blob: 5b0ae5ddad74554799cd4f2ede229b3f3f6eb7e8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Handles the M-Systems DiskOnChip G3 chip
*
* Copyright (C) 2011 Robert Jarzmik
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/bitmap.h>
#include <linux/bitrev.h>
#include <linux/bch.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#define CREATE_TRACE_POINTS
#include "docg3.h"
/*
* This driver handles the DiskOnChip G3 flash memory.
*
* As no specification is available from M-Systems/Sandisk, this drivers lacks
* several functions available on the chip, as :
* - IPL write
*
* The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
* the driver assumes a 16bits data bus.
*
* DocG3 relies on 2 ECC algorithms, which are handled in hardware :
* - a 1 byte Hamming code stored in the OOB for each page
* - a 7 bytes BCH code stored in the OOB for each page
* The BCH ECC is :
* - BCH is in GF(2^14)
* - BCH is over data of 520 bytes (512 page + 7 page_info bytes
* + 1 hamming byte)
* - BCH can correct up to 4 bits (t = 4)
* - BCH syndroms are calculated in hardware, and checked in hardware as well
*
*/
static unsigned int reliable_mode;
module_param(reliable_mode, uint, 0);
MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
"2=reliable) : MLC normal operations are in normal mode");
static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
/* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
oobregion->offset = 7;
oobregion->length = 8;
return 0;
}
static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section > 1)
return -ERANGE;
/* free bytes: byte 0 until byte 6, byte 15 */
if (!section) {
oobregion->offset = 0;
oobregion->length = 7;
} else {
oobregion->offset = 15;
oobregion->length = 1;
}
return 0;
}
static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
.ecc = docg3_ooblayout_ecc,
.free = docg3_ooblayout_free,
};
static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
{
u8 val = readb(docg3->cascade->base + reg);
trace_docg3_io(0, 8, reg, (int)val);
return val;
}
static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
{
u16 val = readw(docg3->cascade->base + reg);
trace_docg3_io(0, 16, reg, (int)val);
return val;
}
static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
{
writeb(val, docg3->cascade->base + reg);
trace_docg3_io(1, 8, reg, val);
}
static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
{
writew(val, docg3->cascade->base + reg);
trace_docg3_io(1, 16, reg, val);
}
static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
{
doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
}
static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
{
doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
}
static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
{
doc_writeb(docg3, addr, DOC_FLASHADDRESS);
}
static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
static int doc_register_readb(struct docg3 *docg3, int reg)
{
u8 val;
doc_writew(docg3, reg, DOC_READADDRESS);
val = doc_readb(docg3, reg);
doc_vdbg("Read register %04x : %02x\n", reg, val);
return val;
}
static int doc_register_readw(struct docg3 *docg3, int reg)
{
u16 val;
doc_writew(docg3, reg, DOC_READADDRESS);
val = doc_readw(docg3, reg);
doc_vdbg("Read register %04x : %04x\n", reg, val);
return val;
}
/**
* doc_delay - delay docg3 operations
* @docg3: the device
* @nbNOPs: the number of NOPs to issue
*
* As no specification is available, the right timings between chip commands are
* unknown. The only available piece of information are the observed nops on a
* working docg3 chip.
* Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
* friendlier msleep() functions or blocking mdelay().
*/
static void doc_delay(struct docg3 *docg3, int nbNOPs)
{
int i;
doc_vdbg("NOP x %d\n", nbNOPs);
for (i = 0; i < nbNOPs; i++)
doc_writeb(docg3, 0, DOC_NOP);
}
static int is_prot_seq_error(struct docg3 *docg3)
{
int ctrl;
ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
}
static int doc_is_ready(struct docg3 *docg3)
{
int ctrl;
ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
return ctrl & DOC_CTRL_FLASHREADY;
}
static int doc_wait_ready(struct docg3 *docg3)
{
int maxWaitCycles = 100;
do {
doc_delay(docg3, 4);
cpu_relax();
} while (!doc_is_ready(docg3) && maxWaitCycles--);
doc_delay(docg3, 2);
if (maxWaitCycles > 0)
return 0;
else
return -EIO;
}
static int doc_reset_seq(struct docg3 *docg3)
{
int ret;
doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
doc_flash_sequence(docg3, DOC_SEQ_RESET);
doc_flash_command(docg3, DOC_CMD_RESET);
doc_delay(docg3, 2);
ret = doc_wait_ready(docg3);
doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
return ret;
}
/**
* doc_read_data_area - Read data from data area
* @docg3: the device
* @buf: the buffer to fill in (might be NULL is dummy reads)
* @len: the length to read
* @first: first time read, DOC_READADDRESS should be set
*
* Reads bytes from flash data. Handles the single byte / even bytes reads.
