blob: 4cddd628d41b24470a2c82a0ea310ef9d7ded2b2 [file] [log] [blame]
/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2016 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more details.
***********************************************************************/
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/etherdevice.h>
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "cn23xx_pf_device.h"
#include "octeon_main.h"
#include "octeon_mailbox.h"
#define RESET_NOTDONE 0
#define RESET_DONE 1
/* Change the value of SLI Packet Input Jabber Register to allow
* VXLAN TSO packets which can be 64424 bytes, exceeding the
* MAX_GSO_SIZE we supplied to the kernel
*/
#define CN23XX_INPUT_JABBER 64600
void cn23xx_dump_pf_initialized_regs(struct octeon_device *oct)
{
int i = 0;
u32 regval = 0;
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
/*In cn23xx_soft_reset*/
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%llx\n",
"CN23XX_WIN_WR_MASK_REG", CVM_CAST64(CN23XX_WIN_WR_MASK_REG),
CVM_CAST64(octeon_read_csr64(oct, CN23XX_WIN_WR_MASK_REG)));
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"CN23XX_SLI_SCRATCH1", CVM_CAST64(CN23XX_SLI_SCRATCH1),
CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)));
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"CN23XX_RST_SOFT_RST", CN23XX_RST_SOFT_RST,
lio_pci_readq(oct, CN23XX_RST_SOFT_RST));
/*In cn23xx_set_dpi_regs*/
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"CN23XX_DPI_DMA_CONTROL", CN23XX_DPI_DMA_CONTROL,
lio_pci_readq(oct, CN23XX_DPI_DMA_CONTROL));
for (i = 0; i < 6; i++) {
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_DPI_DMA_ENG_ENB", i,
CN23XX_DPI_DMA_ENG_ENB(i),
lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_ENB(i)));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_DPI_DMA_ENG_BUF", i,
CN23XX_DPI_DMA_ENG_BUF(i),
lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_BUF(i)));
}
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_CTL",
CN23XX_DPI_CTL, lio_pci_readq(oct, CN23XX_DPI_CTL));
/*In cn23xx_setup_pcie_mps and cn23xx_setup_pcie_mrrs */
pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, &regval);
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"CN23XX_CONFIG_PCIE_DEVCTL",
CVM_CAST64(CN23XX_CONFIG_PCIE_DEVCTL), CVM_CAST64(regval));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_DPI_SLI_PRTX_CFG", oct->pcie_port,
CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port),
lio_pci_readq(oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port)));
/*In cn23xx_specific_regs_setup */
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_S2M_PORTX_CTL", oct->pcie_port,
CVM_CAST64(CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)),
CVM_CAST64(octeon_read_csr64(
oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port))));
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"CN23XX_SLI_RING_RST", CVM_CAST64(CN23XX_SLI_PKT_IOQ_RING_RST),
(u64)octeon_read_csr64(oct, CN23XX_SLI_PKT_IOQ_RING_RST));
/*In cn23xx_setup_global_mac_regs*/
for (i = 0; i < CN23XX_MAX_MACS; i++) {
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_PKT_MAC_RINFO64", i,
CVM_CAST64(CN23XX_SLI_PKT_MAC_RINFO64(i, oct->pf_num)),
CVM_CAST64(octeon_read_csr64
(oct, CN23XX_SLI_PKT_MAC_RINFO64
(i, oct->pf_num))));
}
/*In cn23xx_setup_global_input_regs*/
for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) {
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_IQ_PKT_CONTROL64", i,
CVM_CAST64(CN23XX_SLI_IQ_PKT_CONTROL64(i)),
CVM_CAST64(octeon_read_csr64
(oct, CN23XX_SLI_IQ_PKT_CONTROL64(i))));
}
/*In cn23xx_setup_global_output_regs*/
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"CN23XX_SLI_OQ_WMARK", CVM_CAST64(CN23XX_SLI_OQ_WMARK),
CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_OQ_WMARK)));
for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) {
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_OQ_PKT_CONTROL", i,
CVM_CAST64(CN23XX_SLI_OQ_PKT_CONTROL(i)),
CVM_CAST64(octeon_read_csr(
oct, CN23XX_SLI_OQ_PKT_CONTROL(i))));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_OQ_PKT_INT_LEVELS", i,
CVM_CAST64(CN23XX_SLI_OQ_PKT_INT_LEVELS(i)),
CVM_CAST64(octeon_read_csr64(
oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(i))));
}
/*In cn23xx_enable_interrupt and cn23xx_disable_interrupt*/
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"cn23xx->intr_enb_reg64",
CVM_CAST64((long)(cn23xx->intr_enb_reg64)),
CVM_CAST64(readq(cn23xx->intr_enb_reg64)));
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"cn23xx->intr_sum_reg64",
CVM_CAST64((long)(cn23xx->intr_sum_reg64)),
CVM_CAST64(readq(cn23xx->intr_sum_reg64)));
/*In cn23xx_setup_iq_regs*/
for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) {
