blob: 7dede2e34b708958d1ce71adaa7fd34a3d7bfc70 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
#include <asm-generic/5level-fixup.h>
#ifndef __ASSEMBLY__
#include <linux/mmdebug.h>
#include <linux/bug.h>
#endif
/*
* Common bits between hash and Radix page table
*/
#define _PAGE_BIT_SWAP_TYPE 0
#define _PAGE_EXEC 0x00001 /* execute permission */
#define _PAGE_WRITE 0x00002 /* write access allowed */
#define _PAGE_READ 0x00004 /* read access allowed */
#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
#define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
#define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
#define _PAGE_SAO 0x00010 /* Strong access order */
#define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
#define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
#define _PAGE_DIRTY 0x00080 /* C: page changed */
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
/*
* Software bits
*/
#define _RPAGE_SW0 0x2000000000000000UL
#define _RPAGE_SW1 0x00800
#define _RPAGE_SW2 0x00400
#define _RPAGE_SW3 0x00200
#define _RPAGE_RSV1 0x1000000000000000UL
#define _RPAGE_RSV2 0x0800000000000000UL
#define _RPAGE_RSV3 0x0400000000000000UL
#define _RPAGE_RSV4 0x0200000000000000UL
#define _RPAGE_RSV5 0x00040UL
#define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
#define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
/*
* We need to mark a pmd pte invalid while splitting. We can do that by clearing
* the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
* differentiate between two use a SW field when invalidating.
*
* We do that temporary invalidate for regular pte entry in ptep_set_access_flags
*
* This is used only when _PAGE_PRESENT is cleared.
*/
#define _PAGE_INVALID _RPAGE_SW0
/*
* Top and bottom bits of RPN which can be used by hash
* translation mode, because we expect them to be zero
* otherwise.
*/
#define _RPAGE_RPN0 0x01000
#define _RPAGE_RPN1 0x02000
#define _RPAGE_RPN44 0x0100000000000000UL
#define _RPAGE_RPN43 0x0080000000000000UL
#define _RPAGE_RPN42 0x0040000000000000UL
#define _RPAGE_RPN41 0x0020000000000000UL
/* Max physical address bit as per radix table */
#define _RPAGE_PA_MAX 57
/*
* Max physical address bit we will use for now.
*
* This is mostly a hardware limitation and for now Power9 has
* a 51 bit limit.
*
* This is different from the number of physical bit required to address
* the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
* MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
* number of sections we can support (SECTIONS_SHIFT).
*
* This is different from Radix page table limitation above and
* should always be less than that. The limit is done such that
* we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
* for hash linux page table specific bits.
*
* In order to be compatible with future hardware generations we keep
* some offsets and limit this for now to 53
*/
#define _PAGE_PA_MAX 53
#define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
#define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
#define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
#define __HAVE_ARCH_PTE_DEVMAP
/*
* Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
* Instead of fixing all of them, add an alternate define which
* maps CI pte mapping.
*/
#define _PAGE_NO_CACHE _PAGE_TOLERANT
/*
* We support _RPAGE_PA_MAX bit real address in pte. On the linux side
* we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
* and every thing below PAGE_SHIFT;
*/
#define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
/*
* set of bits not changed in pmd_modify. Even though we have hash specific bits
* in here, on radix we expect them to be zero.
*/
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
_PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
_PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
/*
* user access blocked by key
*/
#define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
#define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
#define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
_PAGE_RW | _PAGE_EXEC)
/*
* _PAGE_CHG_MASK masks of bits that are to be preserved across
* pgprot changes
*/
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
_PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
_PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
#define H_PTE_PKEY (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
/*
* We define 2 sets of base prot bits, one for basic pages (ie,
* cacheable kernel and user pages) and one for non cacheable
* pages. We always set _PAGE_COHERENT when SMP is enabled or
* the processor might need it for DMA coherency.
*/
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
#define _PAGE_BASE (_PAGE_BASE_NC)
/* Permission masks used to generate the __P and __S table,
*
* Note:__pgprot is defined in arch/powerpc/include/asm/page.h
*
* Write permissions imply read permissions for now (we could make write-only
* pages on BookE but we don't bother for now). Execute permission control is
* possible on platforms that define _PAGE_EXEC
*/
#define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
/* Permission masks used for kernel mappings */
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
_PAGE_TOLERANT)
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
_PAGE_NON_IDEMPOTENT)
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
/*
* Protection used for kernel text. We want the debuggers to be able to
* set breakpoints anywhere, so don't write protect the kernel text
* on platforms where such control is possible.