*/
static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
int first)
{
int i, cdr, len4;
u16 data16, *dst16;
u8 data8, *dst8;
doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
cdr = len & 0x1;
len4 = len - cdr;
if (first)
doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
dst16 = buf;
for (i = 0; i < len4; i += 2) {
data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
if (dst16) {
*dst16 = data16;
dst16++;
}
}
if (cdr) {
doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
DOC_READADDRESS);
doc_delay(docg3, 1);
dst8 = (u8 *)dst16;
for (i = 0; i < cdr; i++) {
data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
if (dst8) {
*dst8 = data8;
dst8++;
}
}
}
}
/**
* doc_write_data_area - Write data into data area
* @docg3: the device
* @buf: the buffer to get input bytes from
* @len: the length to write
*
* Writes bytes into flash data. Handles the single byte / even bytes writes.
*/
static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
{
int i, cdr, len4;
u16 *src16;
u8 *src8;
doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
cdr = len & 0x3;
len4 = len - cdr;
doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
src16 = (u16 *)buf;
for (i = 0; i < len4; i += 2) {
doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
src16++;
}
src8 = (u8 *)src16;
for (i = 0; i < cdr; i++) {
doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
DOC_READADDRESS);
doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
src8++;
}
}
/**
* doc_set_data_mode - Sets the flash to normal or reliable data mode
* @docg3: the device
*
* The reliable data mode is a bit slower than the fast mode, but less errors
* occur. Entering the reliable mode cannot be done without entering the fast
* mode first.
*
* In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
* (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
* from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
* result, which is a logical and between bytes from page 0 and page 1 (which is
* consistent with the fact that writing to a page is _clearing_ bits of that
* page).
*/
static void doc_set_reliable_mode(struct docg3 *docg3)
{
static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
switch (docg3->reliable) {
case 0:
break;
case 1:
doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
doc_flash_command(docg3, DOC_CMD_FAST_MODE);
break;
case 2:
doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
doc_flash_command(docg3, DOC_CMD_FAST_MODE);
doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
break;
default:
doc_err("doc_set_reliable_mode(): invalid mode\n");
break;
}
doc_delay(docg3, 2);
}
/**
* doc_set_asic_mode - Set the ASIC mode
* @docg3: the device
* @mode: the mode
*
* The ASIC can work in 3 modes :
* - RESET: all registers are zeroed
* - NORMAL: receives and handles commands
* - POWERDOWN: minimal poweruse, flash parts shut off
*/
static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
{
int i;
for (i = 0; i < 12; i++)
doc_readb(docg3, DOC_IOSPACE_IPL);
mode |= DOC_ASICMODE_MDWREN;
doc_dbg("doc_set_asic_mode(%02x)\n", mode);
doc_writeb(docg3, mode, DOC_ASICMODE);
doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
doc_delay(docg3, 1);
}
/**
* doc_set_device_id - Sets the devices id for cascaded G3 chips
* @docg3: the device
* @id: the chip to select (amongst 0, 1, 2, 3)
*
* There can be 4 cascaded G3 chips. This function selects the one which will
* should be the active one.
*/
static void doc_set_device_id(struct docg3 *docg3, int id)
{
u8 ctrl;
doc_dbg("doc_set_device_id(%d)\n", id);
doc_writeb(docg3, id, DOC_DEVICESELECT);
ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
ctrl &= ~DOC_CTRL_VIOLATION;
ctrl |= DOC_CTRL_CE;
doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
}
/**
* doc_set_extra_page_mode - Change flash page layout
* @docg3: the device
*
* Normally, the flash page is split into the data (512 bytes) and the out of
* band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
* leveling counters are stored. To access this last area of 4 bytes, a special
* mode must be input to the flash ASIC.
*
* Returns 0 if no error occurred, -EIO else.
