1;
if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
txi->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
}
static int mac80211_hwsim_start(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *data = hw->priv;
wiphy_dbg(hw->wiphy, "%s\n", __func__);
data->started = true;
return 0;
}
static void mac80211_hwsim_stop(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *data = hw->priv;
data->started = false;
hrtimer_cancel(&data->beacon_timer);
wiphy_dbg(hw->wiphy, "%s\n", __func__);
}
static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
wiphy_dbg(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
vif->addr);
hwsim_set_magic(vif);
vif->cab_queue = 0;
vif->hw_queue[IEEE80211_AC_VO] = 0;
vif->hw_queue[IEEE80211_AC_VI] = 1;
vif->hw_queue[IEEE80211_AC_BE] = 2;
vif->hw_queue[IEEE80211_AC_BK] = 3;
return 0;
}
static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum nl80211_iftype newtype,
bool newp2p)
{
newtype = ieee80211_iftype_p2p(newtype, newp2p);
wiphy_dbg(hw->wiphy,
"%s (old type=%d, new type=%d, mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
newtype, vif->addr);
hwsim_check_magic(vif);
/*
* interface may change from non-AP to AP in
* which case this needs to be set up again
*/
vif->cab_queue = 0;
return 0;
}
static void mac80211_hwsim_remove_interface(
struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
wiphy_dbg(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
vif->addr);
hwsim_check_magic(vif);
hwsim_clear_magic(vif);
}
static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv;
u32 _pid = READ_ONCE(data->wmediumd);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE)) {
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
ieee80211_get_tx_rates(txi->control.vif, NULL, skb,
txi->control.rates,
ARRAY_SIZE(txi->control.rates));
}
mac80211_hwsim_monitor_rx(hw, skb, chan);
if (_pid)
return mac80211_hwsim_tx_frame_nl(hw, skb, _pid);
mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
dev_kfree_skb(skb);
}
static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = arg;
struct ieee80211_hw *hw = data->hw;
struct ieee80211_tx_info *info;
struct ieee80211_rate *txrate;
struct ieee80211_mgmt *mgmt;
struct sk_buff *skb;
hwsim_check_magic(vif);
if (vif->type != NL80211_IFTYPE_AP &&
vif->type != NL80211_IFTYPE_MESH_POINT &&
vif->type != NL80211_IFTYPE_ADHOC &&
vif->type != NL80211_IFTYPE_OCB)
return;
skb = ieee80211_beacon_get(hw, vif);
if (skb == NULL)
return;
info = IEEE80211_SKB_CB(skb);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE))
ieee80211_get_tx_rates(vif, NULL, skb,
info->control.rates,
ARRAY_SIZE(info->control.rates));
txrate = ieee80211_get_tx_rate(hw, info);
mgmt = (struct ieee80211_mgmt *) skb->data;
/* fake header transmission time */
data->abs_bcn_ts = mac80211_hwsim_get_tsf_raw();
mgmt->u.beacon.timestamp = cpu_to_le64(data->abs_bcn_ts +
data->tsf_offset +
24 * 8 * 10 / txrate->bitrate);
mac80211_hwsim_tx_frame(hw, skb,
rcu_dereference(vif->chanctx_conf)->def.chan);
if (vif->csa_active && ieee80211_csa_is_complete(vif))
ieee80211_csa_finish(vif);
}
static enum hrtimer_restart
mac80211_hwsim_beacon(struct hrtimer *timer)
{
struct mac80211_hwsim_data *data =
container_of(timer, struct mac80211_hwsim_data, beacon_timer);
struct ieee80211_hw *hw = data->hw;
u64 bcn_int = data->beacon_int;
if (!data->started)
return HRTIMER_NORESTART;
ieee80211_iterate_active_interfaces_atomic(
hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_beacon_tx, data);
/* beacon at new TBTT + beacon interval */
if (data->bcn_delta) {
bcn_int -= data->bcn_delta;
data->bcn_delta = 0;
}
hrtimer_forward(&data->beacon_timer, hrtimer_get_expires(timer),
ns_to_ktime(bcn_int * NSEC_PER_USEC));
return HRTIMER_RESTART;
}
static const char * const hwsim_chanwidths[] = {
[NL80211_CHAN_WIDTH_5] = "ht5",
[NL80211_CHAN_WIDTH_10] = "ht10",
[NL80211_CHAN_WIDTH_20_NOHT] = "noht",
[NL80211_CHAN_WIDTH_20] = "ht20",
[NL80211_CHAN_WIDTH_40] = "ht40",
[NL80211_CHAN_WIDTH_80] = "vht80",
[NL80211_CHAN_WIDTH_80P80] = "vht80p80",
[NL80211_CHAN_WIDTH_160] = "vht160",
};
static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
{
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
[IEEE80211_SMPS_AUTOMATIC] = "auto",
[IEEE80211_SMPS_OFF] = "off",
[IEEE80211_SMPS_STATIC] = "static",
[IEEE80211_SMPS_DYNAMIC] = "dynamic",
};
int idx;
if (conf->chandef.chan)
wiphy_dbg(hw->wiphy,
"%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n",
__func__,
conf->chandef.chan->center_freq,
conf->chandef.center_freq1,
conf->chandef.center_freq2,
hwsim_chanwidths[conf->chandef.width],
!!(conf->flags & IEEE80211_CONF_IDLE),
!!(conf->flags & IEEE80211_CONF_PS),
smps_modes[conf->smps_mode]);
else
wiphy_dbg(hw->wiphy,
"%s (freq=0 idle=%d ps=%d smps=%s)\n",
__func__,
!!(conf->flags & IEEE80211_CONF_IDLE),
!!(conf->flags & IEEE80211_CONF_PS),
smps_modes[conf->smps_mode]);
data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
WARN_ON(conf->chandef.chan && data->use_chanctx);
mutex_lock(&data->mutex);
if (data->scanning && conf->chandef.chan) {
for (idx = 0; idx < ARRAY_SIZE(data->survey_data); idx++) {
if (data->survey_data[idx].channel == data->channel) {
data->survey_data[idx].start =
data->survey_data[idx].next_start;
data->survey_data[idx].end = jiffies;
break;
}
}
data->channel = conf->chandef.chan;
for (idx = 0; idx < ARRAY_SIZE(data->survey_data); idx++) {
if (data->survey_data[idx].channel &&
data->survey_data[idx].channel != data->channel)
continue;
data->survey_data[idx].channel = data->channel;
data->survey_data[idx].next_start = jiffies;
break;
}
} else {
data->channel = conf->chandef.chan;
}
mutex_unlock(&data->mutex);
if (!data->started || !data->beacon_int)
hrtimer_cancel(&data->beacon_timer);
else if (!hrtimer_is_queued(&data->beacon_timer)) {
u64 tsf = mac80211_hwsim_get_tsf(hw, NULL);
u32 bcn_int = data->beacon_int;
u64 until_tbtt = bcn_int - do_div(tsf, bcn_int);
hrtimer_start(&data->beacon_timer,
ns_to_ktime(until_tbtt * NSEC_PER_USEC),
HRTIMER_MODE_REL_SOFT);
}
return 0;
}
static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,u64 multicast)
{
struct mac80211_hwsim_data *data = hw->priv;
wiphy_dbg(hw->wiphy, "%s\n", __func__);
data->rx_filter = 0;
if (*total_flags & FIF_ALLMULTI)
data->rx_filter |= FIF_ALLMULTI;
*total_flags = data->rx_filter;
}
static void mac80211_hwsim_bcn_en_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
unsigned int *count = data;
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
if (vp->bcn_en)
(*count)++;
}
static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct mac80211_hwsim_data *data = hw->priv;
hwsim_check_magic(vif);
wiphy_dbg(hw->wiphy, "%s(changed=0x%x vif->addr=%pM)\n",
__func__, changed, vif->addr);
if (changed & BSS_CHANGED_BSSID) {
wiphy_dbg(hw->wiphy, "%s: BSSID changed: %pM\n",
__func__, info->bssid);
memcpy(vp->bssid, info->bssid, ETH_ALEN);
}