*/
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
#define PAGE_KERNEL_TEXT PAGE_KERNEL_X
#else
#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
#endif
/* Make modules code happy. We don't set RO yet */
#define PAGE_KERNEL_EXEC PAGE_KERNEL_X
#define PAGE_AGP (PAGE_KERNEL_NC)
#ifndef __ASSEMBLY__
/*
* page table defines
*/
extern unsigned long __pte_index_size;
extern unsigned long __pmd_index_size;
extern unsigned long __pud_index_size;
extern unsigned long __pgd_index_size;
extern unsigned long __pud_cache_index;
#define PTE_INDEX_SIZE __pte_index_size
#define PMD_INDEX_SIZE __pmd_index_size
#define PUD_INDEX_SIZE __pud_index_size
#define PGD_INDEX_SIZE __pgd_index_size
/* pmd table use page table fragments */
#define PMD_CACHE_INDEX 0
#define PUD_CACHE_INDEX __pud_cache_index
/*
* Because of use of pte fragments and THP, size of page table
* are not always derived out of index size above.
*/
extern unsigned long __pte_table_size;
extern unsigned long __pmd_table_size;
extern unsigned long __pud_table_size;
extern unsigned long __pgd_table_size;
#define PTE_TABLE_SIZE __pte_table_size
#define PMD_TABLE_SIZE __pmd_table_size
#define PUD_TABLE_SIZE __pud_table_size
#define PGD_TABLE_SIZE __pgd_table_size
extern unsigned long __pmd_val_bits;
extern unsigned long __pud_val_bits;
extern unsigned long __pgd_val_bits;
#define PMD_VAL_BITS __pmd_val_bits
#define PUD_VAL_BITS __pud_val_bits
#define PGD_VAL_BITS __pgd_val_bits
extern unsigned long __pte_frag_nr;
#define PTE_FRAG_NR __pte_frag_nr
extern unsigned long __pte_frag_size_shift;
#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
extern unsigned long __pmd_frag_nr;
#define PMD_FRAG_NR __pmd_frag_nr
extern unsigned long __pmd_frag_size_shift;
#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
#define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
/* PMD_SHIFT determines what a second-level page table entry can map */
#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PUD_SHIFT determines what a third-level page table entry can map */
#define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE-1))
/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
#define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/* Bits to mask out from a PMD to get to the PTE page */
#define PMD_MASKED_BITS 0xc0000000000000ffUL
/* Bits to mask out from a PUD to get to the PMD page */
#define PUD_MASKED_BITS 0xc0000000000000ffUL
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS 0xc0000000000000ffUL
/*
* Used as an indicator for rcu callback functions
*/
enum pgtable_index {
PTE_INDEX = 0,
PMD_INDEX,
PUD_INDEX,
PGD_INDEX,
/*
* Below are used with 4k page size and hugetlb
*/
HTLB_16M_INDEX,
HTLB_16G_INDEX,
};
extern unsigned long __vmalloc_start;
extern unsigned long __vmalloc_end;
#define VMALLOC_START __vmalloc_start
#define VMALLOC_END __vmalloc_end
extern unsigned long __kernel_virt_start;
extern unsigned long __kernel_virt_size;
extern unsigned long __kernel_io_start;
extern unsigned long __kernel_io_end;
#define KERN_VIRT_START __kernel_virt_start
#define KERN_IO_START __kernel_io_start
#define KERN_IO_END __kernel_io_end
extern struct page *vmemmap;
extern unsigned long ioremap_bot;
extern unsigned long pci_io_base;
#endif /* __ASSEMBLY__ */
#include <asm/book3s/64/hash.h>
#include <asm/book3s/64/radix.h>
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/pgtable-64k.h>
#else
#include <asm/book3s/64/pgtable-4k.h>
#endif
#include <asm/barrier.h>
/*
* IO space itself carved into the PIO region (ISA and PHB IO space) and
* the ioremap space
*
* ISA_IO_BASE = KERN_IO_START, 64K reserved area
* PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
* IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
*/
#define FULL_IO_SIZE 0x80000000ul
#define ISA_IO_BASE (KERN_IO_START)
#define ISA_IO_END (KERN_IO_START + 0x10000ul)
#define PHB_IO_BASE (ISA_IO_END)
#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
#define IOREMAP_BASE (PHB_IO_END)
#define IOREMAP_END (KERN_IO_END)
/* Advertise special mapping type for AGP */
#define HAVE_PAGE_AGP
#ifndef __ASSEMBLY__
/*
* This is the default implementation of various PTE accessors, it's
* used in all cases except Book3S with 64K pages where we have a
* concept of sub-pages
*/
#ifndef __real_pte
#define __real_pte(e, p, o) ((real_pte_t){(e)})
#define __rpte_to_pte(r) ((r).pte)
#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
do { \
index = 0; \
shift = mmu_psize_defs[psize].shift; \
#define pte_iterate_hashed_end() } while(0)
/*
* We expect this to be called only for user addresses or kernel virtual
* addresses other than the linear mapping.