*/
static int doc_set_extra_page_mode(struct docg3 *docg3)
{
int fctrl;
doc_dbg("doc_set_extra_page_mode()\n");
doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
doc_delay(docg3, 2);
fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
return -EIO;
else
return 0;
}
/**
* doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
* @docg3: the device
* @sector: the sector
*/
static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
{
doc_delay(docg3, 1);
doc_flash_address(docg3, sector & 0xff);
doc_flash_address(docg3, (sector >> 8) & 0xff);
doc_flash_address(docg3, (sector >> 16) & 0xff);
doc_delay(docg3, 1);
}
/**
* doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
* @docg3: the device
* @sector: the sector
* @ofs: the offset in the page, between 0 and (512 + 16 + 512)
*/
static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
{
ofs = ofs >> 2;
doc_delay(docg3, 1);
doc_flash_address(docg3, ofs & 0xff);
doc_flash_address(docg3, sector & 0xff);
doc_flash_address(docg3, (sector >> 8) & 0xff);
doc_flash_address(docg3, (sector >> 16) & 0xff);
doc_delay(docg3, 1);
}
/**
* doc_seek - Set both flash planes to the specified block, page for reading
* @docg3: the device
* @block0: the first plane block index
* @block1: the second plane block index
* @page: the page index within the block
* @wear: if true, read will occur on the 4 extra bytes of the wear area
* @ofs: offset in page to read
*
* Programs the flash even and odd planes to the specific block and page.
* Alternatively, programs the flash to the wear area of the specified page.
*/
static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
int wear, int ofs)
{
int sector, ret = 0;
doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
block0, block1, page, ofs, wear);
if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
doc_delay(docg3, 2);
} else {
doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
doc_delay(docg3, 2);
}
doc_set_reliable_mode(docg3);
if (wear)
ret = doc_set_extra_page_mode(docg3);
if (ret)
goto out;
doc_flash_sequence(docg3, DOC_SEQ_READ);
sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
doc_setup_addr_sector(docg3, sector);
sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
doc_setup_addr_sector(docg3, sector);
doc_delay(docg3, 1);
out:
return ret;
}
/**
* doc_write_seek - Set both flash planes to the specified block, page for writing
* @docg3: the device
* @block0: the first plane block index
* @block1: the second plane block index
* @page: the page index within the block
* @ofs: offset in page to write
*
* Programs the flash even and odd planes to the specific block and page.
* Alternatively, programs the flash to the wear area of the specified page.
*/
static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
int ofs)
{
int ret = 0, sector;
doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
block0, block1, page, ofs);
doc_set_reliable_mode(docg3);
if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
doc_delay(docg3, 2);
} else {
doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
doc_delay(docg3, 2);
}
doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
doc_setup_writeaddr_sector(docg3, sector, ofs);
doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
doc_delay(docg3, 2);
ret = doc_wait_ready(docg3);
if (ret)
goto out;
doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
doc_setup_writeaddr_sector(docg3, sector, ofs);
doc_delay(docg3, 1);
out:
return ret;
}
/**
* doc_read_page_ecc_init - Initialize hardware ECC engine
* @docg3: the device
* @len: the number of bytes covered by the ECC (BCH covered)
*
* The function does initialize the hardware ECC engine to compute the Hamming
* ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
*
* Return 0 if succeeded, -EIO on error
*/
static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
{
doc_writew(docg3, DOC_ECCCONF0_READ_MODE
| DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
| (len & DOC_ECCCONF0_DATA_BYTES_MASK),
DOC_ECCCONF0);
doc_delay(docg3, 4);
doc_register_readb(docg3, DOC_FLASHCONTROL);
return doc_wait_ready(docg3);
}
/**
* doc_write_page_ecc_init - Initialize hardware BCH ECC engine
* @docg3: the device
* @len: the number of bytes covered by the ECC (BCH covered)
*
* The function does initialize the hardware ECC engine to compute the Hamming
* ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
*
* Return 0 if succeeded, -EIO on error
*/
static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
{
doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
| DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
| (len & DOC_ECCCONF0_DATA_BYTES_MASK),
DOC_ECCCONF0);
doc_delay(docg3, 4);
doc_register_readb(docg3, DOC_FLASHCONTROL);
return doc_wait_ready(docg3);
}
/**
* doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
* @docg3: the device
*
* Disables the hardware ECC generator and checker, for unchecked reads (as when
* reading OOB only or write status byte).
*/
static void doc_ecc_disable(struct docg3 *docg3)
{
doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
doc_delay(docg3, 4);
}
/**
* doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
* @docg3: the device
* @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
*
* This function programs the ECC hardware to compute the hamming code on the
* last provided N bytes to the hardware generator.