if (changed & BSS_CHANGED_ASSOC) {
wiphy_dbg(hw->wiphy, " ASSOC: assoc=%d aid=%d\n",
info->assoc, info->aid);
vp->assoc = info->assoc;
vp->aid = info->aid;
}
if (changed & BSS_CHANGED_BEACON_ENABLED) {
wiphy_dbg(hw->wiphy, " BCN EN: %d (BI=%u)\n",
info->enable_beacon, info->beacon_int);
vp->bcn_en = info->enable_beacon;
if (data->started &&
!hrtimer_is_queued(&data->beacon_timer) &&
info->enable_beacon) {
u64 tsf, until_tbtt;
u32 bcn_int;
data->beacon_int = info->beacon_int * 1024;
tsf = mac80211_hwsim_get_tsf(hw, vif);
bcn_int = data->beacon_int;
until_tbtt = bcn_int - do_div(tsf, bcn_int);
hrtimer_start(&data->beacon_timer,
ns_to_ktime(until_tbtt * NSEC_PER_USEC),
HRTIMER_MODE_REL_SOFT);
} else if (!info->enable_beacon) {
unsigned int count = 0;
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_bcn_en_iter, &count);
wiphy_dbg(hw->wiphy, " beaconing vifs remaining: %u",
count);
if (count == 0) {
hrtimer_cancel(&data->beacon_timer);
data->beacon_int = 0;
}
}
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
wiphy_dbg(hw->wiphy, " ERP_CTS_PROT: %d\n",
info->use_cts_prot);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
wiphy_dbg(hw->wiphy, " ERP_PREAMBLE: %d\n",
info->use_short_preamble);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
wiphy_dbg(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot);
}
if (changed & BSS_CHANGED_HT) {
wiphy_dbg(hw->wiphy, " HT: op_mode=0x%x\n",
info->ht_operation_mode);
}
if (changed & BSS_CHANGED_BASIC_RATES) {
wiphy_dbg(hw->wiphy, " BASIC_RATES: 0x%llx\n",
(unsigned long long) info->basic_rates);
}
if (changed & BSS_CHANGED_TXPOWER)
wiphy_dbg(hw->wiphy, " TX Power: %d dBm\n", info->txpower);
}
static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
hwsim_set_sta_magic(sta);
return 0;
}
static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
hwsim_clear_sta_magic(sta);
return 0;
}
static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
switch (cmd) {
case STA_NOTIFY_SLEEP:
case STA_NOTIFY_AWAKE:
/* TODO: make good use of these flags */
break;
default:
WARN(1, "Invalid sta notify: %d\n", cmd);
break;
}
}
static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
bool set)
{
hwsim_check_sta_magic(sta);
return 0;
}
static int mac80211_hwsim_conf_tx(
struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
wiphy_dbg(hw->wiphy,
"%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
__func__, queue,
params->txop, params->cw_min,
params->cw_max, params->aifs);
return 0;
}
static int mac80211_hwsim_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
if (idx < 0 || idx >= ARRAY_SIZE(hwsim->survey_data))
return -ENOENT;
mutex_lock(&hwsim->mutex);
survey->channel = hwsim->survey_data[idx].channel;
if (!survey->channel) {
mutex_unlock(&hwsim->mutex);
return -ENOENT;
}
/*
* Magically conjured dummy values --- this is only ok for simulated hardware.
*
* A real driver which cannot determine real values noise MUST NOT
* report any, especially not a magically conjured ones :-)
*/
survey->filled = SURVEY_INFO_NOISE_DBM |
SURVEY_INFO_TIME |
SURVEY_INFO_TIME_BUSY;
survey->noise = -92;
survey->time =
jiffies_to_msecs(hwsim->survey_data[idx].end -
hwsim->survey_data[idx].start);
/* report 12.5% of channel time is used */
survey->time_busy = survey->time/8;
mutex_unlock(&hwsim->mutex);
return 0;
}
#ifdef CONFIG_NL80211_TESTMODE
/*
* This section contains example code for using netlink
* attributes with the testmode command in nl80211.