*/
#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
#endif /* __real_pte */
static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long clr,
unsigned long set, int huge)
{
if (radix_enabled())
return radix__pte_update(mm, addr, ptep, clr, set, huge);
return hash__pte_update(mm, addr, ptep, clr, set, huge);
}
/*
* For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
* We currently remove entries from the hashtable regardless of whether
* the entry was young or dirty.
*
* We should be more intelligent about this but for the moment we override
* these functions and force a tlb flush unconditionally
* For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
* function for both hash and radix.
*/
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
return 0;
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
({ \
int __r; \
__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
__r; \
})
static inline int __pte_write(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
}
#ifdef CONFIG_NUMA_BALANCING
#define pte_savedwrite pte_savedwrite
static inline bool pte_savedwrite(pte_t pte)
{
/*
* Saved write ptes are prot none ptes that doesn't have
* privileged bit sit. We mark prot none as one which has
* present and pviliged bit set and RWX cleared. To mark
* protnone which used to have _PAGE_WRITE set we clear
* the privileged bit.
*/
return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
}
#else
#define pte_savedwrite pte_savedwrite
static inline bool pte_savedwrite(pte_t pte)
{
return false;
}
#endif
static inline int pte_write(pte_t pte)
{
return __pte_write(pte) || pte_savedwrite(pte);
}
static inline int pte_read(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
if (__pte_write(*ptep))
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
else if (unlikely(pte_savedwrite(*ptep)))
pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
}
#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
/*
* We should not find protnone for hugetlb, but this complete the
* interface.
*/
if (__pte_write(*ptep))
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
else if (unlikely(pte_savedwrite(*ptep)))
pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
return __pte(old);
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, int full)
{
if (full && radix_enabled()) {
/*
* We know that this is a full mm pte clear and
* hence can be sure there is no parallel set_pte.
*/
return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
}
return ptep_get_and_clear(mm, addr, ptep);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t * ptep)
{
pte_update(mm, addr, ptep, ~0UL, 0, 0);
}
static inline int pte_dirty(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
}
static inline int pte_young(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
}
static inline int pte_special(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
}
static inline bool pte_exec(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
}
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline bool pte_soft_dirty(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
}
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
}
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
#ifdef CONFIG_NUMA_BALANCING
static inline int pte_protnone(pte_t pte)
{
return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
}
#define pte_mk_savedwrite pte_mk_savedwrite
static inline pte_t pte_mk_savedwrite(pte_t pte)
{
/*
* Used by Autonuma subsystem to preserve the write bit
* while marking the pte PROT_NONE. Only allow this
* on PROT_NONE pte
*/
VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
}
#define pte_clear_savedwrite pte_clear_savedwrite
static inline pte_t pte_clear_savedwrite(pte_t pte)
{
/*
* Used by KSM subsystem to make a protnone pte readonly.
*/
VM_BUG_ON(!pte_protnone(pte));
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
}
#else
#define pte_clear_savedwrite pte_clear_savedwrite
static inline pte_t pte_clear_savedwrite(pte_t pte)
{
VM_WARN_ON(1);
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
}
#endif /* CONFIG_NUMA_BALANCING */
static inline int pte_present(pte_t pte)
{
/*
* A pte is considerent present if _PAGE_PRESENT is set.
* We also need to consider the pte present which is marked
* invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
* if we find _PAGE_PRESENT cleared.