*/
static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
{
u8 ecc_conf1;
ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
}
/**
* doc_ecc_bch_fix_data - Fix if need be read data from flash
* @docg3: the device
* @buf: the buffer of read data (512 + 7 + 1 bytes)
* @hwecc: the hardware calculated ECC.
* It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
* area data, and calc_ecc the ECC calculated by the hardware generator.
*
* Checks if the received data matches the ECC, and if an error is detected,
* tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
* understands the (data, ecc, syndroms) in an inverted order in comparison to
* the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
* bit6 and bit 1, ...) for all ECC data.
*
* The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
* algorithm is used to decode this. However the hw operates on page
* data in a bit order that is the reverse of that of the bch alg,
* requiring that the bits be reversed on the result. Thanks to Ivan
* Djelic for his analysis.
*
* Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
* errors were detected and cannot be fixed.
*/
static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
{
u8 ecc[DOC_ECC_BCH_SIZE];
int errorpos[DOC_ECC_BCH_T], i, numerrs;
for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
ecc[i] = bitrev8(hwecc[i]);
numerrs = bch_decode(docg3->cascade->bch, NULL,
DOC_ECC_BCH_COVERED_BYTES,
NULL, ecc, NULL, errorpos);
BUG_ON(numerrs == -EINVAL);
if (numerrs < 0)
goto out;
for (i = 0; i < numerrs; i++)
errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
for (i = 0; i < numerrs; i++)
if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
/* error is located in data, correct it */
change_bit(errorpos[i], buf);
out:
doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
return numerrs;
}
/**
* doc_read_page_prepare - Prepares reading data from a flash page
* @docg3: the device
* @block0: the first plane block index on flash memory
* @block1: the second plane block index on flash memory
* @page: the page index in the block
* @offset: the offset in the page (must be a multiple of 4)
*
* Prepares the page to be read in the flash memory :
* - tell ASIC to map the flash pages
* - tell ASIC to be in read mode
*
* After a call to this method, a call to doc_read_page_finish is mandatory,
* to end the read cycle of the flash.
*
* Read data from a flash page. The length to be read must be between 0 and
* (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
* the extra bytes reading is not implemented).
*
* As pages are grouped by 2 (in 2 planes), reading from a page must be done
* in two steps:
* - one read of 512 bytes at offset 0
* - one read of 512 bytes at offset 512 + 16
*
* Returns 0 if successful, -EIO if a read error occurred.
*/
static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
int page, int offset)
{
int wear_area = 0, ret = 0;
doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
block0, block1, page, offset);
if (offset >= DOC_LAYOUT_WEAR_OFFSET)
wear_area = 1;
if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
return -EINVAL;
doc_set_device_id(docg3, docg3->device_id);
ret = doc_reset_seq(docg3);
if (ret)
goto err;
/* Program the flash address block and page */
ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
if (ret)
goto err;
doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
doc_delay(docg3, 2);
doc_wait_ready(docg3);
doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
doc_delay(docg3, 1);
if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
doc_flash_address(docg3, offset >> 2);
doc_delay(docg3, 1);
doc_wait_ready(docg3);
doc_flash_command(docg3, DOC_CMD_READ_FLASH);
return 0;
err:
doc_writeb(docg3, 0, DOC_DATAEND);
doc_delay(docg3, 2);
return -EIO;
}
/**
* doc_read_page_getbytes - Reads bytes from a prepared page
* @docg3: the device
* @len: the number of bytes to be read (must be a multiple of 4)
* @buf: the buffer to be filled in (or NULL is forget bytes)
* @first: 1 if first time read, DOC_READADDRESS should be set
* @last_odd: 1 if last read ended up on an odd byte
*
* Reads bytes from a prepared page. There is a trickery here : if the last read
* ended up on an odd offset in the 1024 bytes double page, ie. between the 2
* planes, the first byte must be read apart. If a word (16bit) read was used,
* the read would return the byte of plane 2 as low *and* high endian, which
* will mess the read.