*/
/* These enums need to be kept in sync with userspace */
enum hwsim_testmode_attr {
__HWSIM_TM_ATTR_INVALID = 0,
HWSIM_TM_ATTR_CMD = 1,
HWSIM_TM_ATTR_PS = 2,
/* keep last */
__HWSIM_TM_ATTR_AFTER_LAST,
HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1
};
enum hwsim_testmode_cmd {
HWSIM_TM_CMD_SET_PS = 0,
HWSIM_TM_CMD_GET_PS = 1,
HWSIM_TM_CMD_STOP_QUEUES = 2,
HWSIM_TM_CMD_WAKE_QUEUES = 3,
};
static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
[HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
[HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
};
static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
void *data, int len)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
struct sk_buff *skb;
int err, ps;
err = nla_parse_deprecated(tb, HWSIM_TM_ATTR_MAX, data, len,
hwsim_testmode_policy, NULL);
if (err)
return err;
if (!tb[HWSIM_TM_ATTR_CMD])
return -EINVAL;
switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
case HWSIM_TM_CMD_SET_PS:
if (!tb[HWSIM_TM_ATTR_PS])
return -EINVAL;
ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
return hwsim_fops_ps_write(hwsim, ps);
case HWSIM_TM_CMD_GET_PS:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case HWSIM_TM_CMD_STOP_QUEUES:
ieee80211_stop_queues(hw);
return 0;
case HWSIM_TM_CMD_WAKE_QUEUES:
ieee80211_wake_queues(hw);
return 0;
default:
return -EOPNOTSUPP;
}
nla_put_failure:
kfree_skb(skb);
return -ENOBUFS;
}
#endif
static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
struct ieee80211_sta *sta = params->sta;
enum ieee80211_ampdu_mlme_action action = params->action;
u16 tid = params->tid;
switch (action) {
case IEEE80211_AMPDU_TX_START:
return IEEE80211_AMPDU_TX_START_IMMEDIATE;
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
break;
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static void mac80211_hwsim_flush(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 queues, bool drop)
{
/* Not implemented, queues only on kernel side */
}
static void hw_scan_work(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, hw_scan.work);
struct cfg80211_scan_request *req = hwsim->hw_scan_request;
int dwell, i;
mutex_lock(&hwsim->mutex);
if (hwsim->scan_chan_idx >= req->n_channels) {
struct cfg80211_scan_info info = {
.aborted = false,
};
wiphy_dbg(hwsim->hw->wiphy, "hw scan complete\n");
ieee80211_scan_completed(hwsim->hw, &info);
hwsim->hw_scan_request = NULL;
hwsim->hw_scan_vif = NULL;
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
return;
}
wiphy_dbg(hwsim->hw->wiphy, "hw scan %d MHz\n",
req->channels[hwsim->scan_chan_idx]->center_freq);
hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
if (hwsim->tmp_chan->flags & (IEEE80211_CHAN_NO_IR |
IEEE80211_CHAN_RADAR) ||
!req->n_ssids) {
dwell = 120;
} else {
dwell = 30;
/* send probes */
for (i = 0; i < req->n_ssids; i++) {
struct sk_buff *probe;
struct ieee80211_mgmt *mgmt;
probe = ieee80211_probereq_get(hwsim->hw,
hwsim->scan_addr,
req->ssids[i].ssid,
req->ssids[i].ssid_len,
req->ie_len);
if (!probe)
continue;
mgmt = (struct ieee80211_mgmt *) probe->data;
memcpy(mgmt->da, req->bssid, ETH_ALEN);
memcpy(mgmt->bssid, req->bssid, ETH_ALEN);
if (req->ie_len)
skb_put_data(probe, req->ie, req->ie_len);
local_bh_disable();
mac80211_hwsim_tx_frame(hwsim->hw, probe,
hwsim->tmp_chan);
local_bh_enable();
}
}
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
msecs_to_jiffies(dwell));
hwsim->survey_data[hwsim->scan_chan_idx].channel = hwsim->tmp_chan;
hwsim->survey_data[hwsim->scan_chan_idx].start = jiffies;
hwsim->survey_data[hwsim->scan_chan_idx].end =
jiffies + msecs_to_jiffies(dwell);