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_IQ_BASE_ADDR64", i,
CVM_CAST64(CN23XX_SLI_IQ_BASE_ADDR64(i)),
CVM_CAST64(octeon_read_csr64(
oct, CN23XX_SLI_IQ_BASE_ADDR64(i))));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_IQ_SIZE", i,
CVM_CAST64(CN23XX_SLI_IQ_SIZE(i)),
CVM_CAST64(octeon_read_csr
(oct, CN23XX_SLI_IQ_SIZE(i))));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_IQ_DOORBELL", i,
CVM_CAST64(CN23XX_SLI_IQ_DOORBELL(i)),
CVM_CAST64(octeon_read_csr64(
oct, CN23XX_SLI_IQ_DOORBELL(i))));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_IQ_INSTR_COUNT64", i,
CVM_CAST64(CN23XX_SLI_IQ_INSTR_COUNT64(i)),
CVM_CAST64(octeon_read_csr64(
oct, CN23XX_SLI_IQ_INSTR_COUNT64(i))));
}
/*In cn23xx_setup_oq_regs*/
for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) {
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_OQ_BASE_ADDR64", i,
CVM_CAST64(CN23XX_SLI_OQ_BASE_ADDR64(i)),
CVM_CAST64(octeon_read_csr64(
oct, CN23XX_SLI_OQ_BASE_ADDR64(i))));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_OQ_SIZE", i,
CVM_CAST64(CN23XX_SLI_OQ_SIZE(i)),
CVM_CAST64(octeon_read_csr
(oct, CN23XX_SLI_OQ_SIZE(i))));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_OQ_BUFF_INFO_SIZE", i,
CVM_CAST64(CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)),
CVM_CAST64(octeon_read_csr(
oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(i))));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_OQ_PKTS_SENT", i,
CVM_CAST64(CN23XX_SLI_OQ_PKTS_SENT(i)),
CVM_CAST64(octeon_read_csr64(
oct, CN23XX_SLI_OQ_PKTS_SENT(i))));
dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
"CN23XX_SLI_OQ_PKTS_CREDIT", i,
CVM_CAST64(CN23XX_SLI_OQ_PKTS_CREDIT(i)),
CVM_CAST64(octeon_read_csr64(
oct, CN23XX_SLI_OQ_PKTS_CREDIT(i))));
}
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"CN23XX_SLI_PKT_TIME_INT",
CVM_CAST64(CN23XX_SLI_PKT_TIME_INT),
CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_TIME_INT)));
dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
"CN23XX_SLI_PKT_CNT_INT",
CVM_CAST64(CN23XX_SLI_PKT_CNT_INT),
CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_CNT_INT)));
}
static int cn23xx_pf_soft_reset(struct octeon_device *oct)
{
octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF);
dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: BIST enabled for CN23XX soft reset\n",
oct->octeon_id);
octeon_write_csr64(oct, CN23XX_SLI_SCRATCH1, 0x1234ULL);
/* Initiate chip-wide soft reset */
lio_pci_readq(oct, CN23XX_RST_SOFT_RST);
lio_pci_writeq(oct, 1, CN23XX_RST_SOFT_RST);
/* Wait for 100ms as Octeon resets. */
mdelay(100);
if (octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)) {
dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Soft reset failed\n",
oct->octeon_id);
return 1;
}
dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Reset completed\n",
oct->octeon_id);
/* restore the reset value*/
octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF);
return 0;
}
static void cn23xx_enable_error_reporting(struct octeon_device *oct)
{
u32 regval;
u32 uncorrectable_err_mask, corrtable_err_status;
pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, &regval);
if (regval & CN23XX_CONFIG_PCIE_DEVCTL_MASK) {
uncorrectable_err_mask = 0;
corrtable_err_status = 0;
pci_read_config_dword(oct->pci_dev,
CN23XX_CONFIG_PCIE_UNCORRECT_ERR_MASK,
&uncorrectable_err_mask);
pci_read_config_dword(oct->pci_dev,
CN23XX_CONFIG_PCIE_CORRECT_ERR_STATUS,
&corrtable_err_status);
dev_err(&oct->pci_dev->dev, "PCI-E Fatal error detected;\n"
"\tdev_ctl_status_reg = 0x%08x\n"
"\tuncorrectable_error_mask_reg = 0x%08x\n"
"\tcorrectable_error_status_reg = 0x%08x\n",
regval, uncorrectable_err_mask,
corrtable_err_status);
}
regval |= 0xf; /* Enable Link error reporting */
dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Enabling PCI-E error reporting..\n",
oct->octeon_id);
pci_write_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, regval);
}
static u32 cn23xx_coprocessor_clock(struct octeon_device *oct)
{
/* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER
* for SLI.
*/
/* TBD: get the info in Hand-shake */
return (((lio_pci_readq(oct, CN23XX_RST_BOOT) >> 24) & 0x3f) * 50);
}
u32 cn23xx_pf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us)
{
/* This gives the SLI clock per microsec */
u32 oqticks_per_us = cn23xx_coprocessor_clock(oct);
oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us;
/* This gives the clock cycles per millisecond */
oqticks_per_us *= 1000;
/* This gives the oq ticks (1024 core clock cycles) per millisecond */
oqticks_per_us /= 1024;
/* time_intr is in microseconds. The next 2 steps gives the oq ticks
* corressponding to time_intr.