*
*/
static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
int first, int last_odd)
{
if (last_odd && len > 0) {
doc_read_data_area(docg3, buf, 1, first);
doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
} else {
doc_read_data_area(docg3, buf, len, first);
}
doc_delay(docg3, 2);
return len;
}
/**
* doc_write_page_putbytes - Writes bytes into a prepared page
* @docg3: the device
* @len: the number of bytes to be written
* @buf: the buffer of input bytes
*
*/
static void doc_write_page_putbytes(struct docg3 *docg3, int len,
const u_char *buf)
{
doc_write_data_area(docg3, buf, len);
doc_delay(docg3, 2);
}
/**
* doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
* @docg3: the device
* @hwecc: the array of 7 integers where the hardware ecc will be stored
*/
static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
{
int i;
for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
}
/**
* doc_page_finish - Ends reading/writing of a flash page
* @docg3: the device
*/
static void doc_page_finish(struct docg3 *docg3)
{
doc_writeb(docg3, 0, DOC_DATAEND);
doc_delay(docg3, 2);
}
/**
* doc_read_page_finish - Ends reading of a flash page
* @docg3: the device
*
* As a side effect, resets the chip selector to 0. This ensures that after each
* read operation, the floor 0 is selected. Therefore, if the systems halts, the
* reboot will boot on floor 0, where the IPL is.
*/
static void doc_read_page_finish(struct docg3 *docg3)
{
doc_page_finish(docg3);
doc_set_device_id(docg3, 0);
}
/**
* calc_block_sector - Calculate blocks, pages and ofs.
*
* @from: offset in flash
* @block0: first plane block index calculated
* @block1: second plane block index calculated
* @page: page calculated
* @ofs: offset in page
* @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
* reliable mode.
*
* The calculation is based on the reliable/normal mode. In normal mode, the 64
* pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
* clones, only 32 pages per block are available.
*/
static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
int *ofs, int reliable)
{
uint sector, pages_biblock;
pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
if (reliable == 1 || reliable == 2)
pages_biblock /= 2;
sector = from / DOC_LAYOUT_PAGE_SIZE;
*block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
*block1 = *block0 + 1;
*page = sector % pages_biblock;
*page /= DOC_LAYOUT_NBPLANES;
if (reliable == 1 || reliable == 2)
*page *= 2;
if (sector % 2)
*ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
else
*ofs = 0;
}
/**
* doc_read_oob - Read out of band bytes from flash
* @mtd: the device
* @from: the offset from first block and first page, in bytes, aligned on page
* size
* @ops: the mtd oob structure
*
* Reads flash memory OOB area of pages.
*
* Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
*/
static int doc_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct docg3 *docg3 = mtd->priv;
int block0, block1, page, ret, skip, ofs = 0;
u8 *oobbuf = ops->oobbuf;
u8 *buf = ops->datbuf;
size_t len, ooblen, nbdata, nboob;
u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
int max_bitflips = 0;
if (buf)
len = ops->len;
else
len = 0;
if (oobbuf)
ooblen = ops->ooblen;
else
ooblen = 0;
if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
oobbuf += ops->ooboffs;
doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
from, ops->mode, buf, len, oobbuf, ooblen);
if (ooblen % DOC_LAYOUT_OOB_SIZE)
return -EINVAL;
ops->oobretlen = 0;
ops->retlen = 0;
ret = 0;
skip = from % DOC_LAYOUT_PAGE_SIZE;
mutex_lock(&docg3->cascade->lock);
while (ret >= 0 && (len > 0 || ooblen > 0)) {
calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
docg3->reliable);
nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
if (ret < 0)
goto out;
ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
if (ret < 0)
goto err_in_read;
ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
if (ret < skip)
goto err_in_read;
ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
if (ret < nbdata)
goto err_in_read;
doc_read_page_getbytes(docg3,
DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
NULL, 0, (skip + nbdata) % 2);
ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
if (ret < nboob)
goto err_in_read;
doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
NULL, 0, nboob % 2);
doc_get_bch_hw_ecc(docg3, hwecc);
eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
if (nboob >= DOC_LAYOUT_OOB_SIZE) {
doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
}
doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
ret = -EIO;
if (is_prot_seq_error(docg3))
goto err_in_read;
ret = 0;
if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
(eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
(eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
(ops->mode != MTD_OPS_RAW) &&
(nbdata == DOC_LAYOUT_PAGE_SIZE)) {
ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
if (ret < 0) {
mtd->ecc_stats.failed++;
ret = -EBADMSG;
}
if (ret > 0) {
mtd->ecc_stats.corrected += ret;
max_bitflips = max(max_bitflips, ret);
ret = max_bitflips;
}
}
doc_read_page_finish(docg3);
ops->retlen += nbdata;