hwsim->scan_chan_idx++;
mutex_unlock(&hwsim->mutex);
}
static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_scan_request *hw_req)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct cfg80211_scan_request *req = &hw_req->req;
mutex_lock(&hwsim->mutex);
if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
mutex_unlock(&hwsim->mutex);
return -EBUSY;
}
hwsim->hw_scan_request = req;
hwsim->hw_scan_vif = vif;
hwsim->scan_chan_idx = 0;
if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR)
get_random_mask_addr(hwsim->scan_addr,
hw_req->req.mac_addr,
hw_req->req.mac_addr_mask);
else
memcpy(hwsim->scan_addr, vif->addr, ETH_ALEN);
memset(hwsim->survey_data, 0, sizeof(hwsim->survey_data));
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hw->wiphy, "hwsim hw_scan request\n");
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
return 0;
}
static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct cfg80211_scan_info info = {
.aborted = true,
};
wiphy_dbg(hw->wiphy, "hwsim cancel_hw_scan\n");
cancel_delayed_work_sync(&hwsim->hw_scan);
mutex_lock(&hwsim->mutex);
ieee80211_scan_completed(hwsim->hw, &info);
hwsim->tmp_chan = NULL;
hwsim->hw_scan_request = NULL;
hwsim->hw_scan_vif = NULL;
mutex_unlock(&hwsim->mutex);
}
static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const u8 *mac_addr)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (hwsim->scanning) {
pr_debug("two hwsim sw_scans detected!\n");
goto out;
}
pr_debug("hwsim sw_scan request, prepping stuff\n");
memcpy(hwsim->scan_addr, mac_addr, ETH_ALEN);
hwsim->scanning = true;
memset(hwsim->survey_data, 0, sizeof(hwsim->survey_data));
out:
mutex_unlock(&hwsim->mutex);
}
static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
pr_debug("hwsim sw_scan_complete\n");
hwsim->scanning = false;
eth_zero_addr(hwsim->scan_addr);
mutex_unlock(&hwsim->mutex);
}
static void hw_roc_start(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, roc_start.work);
mutex_lock(&hwsim->mutex);
wiphy_dbg(hwsim->hw->wiphy, "hwsim ROC begins\n");
hwsim->tmp_chan = hwsim->roc_chan;
ieee80211_ready_on_channel(hwsim->hw);
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->roc_done,
msecs_to_jiffies(hwsim->roc_duration));
mutex_unlock(&hwsim->mutex);
}
static void hw_roc_done(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, roc_done.work);
mutex_lock(&hwsim->mutex);
ieee80211_remain_on_channel_expired(hwsim->hw);
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hwsim->hw->wiphy, "hwsim ROC expired\n");
}
static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
mutex_unlock(&hwsim->mutex);
return -EBUSY;
}
hwsim->roc_chan = chan;
hwsim->roc_duration = duration;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
chan->center_freq, duration);
ieee80211_queue_delayed_work(hw, &hwsim->roc_start, HZ/50);
return 0;
}
static int mac80211_hwsim_croc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
cancel_delayed_work_sync(&hwsim->roc_start);
cancel_delayed_work_sync(&hwsim->roc_done);
mutex_lock(&hwsim->mutex);
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hw->wiphy, "hwsim ROC canceled\n");
return 0;
}
static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_set_chanctx_magic(ctx);
wiphy_dbg(hw->wiphy,
"add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
return 0;
}
static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
wiphy_dbg(hw->wiphy,
"remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
hwsim_check_chanctx_magic(ctx);
hwsim_clear_chanctx_magic(ctx);
}
static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx,