*/
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
}
static inline bool pte_hw_valid(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
}
#ifdef CONFIG_PPC_MEM_KEYS
extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
#else
static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
{
return true;
}
#endif /* CONFIG_PPC_MEM_KEYS */
static inline bool pte_user(pte_t pte)
{
return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
}
#define pte_access_permitted pte_access_permitted
static inline bool pte_access_permitted(pte_t pte, bool write)
{
/*
* _PAGE_READ is needed for any access and will be
* cleared for PROT_NONE
*/
if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
return false;
if (write && !pte_write(pte))
return false;
return arch_pte_access_permitted(pte_val(pte), write, 0);
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
* long for now.
*/
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
pgprot_val(pgprot));
}
static inline unsigned long pte_pfn(pte_t pte)
{
return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
}
/* Generic modifiers for PTE bits */
static inline pte_t pte_wrprotect(pte_t pte)
{
if (unlikely(pte_savedwrite(pte)))
return pte_clear_savedwrite(pte);
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
}
static inline pte_t pte_exprotect(pte_t pte)
{
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
}
static inline pte_t pte_mkexec(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
}
static inline pte_t pte_mkpte(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
}
static inline pte_t pte_mkwrite(pte_t pte)
{
/*
* write implies read, hence set both
*/
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte;
}
static inline pte_t pte_mkdevmap(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
}
static inline pte_t pte_mkprivileged(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
}
static inline pte_t pte_mkuser(pte_t pte)
{
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
}
/*
* This is potentially called with a pmd as the argument, in which case it's not
* safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
* That's because the bit we use for _PAGE_DEVMAP is not reserved for software
* use in page directory entries (ie. non-ptes).
*/
static inline int pte_devmap(pte_t pte)
{
u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
return (pte_raw(pte) & mask) == mask;
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
/* FIXME!! check whether this need to be a conditional */
return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
cpu_to_be64(pgprot_val(newprot)));
}
/* Encode and de-code a swap entry */
#define MAX_SWAPFILES_CHECK() do { \
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
/* \
* Don't have overlapping bits with _PAGE_HPTEFLAGS \
* We filter HPTEFLAGS on set_pte. \
*/ \
BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
} while (0)
#define SWP_TYPE_BITS 5
#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
& ((1UL << SWP_TYPE_BITS) - 1))
#define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) { \
((type) << _PAGE_BIT_SWAP_TYPE) \
| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
/*
* swp_entry_t must be independent of pte bits. We build a swp_entry_t from
* swap type and offset we get from swap and convert that to pte to find a
* matching pte in linux page table.
* Clear bits not found in swap entries here.
*/
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
#define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
#define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
#define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x)))
#ifdef CONFIG_MEM_SOFT_DIRTY
#define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
#else
#define _PAGE_SWP_SOFT_DIRTY 0UL
#endif /* CONFIG_MEM_SOFT_DIRTY */
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
}
static inline bool pte_swp_soft_dirty(pte_t pte)
{
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
}
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
static inline bool check_pte_access(unsigned long access, unsigned long ptev)
{
/*
* This check for _PAGE_RWX and _PAGE_PRESENT bits
*/
if (access & ~ptev)
return false;
/*
* This check for access to privilege space
*/
if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
return false;
return true;
}
/*
* Generic functions with hash/radix callbacks
*/
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
pte_t *ptep, pte_t entry,
unsigned long address,
int psize)
{
if (radix_enabled())
return radix__ptep_set_access_flags(vma, ptep, entry,
address, psize);
return hash__ptep_set_access_flags(ptep, entry);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
if (radix_enabled())
return radix__pte_same(pte_a, pte_b);
return hash__pte_same(pte_a, pte_b);
}
static inline int pte_none(pte_t pte)
{
if (radix_enabled())
return radix__pte_none(pte);
return hash__pte_none(pte);
}
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
if (radix_enabled())
return radix__set_pte_at(mm, addr, ptep, pte, percpu);
return hash__set_pte_at(mm, addr, ptep, pte, percpu);
}
#define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NON_IDEMPOTENT);
}
#define pgprot_noncached_wc pgprot_noncached_wc
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_TOLERANT);
}
#define pgprot_cached pgprot_cached
static inline pgprot_t pgprot_cached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
}
#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
{
return pgprot_noncached_wc(prot);
}
/*
* check a pte mapping have cache inhibited property
*/
static inline bool pte_ci(pte_t pte)
{
__be64 pte_v = pte_raw(pte);
if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
return true;
return false;
}
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
static inline int pmd_none(pmd_t pmd)
{
return !pmd_raw(pmd);
}
static inline int pmd_present(pmd_t pmd)
{
/*
* A pmd is considerent present if _PAGE_PRESENT is set.