*/
oqticks_per_us *= time_intr_in_us;
oqticks_per_us /= 1000;
return oqticks_per_us;
}
static void cn23xx_setup_global_mac_regs(struct octeon_device *oct)
{
u16 mac_no = oct->pcie_port;
u16 pf_num = oct->pf_num;
u64 reg_val;
u64 temp;
/* programming SRN and TRS for each MAC(0..3) */
dev_dbg(&oct->pci_dev->dev, "%s:Using pcie port %d\n",
__func__, mac_no);
/* By default, mapping all 64 IOQs to a single MACs */
reg_val =
octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num));
if (oct->rev_id == OCTEON_CN23XX_REV_1_1) {
/* setting SRN <6:0> */
reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF_PASS_1_1;
} else {
/* setting SRN <6:0> */
reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF;
}
/* setting TRS <23:16> */
reg_val = reg_val |
(oct->sriov_info.trs << CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS);
/* setting RPVF <39:32> */
temp = oct->sriov_info.rings_per_vf & 0xff;
reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_RPVF_BIT_POS);
/* setting NVFS <55:48> */
temp = oct->sriov_info.max_vfs & 0xff;
reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_NVFS_BIT_POS);
/* write these settings to MAC register */
octeon_write_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num),
reg_val);
dev_dbg(&oct->pci_dev->dev, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n",
mac_no, pf_num, (u64)octeon_read_csr64
(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)));
}
static int cn23xx_reset_io_queues(struct octeon_device *oct)
{
int ret_val = 0;
u64 d64;
u32 q_no, srn, ern;
u32 loop = 1000;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->sriov_info.num_pf_rings;
/*As per HRM reg description, s/w cant write 0 to ENB. */
/*to make the queue off, need to set the RST bit. */
/* Reset the Enable bit for all the 64 IQs. */
for (q_no = srn; q_no < ern; q_no++) {
/* set RST bit to 1. This bit applies to both IQ and OQ */
d64 = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
d64 = d64 | CN23XX_PKT_INPUT_CTL_RST;
octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64);
}
/*wait until the RST bit is clear or the RST and quite bits are set*/
for (q_no = srn; q_no < ern; q_no++) {
u64 reg_val = octeon_read_csr64(oct,
CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) &&
!(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) &&
loop--) {
WRITE_ONCE(reg_val, octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
}
if (!loop) {
dev_err(&oct->pci_dev->dev,
"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
q_no);
return -1;
}
WRITE_ONCE(reg_val, READ_ONCE(reg_val) &
~CN23XX_PKT_INPUT_CTL_RST);
octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
READ_ONCE(reg_val));
WRITE_ONCE(reg_val, octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) {
dev_err(&oct->pci_dev->dev,
"clearing the reset failed for qno: %u\n",
q_no);
ret_val = -1;
}
}
return ret_val;
}
static int cn23xx_pf_setup_global_input_regs(struct octeon_device *oct)
{
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
struct octeon_instr_queue *iq;
u64 intr_threshold, reg_val;
u32 q_no, ern, srn;
u64 pf_num;
u64 vf_num;
pf_num = oct->pf_num;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->sriov_info.num_pf_rings;
if (cn23xx_reset_io_queues(oct))
return -1;
/** Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg
* for all queues.Only PF can set these bits.
* bits 29:30 indicate the MAC num.
* bits 32:47 indicate the PVF num.
*/
for (q_no = 0; q_no < ern; q_no++) {
reg_val = oct->pcie_port << CN23XX_PKT_INPUT_CTL_MAC_NUM_POS;
/* for VF assigned queues. */
if (q_no < oct->sriov_info.pf_srn) {
vf_num = q_no / oct->sriov_info.rings_per_vf;
vf_num += 1; /* VF1, VF2,........ */
} else {
vf_num = 0;
}
reg_val |= vf_num << CN23XX_PKT_INPUT_CTL_VF_NUM_POS;
reg_val |= pf_num << CN23XX_PKT_INPUT_CTL_PF_NUM_POS;
octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
}
/* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for
* pf queues
*/
for (q_no = srn; q_no < ern; q_no++) {
void __iomem *inst_cnt_reg;
iq = oct->instr_queue[q_no];
if (iq)
inst_cnt_reg = iq->inst_cnt_reg;
else
inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr +
CN23XX_SLI_IQ_INSTR_COUNT64(q_no);
reg_val =
octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
reg_val |= CN23XX_PKT_INPUT_CTL_MASK;
octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
/* Set WMARK level for triggering PI_INT */
/* intr_threshold = CN23XX_DEF_IQ_INTR_THRESHOLD & */
intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) &
CN23XX_PKT_IN_DONE_WMARK_MASK;
writeq((readq(inst_cnt_reg) &
~(CN23XX_PKT_IN_DONE_WMARK_MASK <<
CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) |
(intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS),
inst_cnt_reg);
}
return 0;
}
static void cn23xx_pf_setup_global_output_regs(struct octeon_device *oct)
{
u32 reg_val;
u32 q_no, ern, srn;
u64 time_threshold;
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->sriov_info.num_pf_rings;
if (CFG_GET_IS_SLI_BP_ON(cn23xx->conf)) {
octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 32);
} else {
/** Set Output queue watermark to 0 to disable backpressure */
octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 0);
}
for (q_no = srn; q_no < ern; q_no++) {
reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no));
/* clear IPTR */
reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR;
/* set DPTR */
reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR;
/* reset BMODE */
reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE);
/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
* for Output Queue ScatterList
* reset ROR_P, NSR_P
*/
reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P);
reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P);
#ifdef __LITTLE_ENDIAN_BITFIELD
reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P);
#else
reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P);
#endif
/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
* for Output Queue Data
* reset ROR, NSR
*/
reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR);
reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR);
/* set the ES bit */
reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES);
/* write all the selected settings */
octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val);
/* Enabling these interrupt in oct->fn_list.enable_interrupt()
* routine which called after IOQ init.
* Set up interrupt packet and time thresholds
* for all the OQs
*/
time_threshold = cn23xx_pf_get_oq_ticks(
oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
octeon_write_csr64(oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no),
(CFG_GET_OQ_INTR_PKT(cn23xx->conf) |
(time_threshold << 32)));
}
/** Setting the water mark level for pko back pressure **/
writeq(0x40, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_WMARK);
/** Disabling setting OQs in reset when ring has no dorebells
* enabling this will cause of head of line blocking
*/
/* Do it only for pass1.1. and pass1.2 */
if ((oct->rev_id == OCTEON_CN23XX_REV_1_0) ||
(oct->rev_id == OCTEON_CN23XX_REV_1_1))
writeq(readq((u8 *)oct->mmio[0].hw_addr +
CN23XX_SLI_GBL_CONTROL) | 0x2,
(u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL);
/** Enable channel-level backpressure */
if (oct->pf_num)
writeq(0xffffffffffffffffULL,
(u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN2_W1S);
else
writeq(0xffffffffffffffffULL,
(u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN_W1S);
}
static int cn23xx_setup_pf_device_regs(struct octeon_device *oct)
{
cn23xx_enable_error_reporting(oct);
/* program the MAC(0..3)_RINFO before setting up input/output regs */
cn23xx_setup_global_mac_regs(oct);
if (cn23xx_pf_setup_global_input_regs(oct))
return -1;
cn23xx_pf_setup_global_output_regs(oct);
/* Default error timeout value should be 0x200000 to avoid host hang
* when reads invalid register
*/
octeon_write_csr64(oct, CN23XX_SLI_WINDOW_CTL,
CN23XX_SLI_WINDOW_CTL_DEFAULT);
/* set SLI_PKT_IN_JABBER to handle large VXLAN packets */
octeon_write_csr64(oct, CN23XX_SLI_PKT_IN_JABBER, CN23XX_INPUT_JABBER);
return 0;
}
static void cn23xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
u64 pkt_in_done;
iq_no += oct->sriov_info.pf_srn;
/* Write the start of the input queue's ring and its size */
octeon_write_csr64(oct, CN23XX_SLI_IQ_BASE_ADDR64(iq_no),
iq->base_addr_dma);
octeon_write_csr(oct, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count);
/* Remember the doorbell & instruction count register addr
* for this queue
*/
iq->doorbell_reg =
(u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no);
iq->inst_cnt_reg =
(u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no);
dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
/* Store the current instruction counter (used in flush_iq
* calculation)
*/
pkt_in_done = readq(iq->inst_cnt_reg);
if (oct->msix_on) {
/* Set CINT_ENB to enable IQ interrupt */
writeq((pkt_in_done | CN23XX_INTR_CINT_ENB),
iq->inst_cnt_reg);
} else {
/* Clear the count by writing back what we read, but don't
* enable interrupts
*/
writeq(pkt_in_done, iq->inst_cnt_reg);
}
iq->reset_instr_cnt = 0;
}
static void cn23xx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
{
u32 reg_val;
struct octeon_droq *droq = oct->droq[oq_no];
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
u64 time_threshold;
u64 cnt_threshold;
oq_no += oct->sriov_info.pf_srn;
octeon_write_csr64(oct, CN23XX_SLI_OQ_BASE_ADDR64(oq_no),
droq->desc_ring_dma);
octeon_write_csr(oct, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count);
octeon_write_csr(oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
droq->buffer_size);
/* Get the mapped address of the pkt_sent and pkts_credit regs */
droq->pkts_sent_reg =
(u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no);
droq->pkts_credit_reg =
(u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no);
if (!oct->msix_on) {
/* Enable this output queue to generate Packet Timer Interrupt
*/
reg_val =
octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
reg_val |= CN23XX_PKT_OUTPUT_CTL_TENB;
octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
reg_val);
/* Enable this output queue to generate Packet Count Interrupt
*/
reg_val =
octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
reg_val |= CN23XX_PKT_OUTPUT_CTL_CENB;
octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
reg_val);
} else {
time_threshold = cn23xx_pf_get_oq_ticks(
oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
cnt_threshold = (u32)CFG_GET_OQ_INTR_PKT(cn23xx->conf);
octeon_write_csr64(
oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no),
((time_threshold << 32 | cnt_threshold)));
}
}
static void cn23xx_pf_mbox_thread(struct work_struct *work)
{
struct cavium_wk *wk = (struct cavium_wk *)work;
struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr;
struct octeon_device *oct = mbox->oct_dev;
u64 mbox_int_val, val64;
u32 q_no, i;
if (oct->rev_id < OCTEON_CN23XX_REV_1_1) {
/*read and clear by writing 1*/
mbox_int_val = readq(mbox->mbox_int_reg);
writeq(mbox_int_val, mbox->mbox_int_reg);
for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) {
q_no = i * oct->sriov_info.rings_per_vf;
val64 = readq(oct->mbox[q_no]->mbox_write_reg);
if (val64 && (val64 != OCTEON_PFVFACK)) {
if (octeon_mbox_read(oct->mbox[q_no]))
octeon_mbox_process_message(
oct->mbox[q_no]);
}
}
schedule_delayed_work(&wk->work, msecs_to_jiffies(10));
} else {
octeon_mbox_process_message(mbox);
}
}
static int cn23xx_setup_pf_mbox(struct octeon_device *oct)
{
struct octeon_mbox *mbox = NULL;
u16 mac_no = oct->pcie_port;
u16 pf_num = oct->pf_num;
u32 q_no, i;
if (!oct->sriov_info.max_vfs)
return 0;
for (i = 0; i < oct->sriov_info.max_vfs; i++) {
q_no = i * oct->sriov_info.rings_per_vf;
mbox = vmalloc(sizeof(*mbox));
if (!mbox)
goto free_mbox;
memset(mbox, 0, sizeof(struct octeon_mbox));
spin_lock_init(&mbox->lock);
mbox->oct_dev = oct;
mbox->q_no = q_no;
mbox->state = OCTEON_MBOX_STATE_IDLE;
/* PF mbox interrupt reg */
mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr +
CN23XX_SLI_MAC_PF_MBOX_INT(mac_no, pf_num);
/* PF writes into SIG0 reg */
mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr +
CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 0);
/* PF reads from SIG1 reg */
mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr +
CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 1);
/*Mail Box Thread creation*/
INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work,
cn23xx_pf_mbox_thread);
mbox->mbox_poll_wk.ctxptr = (void *)mbox;
oct->mbox[q_no] = mbox;
writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg);
}
if (oct->rev_id < OCTEON_CN23XX_REV_1_1)
schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work,
msecs_to_jiffies(0));
return 0;
free_mbox:
while (i) {
i--;
vfree(oct->mbox[i]);
}
return 1;
}
static int cn23xx_free_pf_mbox(struct octeon_device *oct)
{
u32 q_no, i;
if (!oct->sriov_info.max_vfs)
return 0;
for (i = 0; i < oct->sriov_info.max_vfs; i++) {
q_no = i * oct->sriov_info.rings_per_vf;
cancel_delayed_work_sync(
&oct->mbox[q_no]->mbox_poll_wk.work);
vfree(oct->mbox[q_no]);
}
return 0;
}
static int cn23xx_enable_io_queues(struct octeon_device *oct)
{
u64 reg_val;
u32 srn, ern, q_no;
u32 loop = 1000;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->num_iqs;
for (q_no = srn; q_no < ern; q_no++) {
/* set the corresponding IQ IS_64B bit */
if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) {
reg_val = octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B;
octeon_write_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
}
/* set the corresponding IQ ENB bit */
if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) {
/* IOQs are in reset by default in PEM2 mode,
* clearing reset bit
*/
reg_val = octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) &&
!(reg_val &
CN23XX_PKT_INPUT_CTL_QUIET) &&
--loop) {
reg_val = octeon_read_csr64(
oct,
CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
}
if (!loop) {
dev_err(&oct->pci_dev->dev,
"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
q_no);
return -1;
}
reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST;
octeon_write_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
reg_val = octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
dev_err(&oct->pci_dev->dev,
"clearing the reset failed for qno: %u\n",
q_no);
return -1;
}
}
reg_val = octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB;
octeon_write_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
}
}
for (q_no = srn; q_no < ern; q_no++) {
u32 reg_val;
/* set the corresponding OQ ENB bit */
if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) {
reg_val = octeon_read_csr(
oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no));
reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB;
octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no),
reg_val);
}
}
return 0;
}
static void cn23xx_disable_io_queues(struct octeon_device *oct)
{
int q_no, loop;
u64 d64;
u32 d32;
u32 srn, ern;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->num_iqs;
/*** Disable Input Queues. ***/
for (q_no = srn; q_no < ern; q_no++) {
loop = HZ;
/* start the Reset for a particular ring */
WRITE_ONCE(d64, octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
WRITE_ONCE(d64, READ_ONCE(d64) &
(~(CN23XX_PKT_INPUT_CTL_RING_ENB)));
WRITE_ONCE(d64, READ_ONCE(d64) | CN23XX_PKT_INPUT_CTL_RST);
octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
READ_ONCE(d64));
/* Wait until hardware indicates that the particular IQ
* is out of reset.
*/
WRITE_ONCE(d64, octeon_read_csr64(
oct, CN23XX_SLI_PKT_IOQ_RING_RST));
while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) {
WRITE_ONCE(d64, octeon_read_csr64(
oct, CN23XX_SLI_PKT_IOQ_RING_RST));
schedule_timeout_uninterruptible(1);
}
/* Reset the doorbell register for this Input Queue. */
octeon_write_csr(oct, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF);
while (octeon_read_csr64(oct, CN23XX_SLI_IQ_DOORBELL(q_no)) &&
loop--) {
schedule_timeout_uninterruptible(1);
}
}
/*** Disable Output Queues. ***/
for (q_no = srn; q_no < ern; q_no++) {
loop = HZ;
/* Wait until hardware indicates that the particular IQ
* is out of reset.It given that SLI_PKT_RING_RST is
* common for both IQs and OQs
*/
WRITE_ONCE(d64, octeon_read_csr64(
oct, CN23XX_SLI_PKT_IOQ_RING_RST));
while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) {
WRITE_ONCE(d64, octeon_read_csr64(
oct, CN23XX_SLI_PKT_IOQ_RING_RST));
schedule_timeout_uninterruptible(1);
}
/* Reset the doorbell register for this Output Queue. */
octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no),
0xFFFFFFFF);
while (octeon_read_csr64(oct,
CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) &&
loop--) {
schedule_timeout_uninterruptible(1);
}
/* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */
WRITE_ONCE(d32, octeon_read_csr(
oct, CN23XX_SLI_OQ_PKTS_SENT(q_no)));
octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_SENT(q_no),
READ_ONCE(d32));
}
}
static u64 cn23xx_pf_msix_interrupt_handler(void *dev)
{
struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
struct octeon_device *oct = ioq_vector->oct_dev;
u64 pkts_sent;
u64 ret = 0;
struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
if (!droq) {
dev_err(&oct->pci_dev->dev, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n",
oct->pf_num, ioq_vector->ioq_num);
return 0;
}
pkts_sent = readq(droq->pkts_sent_reg);
/* If our device has interrupted, then proceed. Also check
* for all f's if interrupt was triggered on an error
* and the PCI read fails.
*/
if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL))
return ret;
/* Write count reg in sli_pkt_cnts to clear these int.*/
if ((pkts_sent & CN23XX_INTR_PO_INT) ||
(pkts_sent & CN23XX_INTR_PI_INT)) {
if (pkts_sent & CN23XX_INTR_PO_INT)
ret |= MSIX_PO_INT;
}
if (pkts_sent & CN23XX_INTR_PI_INT)
/* We will clear the count when we update the read_index. */
ret |= MSIX_PI_INT;
/* Never need to handle msix mbox intr for pf. They arrive on the last
* msix
*/
return ret;
}
static void cn23xx_handle_pf_mbox_intr(struct octeon_device *oct)
{
struct delayed_work *work;
u64 mbox_int_val;
u32 i, q_no;
mbox_int_val = readq(oct->mbox[0]->mbox_int_reg);
for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) {
q_no = i * oct->sriov_info.rings_per_vf;
if (mbox_int_val & BIT_ULL(q_no)) {
writeq(BIT_ULL(q_no),
oct->mbox[0]->mbox_int_reg);
if (octeon_mbox_read(oct->mbox[q_no])) {
work = &oct->mbox[q_no]->mbox_poll_wk.work;
schedule_delayed_work(work,
msecs_to_jiffies(0));
}
}
}
}
static irqreturn_t cn23xx_interrupt_handler(void *dev)
{
struct octeon_device *oct = (struct octeon_device *)dev;
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
u64 intr64;
dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
intr64 = readq(cn23xx->intr_sum_reg64);
oct->int_status = 0;
if (intr64 & CN23XX_INTR_ERR)
dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Error Intr: 0x%016llx\n",
oct->octeon_id, CVM_CAST64(intr64));
/* When VFs write into MBOX_SIG2 reg,these intr is set in PF */
if (intr64 & CN23XX_INTR_VF_MBOX)
cn23xx_handle_pf_mbox_intr(oct);
if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) {
if (intr64 & CN23XX_INTR_PKT_DATA)
oct->int_status |= OCT_DEV_INTR_PKT_DATA;
}
if (intr64 & (CN23XX_INTR_DMA0_FORCE))
oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
if (intr64 & (CN23XX_INTR_DMA1_FORCE))
oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
/* Clear the current interrupts */
writeq(intr64, cn23xx->intr_sum_reg64);
return IRQ_HANDLED;
}
static void cn23xx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr,
u32 idx, int valid)
{
u64 bar1;
u64 reg_adr;
if (!valid) {
reg_adr = lio_pci_readq(
oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
WRITE_ONCE(bar1, reg_adr);
lio_pci_writeq(oct, (READ_ONCE(bar1) & 0xFFFFFFFEULL),
CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
reg_adr = lio_pci_readq(
oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
WRITE_ONCE(bar1, reg_adr);
return;
}
/* The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores
* bits <41:22> of the Core Addr
*/
lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
WRITE_ONCE(bar1, lio_pci_readq(
oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)));
}
static void cn23xx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask)
{
lio_pci_writeq(oct, mask,
CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
}
static u32 cn23xx_bar1_idx_read(struct octeon_device *oct, u32 idx)
{
return (u32)lio_pci_readq(
oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
}
/* always call with lock held */
static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq)
{
u32 new_idx;
u32 last_done;
u32 pkt_in_done = readl(iq->inst_cnt_reg);
last_done = pkt_in_done - iq->pkt_in_done;
iq->pkt_in_done = pkt_in_done;
/* Modulo of the new index with the IQ size will give us
* the new index. The iq->reset_instr_cnt is always zero for
* cn23xx, so no extra adjustments are needed.
*/
new_idx = (iq->octeon_read_index +
(u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) %
iq->max_count;
return new_idx;
}
static void cn23xx_enable_pf_interrupt(struct octeon_device *oct, u8 intr_flag)
{
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
u64 intr_val = 0;
/* Divide the single write to multiple writes based on the flag. */
/* Enable Interrupt */
if (intr_flag == OCTEON_ALL_INTR) {
writeq(cn23xx->intr_mask64, cn23xx->intr_enb_reg64);
} else if (intr_flag & OCTEON_OUTPUT_INTR) {
intr_val = readq(cn23xx->intr_enb_reg64);
intr_val |= CN23XX_INTR_PKT_DATA;
writeq(intr_val, cn23xx->intr_enb_reg64);
} else if ((intr_flag & OCTEON_MBOX_INTR) &&
(oct->sriov_info.max_vfs > 0)) {
if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) {
intr_val = readq(cn23xx->intr_enb_reg64);
intr_val |= CN23XX_INTR_VF_MBOX;
writeq(intr_val, cn23xx->intr_enb_reg64);
}
}
}
static void cn23xx_disable_pf_interrupt(struct octeon_device *oct, u8 intr_flag)
{
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
u64 intr_val = 0;
/* Disable Interrupts */
if (intr_flag == OCTEON_ALL_INTR) {
writeq(0, cn23xx->intr_enb_reg64);
} else if (intr_flag & OCTEON_OUTPUT_INTR) {
intr_val = readq(cn23xx->intr_enb_reg64);
intr_val &= ~CN23XX_INTR_PKT_DATA;
writeq(intr_val, cn23xx->intr_enb_reg64);
} else if ((intr_flag & OCTEON_MBOX_INTR) &&
(oct->sriov_info.max_vfs > 0)) {
if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) {
intr_val = readq(cn23xx->intr_enb_reg64);
intr_val &= ~CN23XX_INTR_VF_MBOX;
writeq(intr_val, cn23xx->intr_enb_reg64);
}
}
}
static void cn23xx_get_pcie_qlmport(struct octeon_device *oct)
{
oct->pcie_port = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff;
dev_dbg(&oct->pci_dev->dev, "OCTEON: CN23xx uses PCIE Port %d\n",
oct->pcie_port);
}
static int cn23xx_get_pf_num(struct octeon_device *oct)
{
u32 fdl_bit = 0;
u64 pkt0_in_ctl, d64;
int pfnum, mac, trs, ret;
ret = 0;
/** Read Function Dependency Link reg to get the function number */
if (pci_read_config_dword(oct->pci_dev, CN23XX_PCIE_SRIOV_FDL,
&fdl_bit) == 0) {
oct->pf_num = ((fdl_bit >> CN23XX_PCIE_SRIOV_FDL_BIT_POS) &
CN23XX_PCIE_SRIOV_FDL_MASK);
} else {
ret = -EINVAL;
/* Under some virtual environments, extended PCI regs are
* inaccessible, in which case the above read will have failed.
* In this case, read the PF number from the
* SLI_PKT0_INPUT_CONTROL reg (written by f/w)
*/
pkt0_in_ctl = octeon_read_csr64(oct,
CN23XX_SLI_IQ_PKT_CONTROL64(0));
pfnum = (pkt0_in_ctl >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) &
CN23XX_PKT_INPUT_CTL_PF_NUM_MASK;
mac = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff;
/* validate PF num by reading RINFO; f/w writes RINFO.trs == 1*/
d64 = octeon_read_csr64(oct,
CN23XX_SLI_PKT_MAC_RINFO64(mac, pfnum));
trs = (int)(d64 >> CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS) & 0xff;
if (trs == 1) {
dev_err(&oct->pci_dev->dev,
"OCTEON: error reading PCI cfg space pfnum, re-read %u\n",
pfnum);
oct->pf_num = pfnum;
ret = 0;
} else {
dev_err(&oct->pci_dev->dev,
"OCTEON: error reading PCI cfg space pfnum; could not ascertain PF number\n");
}
}
return ret;
}
static void cn23xx_setup_reg_address(struct octeon_device *oct)
{
u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
oct->reg_list.pci_win_wr_addr_hi =
(u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_HI);
oct->reg_list.pci_win_wr_addr_lo =
(u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_LO);
oct->reg_list.pci_win_wr_addr =
(u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR64);
oct->reg_list.pci_win_rd_addr_hi =
(u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_HI);
oct->reg_list.pci_win_rd_addr_lo =
(u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_LO);
oct->reg_list.pci_win_rd_addr =
(u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR64);
oct->reg_list.pci_win_wr_data_hi =
(u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_HI);
oct->reg_list.pci_win_wr_data_lo =
(u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_LO);
oct->reg_list.pci_win_wr_data =
(u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA64);
oct->reg_list.pci_win_rd_data_hi =
(u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_HI);
oct->reg_list.pci_win_rd_data_lo =
(u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_LO);
oct->reg_list.pci_win_rd_data =
(u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA64);
cn23xx_get_pcie_qlmport(oct);
cn23xx->intr_mask64 = CN23XX_INTR_MASK;
if (!oct->msix_on)
cn23xx->intr_mask64 |= CN23XX_INTR_PKT_TIME;
if (oct->rev_id >= OCTEON_CN23XX_REV_1_1)
cn23xx->intr_mask64 |= CN23XX_INTR_VF_MBOX;
cn23xx->intr_sum_reg64 =
bar0_pciaddr +
CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num);
cn23xx->intr_enb_reg64 =
bar0_pciaddr +
CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num);
}
int cn23xx_sriov_config(struct octeon_device *oct)
{
struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
u32 max_rings, total_rings, max_vfs, rings_per_vf;
u32 pf_srn, num_pf_rings;
u32 max_possible_vfs;
cn23xx->conf =
(struct octeon_config *)oct_get_config_info(oct, LIO_23XX);
switch (oct->rev_id) {
case OCTEON_CN23XX_REV_1_0:
max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_0;
max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_0;
break;
case OCTEON_CN23XX_REV_1_1:
max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_1;
max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_1;
break;
default:
max_rings = CN23XX_MAX_RINGS_PER_PF;
max_possible_vfs = CN23XX_MAX_VFS_PER_PF;
break;
}
if (oct->sriov_info.num_pf_rings)
num_pf_rings = oct->sriov_info.num_pf_rings;
else
num_pf_rings = num_present_cpus();
#ifdef CONFIG_PCI_IOV
max_vfs = min_t(u32,
(max_rings - num_pf_rings), max_possible_vfs);
rings_per_vf = 1;
#else
max_vfs = 0;
rings_per_vf = 0;
#endif
total_rings = num_pf_rings + max_vfs;
/* the first ring of the pf */
pf_srn = total_rings - num_pf_rings;
oct->sriov_info.trs = total_rings;
oct->sriov_info.max_vfs = max_vfs;
oct->sriov_info.rings_per_vf = rings_per_vf;
oct->sriov_info.pf_srn = pf_srn;
oct->sriov_info.num_pf_rings = num_pf_rings;
dev_notice(&oct->pci_dev->dev, "trs:%d max_vfs:%d rings_per_vf:%d pf_srn:%d num_pf_rings:%d\n",
oct->sriov_info.trs, oct->sriov_info.max_vfs,
oct->sriov_info.rings_per_vf, oct->sriov_info.pf_srn,
oct->sriov_info.num_pf_rings);
oct->sriov_info.sriov_enabled = 0;
return 0;
}
int setup_cn23xx_octeon_pf_device(struct octeon_device *oct)
{
u32 data32;
u64 BAR0, BAR1;
pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_0, &data32);
BAR0 = (u64)(data32 & ~0xf);
pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_1, &data32);
BAR0 |= ((u64)data32 << 32);
pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_2, &data32);
BAR1 = (u64)(data32 & ~0xf);
pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_3, &data32);
BAR1 |= ((u64)data32 << 32);
if (!BAR0 || !BAR1) {
if (!BAR0)
dev_err(&oct->pci_dev->dev, "device BAR0 unassigned\n");
if (!BAR1)
dev_err(&oct->pci_dev->dev, "device BAR1 unassigned\n");
return 1;
}
if (octeon_map_pci_barx(oct, 0, 0))
return 1;
if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
dev_err(&oct->pci_dev->dev, "%s CN23XX BAR1 map failed\n",
__func__);
octeon_unmap_pci_barx(oct, 0);
return 1;
}
if (cn23xx_get_pf_num(oct) != 0)
return 1;
if (cn23xx_sriov_config(oct)) {
octeon_unmap_pci_barx(oct, 0);
octeon_unmap_pci_barx(oct, 1);
return 1;
}
octeon_write_csr64(oct, CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL);
oct->fn_list.setup_iq_regs = cn23xx_setup_iq_regs;
oct->fn_list.setup_oq_regs = cn23xx_setup_oq_regs;
oct->fn_list.setup_mbox = cn23xx_setup_pf_mbox;
oct->fn_list.free_mbox = cn23xx_free_pf_mbox;
oct->fn_list.process_interrupt_regs = cn23xx_interrupt_handler;
oct->fn_list.msix_interrupt_handler = cn23xx_pf_msix_interrupt_handler;
oct->fn_list.soft_reset = cn23xx_pf_soft_reset;
oct->fn_list.setup_device_regs = cn23xx_setup_pf_device_regs;
oct->fn_list.update_iq_read_idx = cn23xx_update_read_index;
oct->fn_list.bar1_idx_setup = cn23xx_bar1_idx_setup;
oct->fn_list.bar1_idx_write = cn23xx_bar1_idx_write;
oct->fn_list.bar1_idx_read = cn23xx_bar1_idx_read;
oct->fn_list.enable_interrupt = cn23xx_enable_pf_interrupt;
oct->fn_list.disable_interrupt = cn23xx_disable_pf_interrupt;
oct->fn_list.enable_io_queues = cn23xx_enable_io_queues;
oct->fn_list.disable_io_queues = cn23xx_disable_io_queues;
cn23xx_setup_reg_address(oct);
oct->coproc_clock_rate = 1000000ULL * cn23xx_coprocessor_clock(oct);
return 0;
}
int validate_cn23xx_pf_config_info(struct octeon_device *oct,
struct octeon_config *conf23xx)
{
if (CFG_GET_IQ_MAX_Q(conf23xx) > CN23XX_MAX_INPUT_QUEUES) {
dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
__func__, CFG_GET_IQ_MAX_Q(conf23xx),
CN23XX_MAX_INPUT_QUEUES);
return 1;
}
if (CFG_GET_OQ_MAX_Q(conf23xx) > CN23XX_MAX_OUTPUT_QUEUES) {
dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
__func__, CFG_GET_OQ_MAX_Q(conf23xx),
CN23XX_MAX_OUTPUT_QUEUES);
return 1;
}
if (CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_32BYTE_INSTR &&
CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_64BYTE_INSTR) {
dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
__func__);
return 1;
}
if (!CFG_GET_OQ_REFILL_THRESHOLD(conf23xx)) {
dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
__func__);
return 1;
}
if (!(CFG_GET_OQ_INTR_TIME(conf23xx))) {
dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
__func__);
return 1;
}
return 0;
}
int cn23xx_fw_loaded(struct octeon_device *oct)
{
u64 val;
/* If there's more than one active PF on this NIC, then that
* implies that the NIC firmware is loaded and running. This check
* prevents a rare false negative that might occur if we only relied
* on checking the SCR2_BIT_FW_LOADED flag. The false negative would
* happen if the PF driver sees SCR2_BIT_FW_LOADED as cleared even
* though the firmware was already loaded but still booting and has yet
* to set SCR2_BIT_FW_LOADED.
*/
if (atomic_read(oct->adapter_refcount) > 1)
return 1;
val = octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
return (val >> SCR2_BIT_FW_LOADED) & 1ULL;
}
void cn23xx_tell_vf_its_macaddr_changed(struct octeon_device *oct, int vfidx,
u8 *mac)
{
if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vfidx)) {
struct octeon_mbox_cmd mbox_cmd;
mbox_cmd.msg.u64 = 0;
mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
mbox_cmd.msg.s.resp_needed = 0;
mbox_cmd.msg.s.cmd = OCTEON_PF_CHANGED_VF_MACADDR;
mbox_cmd.msg.s.len = 1;
mbox_cmd.recv_len = 0;
mbox_cmd.recv_status = 0;
mbox_cmd.fn = NULL;
mbox_cmd.fn_arg = NULL;
ether_addr_copy(mbox_cmd.msg.s.params, mac);
mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf;
octeon_mbox_write(oct, &mbox_cmd);
}
}
static void
cn23xx_get_vf_stats_callback(struct octeon_device *oct,
struct octeon_mbox_cmd *cmd, void *arg)
{
struct oct_vf_stats_ctx *ctx = arg;
memcpy(ctx->stats, cmd->data, sizeof(struct oct_vf_stats));
atomic_set(&ctx->status, 1);
}
int cn23xx_get_vf_stats(struct octeon_device *oct, int vfidx,
struct oct_vf_stats *stats)
{
u32 timeout = HZ; // 1sec
struct octeon_mbox_cmd mbox_cmd;
struct oct_vf_stats_ctx ctx;
u32 count = 0, ret;
if (!(oct->sriov_info.vf_drv_loaded_mask & (1ULL << vfidx)))
return -1;
if (sizeof(struct oct_vf_stats) > sizeof(mbox_cmd.data))
return -1;
mbox_cmd.msg.u64 = 0;
mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
mbox_cmd.msg.s.resp_needed = 1;
mbox_cmd.msg.s.cmd = OCTEON_GET_VF_STATS;
mbox_cmd.msg.s.len = 1;
mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf;
mbox_cmd.recv_len = 0;
mbox_cmd.recv_status = 0;
mbox_cmd.fn = (octeon_mbox_callback_t)cn23xx_get_vf_stats_callback;
ctx.stats = stats;
atomic_set(&ctx.status, 0);
mbox_cmd.fn_arg = (void *)&ctx;
memset(mbox_cmd.data, 0, sizeof(mbox_cmd.data));
octeon_mbox_write(oct, &mbox_cmd);
do {
schedule_timeout_uninterruptible(1);
} while ((atomic_read(&ctx.status) == 0) && (count++ < timeout));
ret = atomic_read(&ctx.status);
if (ret == 0) {
octeon_mbox_cancel(oct, 0);
dev_err(&oct->pci_dev->dev, "Unable to get stats from VF-%d, timedout\n",
vfidx);
return -1;
}
return 0;
}