u32 changed)
{
hwsim_check_chanctx_magic(ctx);
wiphy_dbg(hw->wiphy,
"change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
}
static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_check_magic(vif);
hwsim_check_chanctx_magic(ctx);
return 0;
}
static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_check_magic(vif);
hwsim_check_chanctx_magic(ctx);
}
static const char mac80211_hwsim_gstrings_stats[][ETH_GSTRING_LEN] = {
"tx_pkts_nic",
"tx_bytes_nic",
"rx_pkts_nic",
"rx_bytes_nic",
"d_tx_dropped",
"d_tx_failed",
"d_ps_mode",
"d_group",
};
#define MAC80211_HWSIM_SSTATS_LEN ARRAY_SIZE(mac80211_hwsim_gstrings_stats)
static void mac80211_hwsim_get_et_strings(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 sset, u8 *data)
{
if (sset == ETH_SS_STATS)
memcpy(data, *mac80211_hwsim_gstrings_stats,
sizeof(mac80211_hwsim_gstrings_stats));
}
static int mac80211_hwsim_get_et_sset_count(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, int sset)
{
if (sset == ETH_SS_STATS)
return MAC80211_HWSIM_SSTATS_LEN;
return 0;
}
static void mac80211_hwsim_get_et_stats(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ethtool_stats *stats, u64 *data)
{
struct mac80211_hwsim_data *ar = hw->priv;
int i = 0;
data[i++] = ar->tx_pkts;
data[i++] = ar->tx_bytes;
data[i++] = ar->rx_pkts;
data[i++] = ar->rx_bytes;
data[i++] = ar->tx_dropped;
data[i++] = ar->tx_failed;
data[i++] = ar->ps;
data[i++] = ar->group;
WARN_ON(i != MAC80211_HWSIM_SSTATS_LEN);
}
#define HWSIM_COMMON_OPS \
.tx = mac80211_hwsim_tx, \
.start = mac80211_hwsim_start, \
.stop = mac80211_hwsim_stop, \
.add_interface = mac80211_hwsim_add_interface, \
.change_interface = mac80211_hwsim_change_interface, \
.remove_interface = mac80211_hwsim_remove_interface, \
.config = mac80211_hwsim_config, \
.configure_filter = mac80211_hwsim_configure_filter, \
.bss_info_changed = mac80211_hwsim_bss_info_changed, \
.sta_add = mac80211_hwsim_sta_add, \
.sta_remove = mac80211_hwsim_sta_remove, \
.sta_notify = mac80211_hwsim_sta_notify, \
.set_tim = mac80211_hwsim_set_tim, \
.conf_tx = mac80211_hwsim_conf_tx, \
.get_survey = mac80211_hwsim_get_survey, \
CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd) \
.ampdu_action = mac80211_hwsim_ampdu_action, \
.flush = mac80211_hwsim_flush, \
.get_tsf = mac80211_hwsim_get_tsf, \
.set_tsf = mac80211_hwsim_set_tsf, \
.get_et_sset_count = mac80211_hwsim_get_et_sset_count, \
.get_et_stats = mac80211_hwsim_get_et_stats, \
.get_et_strings = mac80211_hwsim_get_et_strings,
static const struct ieee80211_ops mac80211_hwsim_ops = {
HWSIM_COMMON_OPS
.sw_scan_start = mac80211_hwsim_sw_scan,
.sw_scan_complete = mac80211_hwsim_sw_scan_complete,
};
static const struct ieee80211_ops mac80211_hwsim_mchan_ops = {
HWSIM_COMMON_OPS
.hw_scan = mac80211_hwsim_hw_scan,
.cancel_hw_scan = mac80211_hwsim_cancel_hw_scan,
.sw_scan_start = NULL,
.sw_scan_complete = NULL,
.remain_on_channel = mac80211_hwsim_roc,
.cancel_remain_on_channel = mac80211_hwsim_croc,
.add_chanctx = mac80211_hwsim_add_chanctx,
.remove_chanctx = mac80211_hwsim_remove_chanctx,
.change_chanctx = mac80211_hwsim_change_chanctx,
.assign_vif_chanctx = mac80211_hwsim_assign_vif_chanctx,
.unassign_vif_chanctx = mac80211_hwsim_unassign_vif_chanctx,
};
struct hwsim_new_radio_params {
unsigned int channels;
const char *reg_alpha2;
const struct ieee80211_regdomain *regd;
bool reg_strict;
bool p2p_device;
bool use_chanctx;
bool destroy_on_close;
const char *hwname;
bool no_vif;
const u8 *perm_addr;
u32 iftypes;
u32 *ciphers;
u8 n_ciphers;
};
static void hwsim_mcast_config_msg(struct sk_buff *mcast_skb,