* We also need to consider the pmd present which is marked
* invalid during a split. Hence we look for _PAGE_INVALID
* if we find _PAGE_PRESENT cleared.
*/
if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
return true;
return false;
}
static inline int pmd_bad(pmd_t pmd)
{
if (radix_enabled())
return radix__pmd_bad(pmd);
return hash__pmd_bad(pmd);
}
static inline void pud_clear(pud_t *pudp)
{
*pudp = __pud(0);
}
static inline int pud_none(pud_t pud)
{
return !pud_raw(pud);
}
static inline int pud_present(pud_t pud)
{
return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
}
extern struct page *pud_page(pud_t pud);
extern struct page *pmd_page(pmd_t pmd);
static inline pte_t pud_pte(pud_t pud)
{
return __pte_raw(pud_raw(pud));
}
static inline pud_t pte_pud(pte_t pte)
{
return __pud_raw(pte_raw(pte));
}
#define pud_write(pud) pte_write(pud_pte(pud))
static inline int pud_bad(pud_t pud)
{
if (radix_enabled())
return radix__pud_bad(pud);
return hash__pud_bad(pud);
}
#define pud_access_permitted pud_access_permitted
static inline bool pud_access_permitted(pud_t pud, bool write)
{
return pte_access_permitted(pud_pte(pud), write);
}
#define pgd_write(pgd) pte_write(pgd_pte(pgd))
static inline void pgd_clear(pgd_t *pgdp)
{
*pgdp = __pgd(0);
}
static inline int pgd_none(pgd_t pgd)
{
return !pgd_raw(pgd);
}
static inline int pgd_present(pgd_t pgd)
{
return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
}
static inline pte_t pgd_pte(pgd_t pgd)
{
return __pte_raw(pgd_raw(pgd));
}
static inline pgd_t pte_pgd(pte_t pte)
{
return __pgd_raw(pte_raw(pte));
}
static inline int pgd_bad(pgd_t pgd)
{
if (radix_enabled())
return radix__pgd_bad(pgd);
return hash__pgd_bad(pgd);
}
#define pgd_access_permitted pgd_access_permitted
static inline bool pgd_access_permitted(pgd_t pgd, bool write)
{
return pte_access_permitted(pgd_pte(pgd), write);
}
extern struct page *pgd_page(pgd_t pgd);
/* Pointers in the page table tree are physical addresses */
#define __pgtable_ptr_val(ptr) __pa(ptr)
#define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
#define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
#define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
/*
* Find an entry in a page-table-directory. We combine the address region
* (the high order N bits) and the pgd portion of the address.