ops->oobretlen += nboob;
buf += nbdata;
oobbuf += nboob;
len -= nbdata;
ooblen -= nboob;
from += DOC_LAYOUT_PAGE_SIZE;
skip = 0;
}
out:
mutex_unlock(&docg3->cascade->lock);
return ret;
err_in_read:
doc_read_page_finish(docg3);
goto out;
}
static int doc_reload_bbt(struct docg3 *docg3)
{
int block = DOC_LAYOUT_BLOCK_BBT;
int ret = 0, nbpages, page;
u_char *buf = docg3->bbt;
nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
for (page = 0; !ret && (page < nbpages); page++) {
ret = doc_read_page_prepare(docg3, block, block + 1,
page + DOC_LAYOUT_PAGE_BBT, 0);
if (!ret)
ret = doc_read_page_ecc_init(docg3,
DOC_LAYOUT_PAGE_SIZE);
if (!ret)
doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
buf, 1, 0);
buf += DOC_LAYOUT_PAGE_SIZE;
}
doc_read_page_finish(docg3);
return ret;
}
/**
* doc_block_isbad - Checks whether a block is good or not
* @mtd: the device
* @from: the offset to find the correct block
*
* Returns 1 if block is bad, 0 if block is good
*/
static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
{
struct docg3 *docg3 = mtd->priv;
int block0, block1, page, ofs, is_good;
calc_block_sector(from, &block0, &block1, &page, &ofs,
docg3->reliable);
doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
from, block0, block1, page, ofs);
if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
return 0;
if (block1 > docg3->max_block)
return -EINVAL;
is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
return !is_good;
}
#if 0
/**
* doc_get_erase_count - Get block erase count
* @docg3: the device
* @from: the offset in which the block is.
*
* Get the number of times a block was erased. The number is the maximum of
* erase times between first and second plane (which should be equal normally).
*
* Returns The number of erases, or -EINVAL or -EIO on error.
*/
static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
{
u8 buf[DOC_LAYOUT_WEAR_SIZE];
int ret, plane1_erase_count, plane2_erase_count;
int block0, block1, page, ofs;
doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
if (from % DOC_LAYOUT_PAGE_SIZE)
return -EINVAL;
calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
if (block1 > docg3->max_block)
return -EINVAL;
ret = doc_reset_seq(docg3);
if (!ret)
ret = doc_read_page_prepare(docg3, block0, block1, page,
ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
if (!ret)
ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
buf, 1, 0);
doc_read_page_finish(docg3);
if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
return -EIO;
plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
| ((u8)(~buf[5]) << 16);
plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
| ((u8)(~buf[7]) << 16);
return max(plane1_erase_count, plane2_erase_count);
}
#endif
/**
* doc_get_op_status - get erase/write operation status
* @docg3: the device
*
* Queries the status from the chip, and returns it
*
* Returns the status (bits DOC_PLANES_STATUS_*)
*/
static int doc_get_op_status(struct docg3 *docg3)
{
u8 status;
doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
doc_delay(docg3, 5);
doc_ecc_disable(docg3);
doc_read_data_area(docg3, &status, 1, 1);
return status;
}
/**
* doc_write_erase_wait_status - wait for write or erase completion
* @docg3: the device
*
* Wait for the chip to be ready again after erase or write operation, and check
* erase/write status.
*
* Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
* timeout
*/
static int doc_write_erase_wait_status(struct docg3 *docg3)
{
int i, status, ret = 0;
for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
msleep(20);
if (!doc_is_ready(docg3)) {
doc_dbg("Timeout reached and the chip is still not ready\n");
ret = -EAGAIN;
goto out;
}
status = doc_get_op_status(docg3);
if (status & DOC_PLANES_STATUS_FAIL) {
doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
status);
ret = -EIO;
}
out:
doc_page_finish(docg3);
return ret;
}
/**
* doc_erase_block - Erase a couple of blocks
* @docg3: the device
* @block0: the first block to erase (leftmost plane)
* @block1: the second block to erase (rightmost plane)
*
* Erase both blocks, and return operation status
*
* Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
* ready for too long
*/
static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
{
int ret, sector;
doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
ret = doc_reset_seq(docg3);
if (ret)
return -EIO;
doc_set_reliable_mode(docg3);
doc_flash_sequence(docg3, DOC_SEQ_ERASE);
sector = block0 << DOC_ADDR_BLOCK_SHIFT;
doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
doc_setup_addr_sector(docg3, sector);
sector = block1 << DOC_ADDR_BLOCK_SHIFT;
doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
doc_setup_addr_sector(docg3, sector);
doc_delay(docg3, 1);
doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
doc_delay(docg3, 2);
if (is_prot_seq_error(docg3)) {
doc_err("Erase blocks %d,%d error\n", block0, block1);
return -EIO;
}
return doc_write_erase_wait_status(docg3);
}
/**
* doc_erase - Erase a portion of the chip
* @mtd: the device
* @info: the erase info
*
* Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
* split into 2 pages of 512 bytes on 2 contiguous blocks.