struct genl_info *info)
{
if (info)
genl_notify(&hwsim_genl_family, mcast_skb, info,
HWSIM_MCGRP_CONFIG, GFP_KERNEL);
else
genlmsg_multicast(&hwsim_genl_family, mcast_skb, 0,
HWSIM_MCGRP_CONFIG, GFP_KERNEL);
}
static int append_radio_msg(struct sk_buff *skb, int id,
struct hwsim_new_radio_params *param)
{
int ret;
ret = nla_put_u32(skb, HWSIM_ATTR_RADIO_ID, id);
if (ret < 0)
return ret;
if (param->channels) {
ret = nla_put_u32(skb, HWSIM_ATTR_CHANNELS, param->channels);
if (ret < 0)
return ret;
}
if (param->reg_alpha2) {
ret = nla_put(skb, HWSIM_ATTR_REG_HINT_ALPHA2, 2,
param->reg_alpha2);
if (ret < 0)
return ret;
}
if (param->regd) {
int i;
for (i = 0; i < ARRAY_SIZE(hwsim_world_regdom_custom); i++) {
if (hwsim_world_regdom_custom[i] != param->regd)
continue;
ret = nla_put_u32(skb, HWSIM_ATTR_REG_CUSTOM_REG, i);
if (ret < 0)
return ret;
break;
}
}
if (param->reg_strict) {
ret = nla_put_flag(skb, HWSIM_ATTR_REG_STRICT_REG);
if (ret < 0)
return ret;
}
if (param->p2p_device) {
ret = nla_put_flag(skb, HWSIM_ATTR_SUPPORT_P2P_DEVICE);
if (ret < 0)
return ret;
}
if (param->use_chanctx) {
ret = nla_put_flag(skb, HWSIM_ATTR_USE_CHANCTX);
if (ret < 0)
return ret;
}
if (param->hwname) {
ret = nla_put(skb, HWSIM_ATTR_RADIO_NAME,
strlen(param->hwname), param->hwname);
if (ret < 0)
return ret;
}
return 0;
}
static void hwsim_mcast_new_radio(int id, struct genl_info *info,
struct hwsim_new_radio_params *param)
{
struct sk_buff *mcast_skb;
void *data;
mcast_skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!mcast_skb)
return;
data = genlmsg_put(mcast_skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_NEW_RADIO);
if (!data)
goto out_err;
if (append_radio_msg(mcast_skb, id, param) < 0)
goto out_err;
genlmsg_end(mcast_skb, data);
hwsim_mcast_config_msg(mcast_skb, info);
return;
out_err:
nlmsg_free(mcast_skb);
}
static const struct ieee80211_sband_iftype_data he_capa_2ghz[] = {
{
/* TODO: should we support other types, e.g., P2P?*/
.types_mask = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xffff),
.tx_mcs_160 = cpu_to_le16(0xffff),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
},
},
#ifdef CONFIG_MAC80211_MESH
{
/* TODO: should we support other types, e.g., IBSS?*/
.types_mask = BIT(NL80211_IFTYPE_MESH_POINT),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] = 0,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xffff),
.tx_mcs_160 = cpu_to_le16(0xffff),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
},
},
#endif
};
static const struct ieee80211_sband_iftype_data he_capa_5ghz[] = {
{
/* TODO: should we support other types, e.g., P2P?*/
.types_mask = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
},
#ifdef CONFIG_MAC80211_MESH
{
/* TODO: should we support other types, e.g., IBSS?*/
.types_mask = BIT(NL80211_IFTYPE_MESH_POINT),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] = 0,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
},
#endif
};
static void mac80211_hwsim_he_capab(struct ieee80211_supported_band *sband)
{
u16 n_iftype_data;
if (sband->band == NL80211_BAND_2GHZ) {
n_iftype_data = ARRAY_SIZE(he_capa_2ghz);
sband->iftype_data =
(struct ieee80211_sband_iftype_data *)he_capa_2ghz;
} else if (sband->band == NL80211_BAND_5GHZ) {
n_iftype_data = ARRAY_SIZE(he_capa_5ghz);
sband->iftype_data =
(struct ieee80211_sband_iftype_data *)he_capa_5ghz;
} else {
return;
}
sband->n_iftype_data = n_iftype_data;
}
#ifdef CONFIG_MAC80211_MESH
#define HWSIM_MESH_BIT BIT(NL80211_IFTYPE_MESH_POINT)
#else
#define HWSIM_MESH_BIT 0
#endif
#define HWSIM_DEFAULT_IF_LIMIT \
(BIT(NL80211_IFTYPE_STATION) | \