*/
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pud_offset(pgdp, addr) \
(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
#define pmd_offset(pudp,addr) \
(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
#define pte_offset_kernel(dir,addr) \
(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
static inline void pte_unmap(pte_t *pte) { }
/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pud_ERROR(e) \
pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
{
if (radix_enabled()) {
#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
#endif
return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
}
return hash__map_kernel_page(ea, pa, prot);
}
static inline int __meminit vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
if (radix_enabled())
return radix__vmemmap_create_mapping(start, page_size, phys);
return hash__vmemmap_create_mapping(start, page_size, phys);
}
#ifdef CONFIG_MEMORY_HOTPLUG
static inline void vmemmap_remove_mapping(unsigned long start,
unsigned long page_size)
{
if (radix_enabled())
return radix__vmemmap_remove_mapping(start, page_size);
return hash__vmemmap_remove_mapping(start, page_size);
}
#endif
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte_raw(pmd_raw(pmd));
}
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd_raw(pte_raw(pte));
}
static inline pte_t *pmdp_ptep(pmd_t *pmd)
{
return (pte_t *)pmd;
}
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
#define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
#define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
#define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
#define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
#define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
#define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd))
#define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
#endif
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
#ifdef CONFIG_NUMA_BALANCING
static inline int pmd_protnone(pmd_t pmd)
{
return pte_protnone(pmd_pte(pmd));
}
#endif /* CONFIG_NUMA_BALANCING */
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
#define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
#define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
#define pmd_access_permitted pmd_access_permitted
static inline bool pmd_access_permitted(pmd_t pmd, bool write)
{
return pte_access_permitted(pmd_pte(pmd), write);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd);
extern int hash__has_transparent_hugepage(void);
static inline int has_transparent_hugepage(void)
{
if (radix_enabled())
return radix__has_transparent_hugepage();
return hash__has_transparent_hugepage();
}
#define has_transparent_hugepage has_transparent_hugepage
static inline unsigned long
pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
unsigned long clr, unsigned long set)
{
if (radix_enabled())
return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
}
/*
* returns true for pmd migration entries, THP, devmap, hugetlb
* But compile time dependent on THP config
*/
static inline int pmd_large(pmd_t pmd)
{
return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
/*
* For radix we should always find H_PAGE_HASHPTE zero. Hence
* the below will work for radix too
*/
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
unsigned long old;
if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
return 0;
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
return ((old & _PAGE_ACCESSED) != 0);
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
if (__pmd_write((*pmdp)))
pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
else if (unlikely(pmd_savedwrite(*pmdp)))
pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
}
/*
* Only returns true for a THP. False for pmd migration entry.
* We also need to return true when we come across a pte that
* in between a thp split. While splitting THP, we mark the pmd
* invalid (pmdp_invalidate()) before we set it with pte page
* address. A pmd_trans_huge() check against a pmd entry during that time
* should return true.
* We should not call this on a hugetlb entry. We should check for HugeTLB
* entry using vma->vm_flags
* The page table walk rule is explained in Documentation/vm/transhuge.rst
*/
static inline int pmd_trans_huge(pmd_t pmd)
{
if (!pmd_present(pmd))
return false;
if (radix_enabled())
return radix__pmd_trans_huge(pmd);
return hash__pmd_trans_huge(pmd);
}
#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
if (radix_enabled())
return radix__pmd_same(pmd_a, pmd_b);
return hash__pmd_same(pmd_a, pmd_b);
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
if (radix_enabled())
return radix__pmd_mkhuge(pmd);
return hash__pmd_mkhuge(pmd);
}
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
if (radix_enabled())
return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
}
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
if (radix_enabled())
return radix__pmdp_collapse_flush(vma, address, pmdp);
return hash__pmdp_collapse_flush(vma, address, pmdp);
}
#define pmdp_collapse_flush pmdp_collapse_flush
#define __HAVE_ARCH_PGTABLE_DEPOSIT
static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
pmd_t *pmdp, pgtable_t pgtable)
{
if (radix_enabled())
return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
}
#define __HAVE_ARCH_PGTABLE_WITHDRAW
static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
pmd_t *pmdp)
{
if (radix_enabled())
return radix__pgtable_trans_huge_withdraw(mm, pmdp);
return hash__pgtable_trans_huge_withdraw(mm, pmdp);
}
#define __HAVE_ARCH_PMDP_INVALIDATE
extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#define pmd_move_must_withdraw pmd_move_must_withdraw
struct spinlock;
extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
struct spinlock *old_pmd_ptl,
struct vm_area_struct *vma);
/*
* Hash translation mode use the deposited table to store hash pte
* slot information.
*/
#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
static inline bool arch_needs_pgtable_deposit(void)
{
if (radix_enabled())
return false;
return true;
}
extern void serialize_against_pte_lookup(struct mm_struct *mm);
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
}
static inline int pmd_devmap(pmd_t pmd)
{
return pte_devmap(pmd_pte(pmd));
}
static inline int pud_devmap(pud_t pud)
{
return 0;
}
static inline int pgd_devmap(pgd_t pgd)
{
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pud_pfn(pud_t pud)
{
/*
* Currently all calls to pud_pfn() are gated around a pud_devmap()
* check so this should never be used. If it grows another user we
* want to know about it.
*/
BUILD_BUG();
return 0;
}
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
pte_t *, pte_t, pte_t);
/*
* Returns true for a R -> RW upgrade of pte
*/
static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
{
if (!(old_val & _PAGE_READ))
return false;
if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
return true;
return false;
}
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */