blob: 5049c3dd08a6a6d11f709371e1f815b7e8f382b4 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/pm_qos.h>
#include <linux/sort.h>
#include "intel_engine_heartbeat.h"
#include "intel_engine_pm.h"
#include "intel_gpu_commands.h"
#include "intel_gt_clock_utils.h"
#include "intel_gt_pm.h"
#include "intel_rc6.h"
#include "selftest_rps.h"
#include "selftests/igt_flush_test.h"
#include "selftests/igt_spinner.h"
#include "selftests/librapl.h"
/* Try to isolate the impact of cstates from determing frequency response */
#define CPU_LATENCY 0 /* -1 to disable pm_qos, 0 to disable cstates */
static void engine_heartbeat_disable(struct intel_engine_cs *engine)
{
engine->props.heartbeat_interval_ms = 0;
intel_engine_pm_get(engine);
intel_engine_park_heartbeat(engine);
}
static void engine_heartbeat_enable(struct intel_engine_cs *engine)
{
intel_engine_pm_put(engine);
engine->props.heartbeat_interval_ms =
engine->defaults.heartbeat_interval_ms;
}
static void dummy_rps_work(struct work_struct *wrk)
{
}
static int cmp_u64(const void *A, const void *B)
{
const u64 *a = A, *b = B;
if (a < b)
return -1;
else if (a > b)
return 1;
else
return 0;
}
static int cmp_u32(const void *A, const void *B)
{
const u32 *a = A, *b = B;
if (a < b)
return -1;
else if (a > b)
return 1;
else
return 0;
}
static struct i915_vma *
create_spin_counter(struct intel_engine_cs *engine,
struct i915_address_space *vm,
bool srm,
u32 **cancel,
u32 **counter)
{
enum {
COUNT,
INC,
__NGPR__,
};
#define CS_GPR(x) GEN8_RING_CS_GPR(engine->mmio_base, x)
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
unsigned long end;
u32 *base, *cs;
int loop, i;
int err;
obj = i915_gem_object_create_internal(vm->i915, 64 << 10);
if (IS_ERR(obj))
return ERR_CAST(obj);
end = obj->base.size / sizeof(u32) - 1;
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err) {
i915_vma_put(vma);
return ERR_PTR(err);
}
base = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(base)) {
i915_gem_object_put(obj);
return ERR_CAST(base);
}
cs = base;
*cs++ = MI_LOAD_REGISTER_IMM(__NGPR__ * 2);
for (i = 0; i < __NGPR__; i++) {
*cs++ = i915_mmio_reg_offset(CS_GPR(i));
*cs++ = 0;
*cs++ = i915_mmio_reg_offset(CS_GPR(i)) + 4;
*cs++ = 0;
}
*cs++ = MI_LOAD_REGISTER_IMM(1);
*cs++ = i915_mmio_reg_offset(CS_GPR(INC));
*cs++ = 1;
loop = cs - base;
/* Unroll the loop to avoid MI_BB_START stalls impacting measurements */
for (i = 0; i < 1024; i++) {
*cs++ = MI_MATH(4);
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(COUNT));
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(INC));
*cs++ = MI_MATH_ADD;
*cs++ = MI_MATH_STORE(MI_MATH_REG(COUNT), MI_MATH_REG_ACCU);
if (srm) {
*cs++ = MI_STORE_REGISTER_MEM_GEN8;
*cs++ = i915_mmio_reg_offset(CS_GPR(COUNT));
*cs++ = lower_32_bits(vma->node.start + end * sizeof(*cs));
*cs++ = upper_32_bits(vma->node.start + end * sizeof(*cs));
}
}
*cs++ = MI_BATCH_BUFFER_START_GEN8;
*cs++ = lower_32_bits(vma->node.start + loop * sizeof(*cs));
*cs++ = upper_32_bits(vma->node.start + loop * sizeof(*cs));
GEM_BUG_ON(cs - base > end);
i915_gem_object_flush_map(obj);
*cancel = base + loop;
*counter = srm ? memset32(base + end, 0, 1) : NULL;
return vma;
}
static u8 wait_for_freq(struct intel_rps *rps, u8 freq, int timeout_ms)
{
u8 history[64], i;
unsigned long end;
int sleep;
i = 0;
memset(history, freq, sizeof(history));
sleep = 20;
/* The PCU does not change instantly, but drifts towards the goal? */
end = jiffies + msecs_to_jiffies(timeout_ms);
do {
u8 act;
act = read_cagf(rps);
if (time_after(jiffies, end))
return act;
/* Target acquired */
if (act == freq)
return act;
/* Any change within the last N samples? */
if (!memchr_inv(history, act, sizeof(history)))
return act;
history[i] = act;
i = (i + 1) % ARRAY_SIZE(history);
usleep_range(sleep, 2 * sleep);
sleep *= 2;
if (sleep > timeout_ms * 20)
sleep = timeout_ms * 20;
} while (1);
}
static u8 rps_set_check(struct intel_rps *rps, u8 freq)
{
mutex_lock(&rps->lock);
GEM_BUG_ON(!intel_rps_is_active(rps));
intel_rps_set(rps, freq);
GEM_BUG_ON(rps->last_freq != freq);
mutex_unlock(&rps->lock);
return wait_for_freq(rps, freq, 50);
}
static void show_pstate_limits(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
if (IS_BROXTON(i915)) {
pr_info("P_STATE_CAP[%x]: 0x%08x\n",
i915_mmio_reg_offset(BXT_RP_STATE_CAP),
intel_uncore_read(rps_to_uncore(rps),
BXT_RP_STATE_CAP));
} else if (IS_GEN(i915, 9)) {
pr_info("P_STATE_LIMITS[%x]: 0x%08x\n",
i915_mmio_reg_offset(GEN9_RP_STATE_LIMITS),
intel_uncore_read(rps_to_uncore(rps),
GEN9_RP_STATE_LIMITS));
}
}
int live_rps_clock_interval(void *arg)
{
struct intel_gt *gt = arg;
struct intel_rps *rps = &gt->rps;
void (*saved_work)(struct work_struct *wrk);
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
if (!intel_rps_is_enabled(rps))
return 0;
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
intel_gt_pm_wait_for_idle(gt);
saved_work = rps->work.func;
rps->work.func = dummy_rps_work;
intel_gt_pm_get(gt);
intel_rps_disable(&gt->rps);
intel_gt_check_clock_frequency(gt);
for_each_engine(engine, gt, id) {
struct i915_request *rq;
u32 cycles;
u64 dt;
if (!intel_engine_can_store_dword(engine))
continue;
engine_heartbeat_disable(engine);
rq = igt_spinner_create_request(&spin,
engine->kernel_context,
MI_NOOP);
if (IS_ERR(rq)) {
engine_heartbeat_enable(engine);
err = PTR_ERR(rq);
break;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
pr_err("%s: RPS spinner did not start\n",
engine->name);
igt_spinner_end(&spin);
engine_heartbeat_enable(engine);
intel_gt_set_wedged(engine->gt);
err = -EIO;
break;
}
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
intel_uncore_write_fw(gt->uncore, GEN6_RP_CUR_UP_EI, 0);
/* Set the evaluation interval to infinity! */
intel_uncore_write_fw(gt->uncore,
GEN6_RP_UP_EI, 0xffffffff);
intel_uncore_write_fw(gt->uncore,
GEN6_RP_UP_THRESHOLD, 0xffffffff);
intel_uncore_write_fw(gt->uncore, GEN6_RP_CONTROL,
GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG);
if (wait_for(intel_uncore_read_fw(gt->uncore,
GEN6_RP_CUR_UP_EI),
10)) {
/* Just skip the test; assume lack of HW support */
pr_notice("%s: rps evaluation interval not ticking\n",
engine->name);
err = -ENODEV;
} else {
ktime_t dt_[5];
u32 cycles_[5];
int i;
for (i = 0; i < 5; i++) {
preempt_disable();
dt_[i] = ktime_get();
cycles_[i] = -intel_uncore_read_fw(gt->uncore, GEN6_RP_CUR_UP_EI);
udelay(1000);
dt_[i] = ktime_sub(ktime_get(), dt_[i]);
cycles_[i] += intel_uncore_read_fw(gt->uncore, GEN6_RP_CUR_UP_EI);
preempt_enable();
}
/* Use the median of both cycle/dt; close enough */
sort(cycles_, 5, sizeof(*cycles_), cmp_u32, NULL);
cycles = (cycles_[1] + 2 * cycles_[2] + cycles_[3]) / 4;
sort(dt_, 5, sizeof(*dt_), cmp_u64, NULL);
dt = div_u64(dt_[1] + 2 * dt_[2] + dt_[3], 4);
}
intel_uncore_write_fw(gt->uncore, GEN6_RP_CONTROL, 0);
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
igt_spinner_end(&spin);
engine_heartbeat_enable(engine);
if (err == 0) {
u64 time = intel_gt_pm_interval_to_ns(gt, cycles);
u32 expected =
intel_gt_ns_to_pm_interval(gt, dt);
pr_info("%s: rps counted %d C0 cycles [%lldns] in %lldns [%d cycles], using GT clock frequency of %uKHz\n",
engine->name, cycles, time, dt, expected,
gt->clock_frequency / 1000);
if (10 * time < 8 * dt ||
8 * time > 10 * dt) {
pr_err("%s: rps clock time does not match walltime!\n",
engine->name);
err = -EINVAL;
}
if (10 * expected < 8 * cycles ||
8 * expected > 10 * cycles) {
pr_err("%s: walltime does not match rps clock ticks!\n",
engine->name);
err = -EINVAL;
}
}
if (igt_flush_test(gt->i915))
err = -EIO;
break; /* once is enough */
}
intel_rps_enable(&gt->rps);
intel_gt_pm_put(gt);
igt_spinner_fini(&spin);
intel_gt_pm_wait_for_idle(gt);
rps->work.func = saved_work;
if (err == -ENODEV) /* skipped, don't report a fail */
err = 0;
return err;
}
int live_rps_control(void *arg)
{
struct intel_gt *gt = arg;
struct intel_rps *rps = &gt->rps;
void (*saved_work)(struct work_struct *wrk);
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
/*
* Check that the actual frequency matches our requested frequency,
* to verify our control mechanism. We have to be careful that the
* PCU may throttle the GPU in which case the actual frequency used
* will be lowered than requested.
*/
if (!intel_rps_is_enabled(rps))
return 0;
if (IS_CHERRYVIEW(gt->i915)) /* XXX fragile PCU */
return 0;
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
intel_gt_pm_wait_for_idle(gt);
saved_work = rps->work.func;
rps->work.func = dummy_rps_work;
intel_gt_pm_get(gt);
for_each_engine(engine, gt, id) {
struct i915_request *rq;
ktime_t min_dt, max_dt;
int f, limit;
int min, max;
if (!intel_engine_can_store_dword(engine))
continue;
engine_heartbeat_disable(engine);
rq = igt_spinner_create_request(&spin,
engine->kernel_context,
MI_NOOP);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
pr_err("%s: RPS spinner did not start\n",
engine->name);
igt_spinner_end(&spin);
engine_heartbeat_enable(engine);
intel_gt_set_wedged(engine->gt);
err = -EIO;
break;
}
if (rps_set_check(rps, rps->min_freq) != rps->min_freq) {
pr_err("%s: could not set minimum frequency [%x], only %x!\n",
engine->name, rps->min_freq, read_cagf(rps));
igt_spinner_end(&spin);
engine_heartbeat_enable(engine);
show_pstate_limits(rps);
err = -EINVAL;
break;
}
for (f = rps->min_freq + 1; f < rps->max_freq; f++) {
if (rps_set_check(rps, f) < f)
break;
}
limit = rps_set_check(rps, f);
if (rps_set_check(rps, rps->min_freq) != rps->min_freq) {
pr_err("%s: could not restore minimum frequency [%x], only %x!\n",
engine->name, rps->min_freq, read_cagf(rps));
igt_spinner_end(&spin);
engine_heartbeat_enable(engine);
show_pstate_limits(rps);
err = -EINVAL;
break;
}
max_dt = ktime_get();
max = rps_set_check(rps, limit);
max_dt = ktime_sub(ktime_get(), max_dt);
min_dt = ktime_get();
min = rps_set_check(rps, rps->min_freq);
min_dt = ktime_sub(ktime_get(), min_dt);
igt_spinner_end(&spin);
engine_heartbeat_enable(engine);
pr_info("%s: range:[%x:%uMHz, %x:%uMHz] limit:[%x:%uMHz], %x:%x response %lluns:%lluns\n",
engine->name,
rps->min_freq, intel_gpu_freq(rps, rps->min_freq),
rps->max_freq, intel_gpu_freq(rps, rps->max_freq),
limit, intel_gpu_freq(rps, limit),
min, max, ktime_to_ns(min_dt), ktime_to_ns(max_dt));
if (limit == rps->min_freq) {
pr_err("%s: GPU throttled to minimum!\n",
engine->name);
show_pstate_limits(rps);
err = -ENODEV;
break;
}
if (igt_flush_test(gt->i915)) {
err = -EIO;
break;
}
}
intel_gt_pm_put(gt);
igt_spinner_fini(&spin);
intel_gt_pm_wait_for_idle(gt);
rps->work.func = saved_work;
return err;
}
static void show_pcu_config(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
unsigned int max_gpu_freq, min_gpu_freq;
intel_wakeref_t wakeref;
int gpu_freq;
if (!HAS_LLC(i915))
return;
min_gpu_freq = rps->min_freq;
max_gpu_freq = rps->max_freq;
if (INTEL_GEN(i915) >= 9) {
/* Convert GT frequency to 50 HZ units */
min_gpu_freq /= GEN9_FREQ_SCALER;
max_gpu_freq /= GEN9_FREQ_SCALER;
}
wakeref = intel_runtime_pm_get(rps_to_uncore(rps)->rpm);
pr_info("%5s %5s %5s\n", "GPU", "eCPU", "eRing");
for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
int ia_freq = gpu_freq;
sandybridge_pcode_read(i915,
GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq, NULL);
pr_info("%5d %5d %5d\n",
gpu_freq * 50,
((ia_freq >> 0) & 0xff) * 100,
((ia_freq >> 8) & 0xff) * 100);
}
intel_runtime_pm_put(rps_to_uncore(rps)->rpm, wakeref);
}
static u64 __measure_frequency(u32 *cntr, int duration_ms)
{
u64 dc, dt;
dt = ktime_get();
dc = READ_ONCE(*cntr);
usleep_range(1000 * duration_ms, 2000 * duration_ms);
dc = READ_ONCE(*cntr) - dc;
dt = ktime_get() - dt;
return div64_u64(1000 * 1000 * dc, dt);
}
static u64 measure_frequency_at(struct intel_rps *rps, u32 *cntr, int *freq)
{
u64 x[5];
int i;
*freq = rps_set_check(rps, *freq);
for (i = 0; i < 5; i++)
x[i] = __measure_frequency(cntr, 2);
*freq = (*freq + read_cagf(rps)) / 2;
/* A simple triangle filter for better result stability */
sort(x, 5, sizeof(*x), cmp_u64, NULL);
return div_u64(x[1] + 2 * x[2] + x[3], 4);
}
static u64 __measure_cs_frequency(struct intel_engine_cs *engine,
int duration_ms)
{
u64 dc, dt;
dt = ktime_get();
dc = intel_uncore_read_fw(engine->uncore, CS_GPR(0));
usleep_range(1000 * duration_ms, 2000 * duration_ms);
dc = intel_uncore_read_fw(engine->uncore, CS_GPR(0)) - dc;
dt = ktime_get() - dt;
return div64_u64(1000 * 1000 * dc, dt);
}
static u64 measure_cs_frequency_at(struct intel_rps *rps,
struct intel_engine_cs *engine,
int *freq)
{
u64 x[5];
int i;
*freq = rps_set_check(rps, *freq);
for (i = 0; i < 5; i++)
x[i] = __measure_cs_frequency(engine, 2);
*freq = (*freq + read_cagf(rps)) / 2;
/* A simple triangle filter for better result stability */
sort(x, 5, sizeof(*x), cmp_u64, NULL);
return div_u64(x[1] + 2 * x[2] + x[3], 4);
}
static bool scaled_within(u64 x, u64 y, u32 f_n, u32 f_d)
{
return f_d * x > f_n * y && f_n * x < f_d * y;
}
int live_rps_frequency_cs(void *arg)
{
void (*saved_work)(struct work_struct *wrk);
struct intel_gt *gt = arg;
struct intel_rps *rps = &gt->rps;
struct intel_engine_cs *engine;
struct pm_qos_request qos;
enum intel_engine_id id;
int err = 0;
/*
* The premise is that the GPU does change freqency at our behest.
* Let's check there is a correspondence between the requested
* frequency, the actual frequency, and the observed clock rate.
*/
if (!intel_rps_is_enabled(rps))
return 0;
if (INTEL_GEN(gt->i915) < 8) /* for CS simplicity */
return 0;
if (CPU_LATENCY >= 0)
cpu_latency_qos_add_request(&qos, CPU_LATENCY);
intel_gt_pm_wait_for_idle(gt);
saved_work = rps->work.func;
rps->work.func = dummy_rps_work;
for_each_engine(engine, gt, id) {
struct i915_request *rq;
struct i915_vma *vma;
u32 *cancel, *cntr;
struct {
u64 count;
int freq;
} min, max;
engine_heartbeat_disable(engine);
vma = create_spin_counter(engine,
engine->kernel_context->vm, false,
&cancel, &cntr);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
engine_heartbeat_enable(engine);
break;
}
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_vma;
}
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, false);
if (!err)
err = i915_vma_move_to_active(vma, rq, 0);
if (!err)
err = rq->engine->emit_bb_start(rq,
vma->node.start,
PAGE_SIZE, 0);
i915_vma_unlock(vma);
i915_request_add(rq);
if (err)
goto err_vma;
if (wait_for(intel_uncore_read(engine->uncore, CS_GPR(0)),
10)) {
pr_err("%s: timed loop did not start\n",
engine->name);
goto err_vma;
}
min.freq = rps->min_freq;
min.count = measure_cs_frequency_at(rps, engine, &min.freq);
max.freq = rps->max_freq;
max.count = measure_cs_frequency_at(rps, engine, &max.freq);
pr_info("%s: min:%lluKHz @ %uMHz, max:%lluKHz @ %uMHz [%d%%]\n",
engine->name,
min.count, intel_gpu_freq(rps, min.freq),
max.count, intel_gpu_freq(rps, max.freq),
(int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * max.count,
max.freq * min.count));
if (!scaled_within(max.freq * min.count,
min.freq * max.count,
2, 3)) {
int f;
pr_err("%s: CS did not scale with frequency! scaled min:%llu, max:%llu\n",
engine->name,
max.freq * min.count,
min.freq * max.count);
show_pcu_config(rps);
for (f = min.freq + 1; f <= rps->max_freq; f++) {
int act = f;
u64 count;
count = measure_cs_frequency_at(rps, engine, &act);
if (act < f)
break;
pr_info("%s: %x:%uMHz: %lluKHz [%d%%]\n",
engine->name,
act, intel_gpu_freq(rps, act), count,
(int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * count,
act * min.count));
f = act; /* may skip ahead [pcu granularity] */
}
err = -EINVAL;
}
err_vma:
*cancel = MI_BATCH_BUFFER_END;
i915_gem_object_flush_map(vma->obj);
i915_gem_object_unpin_map(vma->obj);
i915_vma_unpin(vma);
i915_vma_put(vma);
engine_heartbeat_enable(engine);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
break;
}
intel_gt_pm_wait_for_idle(gt);
rps->work.func = saved_work;
if (CPU_LATENCY >= 0)
cpu_latency_qos_remove_request(&qos);
return err;
}
int live_rps_frequency_srm(void *arg)
{
void (*saved_work)(struct work_struct *wrk);
struct intel_gt *gt = arg;
struct intel_rps *rps = &gt->rps;
struct intel_engine_cs *engine;
struct pm_qos_request qos;
enum intel_engine_id id;
int err = 0;
/*
* The premise is that the GPU does change freqency at our behest.
* Let's check there is a correspondence between the requested
* frequency, the actual frequency, and the observed clock rate.
*/
if (!intel_rps_is_enabled(rps))
return 0;
if (INTEL_GEN(gt->i915) < 8) /* for CS simplicity */
return 0;
if (CPU_LATENCY >= 0)
cpu_latency_qos_add_request(&qos, CPU_LATENCY);
intel_gt_pm_wait_for_idle(gt);
saved_work = rps->work.func;
rps->work.func = dummy_rps_work;
for_each_engine(engine, gt, id) {
struct i915_request *rq;
struct i915_vma *vma;
u32 *cancel, *cntr;
struct {
u64 count;
int freq;
} min, max;
engine_heartbeat_disable(engine);
vma = create_spin_counter(engine,
engine->kernel_context->vm, true,
&cancel, &cntr);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
engine_heartbeat_enable(engine);
break;
}
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_vma;
}
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, false);
if (!err)
err = i915_vma_move_to_active(vma, rq, 0);
if (!err)
err = rq->engine->emit_bb_start(rq,
vma->node.start,
PAGE_SIZE, 0);
i915_vma_unlock(vma);
i915_request_add(rq);
if (err)
goto err_vma;
if (wait_for(READ_ONCE(*cntr), 10)) {
pr_err("%s: timed loop did not start\n",
engine->name);
goto err_vma;
}
min.freq = rps->min_freq;
min.count = measure_frequency_at(rps, cntr, &min.freq);
max.freq = rps->max_freq;
max.count = measure_frequency_at(rps, cntr, &max.freq);
pr_info("%s: min:%lluKHz @ %uMHz, max:%lluKHz @ %uMHz [%d%%]\n",
engine->name,
min.count, intel_gpu_freq(rps, min.freq),
max.count, intel_gpu_freq(rps, max.freq),
(int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * max.count,
max.freq * min.count));
if (!scaled_within(max.freq * min.count,
min.freq * max.count,
1, 2)) {
int f;
pr_err("%s: CS did not scale with frequency! scaled min:%llu, max:%llu\n",
engine->name,
max.freq * min.count,
min.freq * max.count);
show_pcu_config(rps);
for (f = min.freq + 1; f <= rps->max_freq; f++) {
int act = f;
u64 count;
count = measure_frequency_at(rps, cntr, &act);
if (act < f)
break;
pr_info("%s: %x:%uMHz: %lluKHz [%d%%]\n",
engine->name,
act, intel_gpu_freq(rps, act), count,
(int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * count,
act * min.count));
f = act; /* may skip ahead [pcu granularity] */
}
err = -EINVAL;
}
err_vma:
*cancel = MI_BATCH_BUFFER_END;
i915_gem_object_flush_map(vma->obj);
i915_gem_object_unpin_map(vma->obj);
i915_vma_unpin(vma);
i915_vma_put(vma);
engine_heartbeat_enable(engine);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
break;
}
intel_gt_pm_wait_for_idle(gt);
rps->work.func = saved_work;
if (CPU_LATENCY >= 0)
cpu_latency_qos_remove_request(&qos);
return err;
}
static void sleep_for_ei(struct intel_rps *rps, int timeout_us)
{
/* Flush any previous EI */
usleep_range(timeout_us, 2 * timeout_us);
/* Reset the interrupt status */
rps_disable_interrupts(rps);
GEM_BUG_ON(rps->pm_iir);
rps_enable_interrupts(rps);
/* And then wait for the timeout, for real this time */
usleep_range(2 * timeout_us, 3 * timeout_us);
}
static int __rps_up_interrupt(struct intel_rps *rps,
struct intel_engine_cs *engine,
struct igt_spinner *spin)
{
struct intel_uncore *uncore = engine->uncore;
struct i915_request *rq;
u32 timeout;
if (!intel_engine_can_store_dword(engine))
return 0;
rps_set_check(rps, rps->min_freq);
rq = igt_spinner_create_request(spin, engine->kernel_context, MI_NOOP);
if (IS_ERR(rq))
return PTR_ERR(rq);
i915_request_get(rq);
i915_request_add(rq);
if (!igt_wait_for_spinner(spin, rq)) {
pr_err("%s: RPS spinner did not start\n",
engine->name);
i915_request_put(rq);
intel_gt_set_wedged(engine->gt);
return -EIO;
}
if (!intel_rps_is_active(rps)) {
pr_err("%s: RPS not enabled on starting spinner\n",
engine->name);
igt_spinner_end(spin);
i915_request_put(rq);
return -EINVAL;
}
if (!(rps->pm_events & GEN6_PM_RP_UP_THRESHOLD)) {
pr_err("%s: RPS did not register UP interrupt\n",
engine->name);
i915_request_put(rq);
return -EINVAL;
}
if (rps->last_freq != rps->min_freq) {
pr_err("%s: RPS did not program min frequency\n",
engine->name);
i915_request_put(rq);
return -EINVAL;
}
timeout = intel_uncore_read(uncore, GEN6_RP_UP_EI);
timeout = intel_gt_pm_interval_to_ns(engine->gt, timeout);
timeout = DIV_ROUND_UP(timeout, 1000);
sleep_for_ei(rps, timeout);
GEM_BUG_ON(i915_request_completed(rq));
igt_spinner_end(spin);
i915_request_put(rq);
if (rps->cur_freq != rps->min_freq) {
pr_err("%s: Frequency unexpectedly changed [up], now %d!\n",
engine->name, intel_rps_read_actual_frequency(rps));
return -EINVAL;
}
if (!(rps->pm_iir & GEN6_PM_RP_UP_THRESHOLD)) {
pr_err("%s: UP interrupt not recorded for spinner, pm_iir:%x, prev_up:%x, up_threshold:%x, up_ei:%x\n",
engine->name, rps->pm_iir,
intel_uncore_read(uncore, GEN6_RP_PREV_UP),
intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD),
intel_uncore_read(uncore, GEN6_RP_UP_EI));
return -EINVAL;
}
return 0;
}
static int __rps_down_interrupt(struct intel_rps *rps,
struct intel_engine_cs *engine)
{
struct intel_uncore *uncore = engine->uncore;
u32 timeout;
rps_set_check(rps, rps->max_freq);
if (!(rps->pm_events & GEN6_PM_RP_DOWN_THRESHOLD)) {
pr_err("%s: RPS did not register DOWN interrupt\n",
engine->name);
return -EINVAL;
}
if (rps->last_freq != rps->max_freq) {
pr_err("%s: RPS did not program max frequency\n",
engine->name);
return -EINVAL;
}
timeout = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
timeout = intel_gt_pm_interval_to_ns(engine->gt, timeout);
timeout = DIV_ROUND_UP(timeout, 1000);
sleep_for_ei(rps, timeout);
if (rps->cur_freq != rps->max_freq) {
pr_err("%s: Frequency unexpectedly changed [down], now %d!\n",
engine->name,
intel_rps_read_actual_frequency(rps));
return -EINVAL;
}
if (!(rps->pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT))) {
pr_err("%s: DOWN interrupt not recorded for idle, pm_iir:%x, prev_down:%x, down_threshold:%x, down_ei:%x [prev_up:%x, up_threshold:%x, up_ei:%x]\n",
engine->name, rps->pm_iir,
intel_uncore_read(uncore, GEN6_RP_PREV_DOWN),
intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD),
intel_uncore_read(uncore, GEN6_RP_DOWN_EI),
intel_uncore_read(uncore, GEN6_RP_PREV_UP),
intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD),
intel_uncore_read(uncore, GEN6_RP_UP_EI));
return -EINVAL;
}
return 0;
}
int live_rps_interrupt(void *arg)
{
struct intel_gt *gt = arg;
struct intel_rps *rps = &gt->rps;
void (*saved_work)(struct work_struct *wrk);
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
u32 pm_events;
int err = 0;
/*
* First, let's check whether or not we are receiving interrupts.
*/
if (!intel_rps_has_interrupts(rps))
return 0;
intel_gt_pm_get(gt);
pm_events = rps->pm_events;
intel_gt_pm_put(gt);
if (!pm_events) {
pr_err("No RPS PM events registered, but RPS is enabled?\n");
return -ENODEV;
}
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
intel_gt_pm_wait_for_idle(gt);
saved_work = rps->work.func;
rps->work.func = dummy_rps_work;
for_each_engine(engine, gt, id) {
/* Keep the engine busy with a spinner; expect an UP! */
if (pm_events & GEN6_PM_RP_UP_THRESHOLD) {
intel_gt_pm_wait_for_idle(engine->gt);
GEM_BUG_ON(intel_rps_is_active(rps));
engine_heartbeat_disable(engine);
err = __rps_up_interrupt(rps, engine, &spin);
engine_heartbeat_enable(engine);
if (err)
goto out;
intel_gt_pm_wait_for_idle(engine->gt);
}
/* Keep the engine awake but idle and check for DOWN */
if (pm_events & GEN6_PM_RP_DOWN_THRESHOLD) {
engine_heartbeat_disable(engine);
intel_rc6_disable(&gt->rc6);
err = __rps_down_interrupt(rps, engine);
intel_rc6_enable(&gt->rc6);
engine_heartbeat_enable(engine);
if (err)
goto out;
}
}
out:
if (igt_flush_test(gt->i915))
err = -EIO;
igt_spinner_fini(&spin);
intel_gt_pm_wait_for_idle(gt);
rps->work.func = saved_work;
return err;
}
static u64 __measure_power(int duration_ms)
{
u64 dE, dt;
dt = ktime_get();
dE = librapl_energy_uJ();
usleep_range(1000 * duration_ms, 2000 * duration_ms);
dE = librapl_energy_uJ() - dE;
dt = ktime_get() - dt;
return div64_u64(1000 * 1000 * dE, dt);
}
static u64 measure_power_at(struct intel_rps *rps, int *freq)
{
u64 x[5];
int i;
*freq = rps_set_check(rps, *freq);
for (i = 0; i < 5; i++)
x[i] = __measure_power(5);
*freq = (*freq + read_cagf(rps)) / 2;
/* A simple triangle filter for better result stability */
sort(x, 5, sizeof(*x), cmp_u64, NULL);
return div_u64(x[1] + 2 * x[2] + x[3], 4);
}
int live_rps_power(void *arg)
{
struct intel_gt *gt = arg;
struct intel_rps *rps = &gt->rps;
void (*saved_work)(struct work_struct *wrk);
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
/*
* Our fundamental assumption is that running at lower frequency
* actually saves power. Let's see if our RAPL measurement support
* that theory.
*/
if (!intel_rps_is_enabled(rps))
return 0;
if (!librapl_energy_uJ())
return 0;
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
intel_gt_pm_wait_for_idle(gt);
saved_work = rps->work.func;
rps->work.func = dummy_rps_work;
for_each_engine(engine, gt, id) {
struct i915_request *rq;
struct {
u64 power;
int freq;
} min, max;
if (!intel_engine_can_store_dword(engine))
continue;
engine_heartbeat_disable(engine);
rq = igt_spinner_create_request(&spin,
engine->kernel_context,
MI_NOOP);
if (IS_ERR(rq)) {
engine_heartbeat_enable(engine);
err = PTR_ERR(rq);
break;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
pr_err("%s: RPS spinner did not start\n",
engine->name);
igt_spinner_end(&spin);
engine_heartbeat_enable(engine);
intel_gt_set_wedged(engine->gt);
err = -EIO;
break;
}
max.freq = rps->max_freq;
max.power = measure_power_at(rps, &max.freq);
min.freq = rps->min_freq;
min.power = measure_power_at(rps, &min.freq);
igt_spinner_end(&spin);
engine_heartbeat_enable(engine);
pr_info("%s: min:%llumW @ %uMHz, max:%llumW @ %uMHz\n",
engine->name,
min.power, intel_gpu_freq(rps, min.freq),
max.power, intel_gpu_freq(rps, max.freq));
if (10 * min.freq >= 9 * max.freq) {
pr_notice("Could not control frequency, ran at [%d:%uMHz, %d:%uMhz]\n",
min.freq, intel_gpu_freq(rps, min.freq),
max.freq, intel_gpu_freq(rps, max.freq));
continue;
}
if (11 * min.power > 10 * max.power) {
pr_err("%s: did not conserve power when setting lower frequency!\n",
engine->name);
err = -EINVAL;
break;
}
if (igt_flush_test(gt->i915)) {
err = -EIO;
break;
}
}
igt_spinner_fini(&spin);
intel_gt_pm_wait_for_idle(gt);
rps->work.func = saved_work;
return err;
}
int live_rps_dynamic(void *arg)
{
struct intel_gt *gt = arg;
struct intel_rps *rps = &gt->rps;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
/*
* We've looked at the bascs, and have established that we
* can change the clock frequency and that the HW will generate
* interrupts based on load. Now we check how we integrate those
* moving parts into dynamic reclocking based on load.
*/
if (!intel_rps_is_enabled(rps))
return 0;
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
for_each_engine(engine, gt, id) {
struct i915_request *rq;
struct {
ktime_t dt;
u8 freq;
} min, max;
if (!intel_engine_can_store_dword(engine))
continue;
intel_gt_pm_wait_for_idle(gt);
GEM_BUG_ON(intel_rps_is_active(rps));
rps->cur_freq = rps->min_freq;
intel_engine_pm_get(engine);
intel_rc6_disable(&gt->rc6);
GEM_BUG_ON(rps->last_freq != rps->min_freq);
rq = igt_spinner_create_request(&spin,
engine->kernel_context,
MI_NOOP);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
i915_request_add(rq);
max.dt = ktime_get();
max.freq = wait_for_freq(rps, rps->max_freq, 500);
max.dt = ktime_sub(ktime_get(), max.dt);
igt_spinner_end(&spin);
min.dt = ktime_get();
min.freq = wait_for_freq(rps, rps->min_freq, 2000);
min.dt = ktime_sub(ktime_get(), min.dt);
pr_info("%s: dynamically reclocked to %u:%uMHz while busy in %lluns, and %u:%uMHz while idle in %lluns\n",
engine->name,
max.freq, intel_gpu_freq(rps, max.freq),
ktime_to_ns(max.dt),
min.freq, intel_gpu_freq(rps, min.freq),
ktime_to_ns(min.dt));
if (min.freq >= max.freq) {
pr_err("%s: dynamic reclocking of spinner failed\n!",
engine->name);
err = -EINVAL;
}
err:
intel_rc6_enable(&gt->rc6);
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
break;
}
igt_spinner_fini(&spin);
return err;
}