*
* Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
* issue
*/
static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
{
struct docg3 *docg3 = mtd->priv;
uint64_t len;
int block0, block1, page, ret = 0, ofs = 0;
doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
calc_block_sector(info->addr + info->len, &block0, &block1, &page,
&ofs, docg3->reliable);
if (info->addr + info->len > mtd->size || page || ofs)
return -EINVAL;
calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
docg3->reliable);
mutex_lock(&docg3->cascade->lock);
doc_set_device_id(docg3, docg3->device_id);
doc_set_reliable_mode(docg3);
for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
ret = doc_erase_block(docg3, block0, block1);
block0 += 2;
block1 += 2;
}
mutex_unlock(&docg3->cascade->lock);
return ret;
}
/**
* doc_write_page - Write a single page to the chip
* @docg3: the device
* @to: the offset from first block and first page, in bytes, aligned on page
* size
* @buf: buffer to get bytes from
* @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
* written)
* @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
* BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
* remaining ones are filled with hardware Hamming and BCH
* computations. Its value is not meaningfull is oob == NULL.
*
* Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
* OOB data. The OOB ECC is automatically computed by the hardware Hamming and
* BCH generator if autoecc is not null.
*
* Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
*/
static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
const u_char *oob, int autoecc)
{
int block0, block1, page, ret, ofs = 0;
u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
doc_dbg("doc_write_page(to=%lld)\n", to);
calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
doc_set_device_id(docg3, docg3->device_id);
ret = doc_reset_seq(docg3);
if (ret)
goto err;
/* Program the flash address block and page */
ret = doc_write_seek(docg3, block0, block1, page, ofs);
if (ret)
goto err;
doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
doc_delay(docg3, 2);
doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
if (oob && autoecc) {
doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
doc_delay(docg3, 2);
oob += DOC_LAYOUT_OOB_UNUSED_OFS;
hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
doc_delay(docg3, 2);
doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
&hamming);
doc_delay(docg3, 2);
doc_get_bch_hw_ecc(docg3, hwecc);
doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
doc_delay(docg3, 2);
doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
}
if (oob && !autoecc)
doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
doc_delay(docg3, 2);
doc_page_finish(docg3);
doc_delay(docg3, 2);
doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
doc_delay(docg3, 2);
/*
* The wait status will perform another doc_page_finish() call, but that
* seems to please the docg3, so leave it.
*/
ret = doc_write_erase_wait_status(docg3);
return ret;
err:
doc_read_page_finish(docg3);
return ret;
}
/**
* doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
* @ops: the oob operations
*
* Returns 0 or 1 if success, -EINVAL if invalid oob mode
*/
static int doc_guess_autoecc(struct mtd_oob_ops *ops)
{
int autoecc;
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
autoecc = 1;
break;
case MTD_OPS_RAW:
autoecc = 0;
break;
default:
autoecc = -EINVAL;
}
return autoecc;
}
/**
* doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
* @dst: the target 16 bytes OOB buffer
* @oobsrc: the source 8 bytes non-ECC OOB buffer
*
*/
static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
{
memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
}
/**
* doc_backup_oob - Backup OOB into docg3 structure
* @docg3: the device
* @to: the page offset in the chip
* @ops: the OOB size and buffer
*
* As the docg3 should write a page with its OOB in one pass, and some userland
* applications do write_oob() to setup the OOB and then write(), store the OOB
* into a temporary storage. This is very dangerous, as 2 concurrent
* applications could store an OOB, and then write their pages (which will
* result into one having its OOB corrupted).
*
* The only reliable way would be for userland to call doc_write_oob() with both
* the page data _and_ the OOB area.
*
* Returns 0 if success, -EINVAL if ops content invalid
*/
static int doc_backup_oob(struct docg3 *docg3, loff_t to,
struct mtd_oob_ops *ops)
{
int ooblen = ops->ooblen, autoecc;
if (ooblen != DOC_LAYOUT_OOB_SIZE)
return -EINVAL;
autoecc = doc_guess_autoecc(ops);
if (autoecc < 0)
return autoecc;
docg3->oob_write_ofs = to;
docg3->oob_autoecc = autoecc;
if (ops->mode == MTD_OPS_AUTO_OOB) {
doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
ops->oobretlen = 8;
} else {
memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
}
return 0;
}
/**
* doc_write_oob - Write out of band bytes to flash
* @mtd: the device
* @ofs: the offset from first block and first page, in bytes, aligned on page
* size
* @ops: the mtd oob structure
*
* Either write OOB data into a temporary buffer, for the subsequent write
* page. The provided OOB should be 16 bytes long. If a data buffer is provided
* as well, issue the page write.
* Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
* still be filled in if asked for).
*
* Returns 0 is successful, EINVAL if length is not 14 bytes
*/
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
struct mtd_oob_ops *ops)
{
struct docg3 *docg3 = mtd->priv;
int ret, autoecc, oobdelta;
u8 *oobbuf = ops->oobbuf;
u8 *buf = ops->datbuf;
size_t len, ooblen;
u8 oob[DOC_LAYOUT_OOB_SIZE];
if (buf)
len = ops->len;
else
len = 0;
if (oobbuf)
ooblen = ops->ooblen;
else
ooblen = 0;
if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
oobbuf += ops->ooboffs;
doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
ofs, ops->mode, buf, len, oobbuf, ooblen);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
oobdelta = mtd->oobsize;
break;
case MTD_OPS_AUTO_OOB:
oobdelta = mtd->oobavail;
break;
default:
return -EINVAL;
}
if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
(ofs % DOC_LAYOUT_PAGE_SIZE))
return -EINVAL;
if (len && ooblen &&
(len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
return -EINVAL;
ops->oobretlen = 0;
ops->retlen = 0;
ret = 0;
if (len == 0 && ooblen == 0)
return -EINVAL;
if (len == 0 && ooblen > 0)
return doc_backup_oob(docg3, ofs, ops);
autoecc = doc_guess_autoecc(ops);
if (autoecc < 0)
return autoecc;
mutex_lock(&docg3->cascade->lock);
while (!ret && len > 0) {
memset(oob, 0, sizeof(oob));
if (ofs == docg3->oob_write_ofs)
memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
doc_fill_autooob(oob, oobbuf);
else if (ooblen > 0)
memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
ofs += DOC_LAYOUT_PAGE_SIZE;
len -= DOC_LAYOUT_PAGE_SIZE;
buf += DOC_LAYOUT_PAGE_SIZE;
if (ooblen) {
oobbuf += oobdelta;
ooblen -= oobdelta;
ops->oobretlen += oobdelta;
}
ops->retlen += DOC_LAYOUT_PAGE_SIZE;
}
doc_set_device_id(docg3, 0);
mutex_unlock(&docg3->cascade->lock);
return ret;
}
static struct docg3 *sysfs_dev2docg3(struct device *dev,
struct device_attribute *attr)
{
int floor;
struct mtd_info **docg3_floors = dev_get_drvdata(dev);
floor = attr->attr.name[1] - '0';
if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
return NULL;
else
return docg3_floors[floor]->priv;
}
static ssize_t dps0_is_key_locked(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
int dps0;
mutex_lock(&docg3->cascade->lock);
doc_set_device_id(docg3, docg3->device_id);
dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
doc_set_device_id(docg3, 0);
mutex_unlock(&docg3->cascade->lock);
return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
}
static ssize_t dps1_is_key_locked(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
int dps1;
mutex_lock(&docg3->cascade->lock);
doc_set_device_id(docg3, docg3->device_id);
dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
doc_set_device_id(docg3, 0);
mutex_unlock(&docg3->cascade->lock);
return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
}
static ssize_t dps0_insert_key(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
int i;
if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
return -EINVAL;
mutex_lock(&docg3->cascade->lock);
doc_set_device_id(docg3, docg3->device_id);
for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
doc_set_device_id(docg3, 0);
mutex_unlock(&docg3->cascade->lock);
return count;
}
static ssize_t dps1_insert_key(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
int i;
if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
return -EINVAL;
mutex_lock(&docg3->cascade->lock);
doc_set_device_id(docg3, docg3->device_id);
for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
doc_set_device_id(docg3, 0);
mutex_unlock(&docg3->cascade->lock);
return count;
}
#define FLOOR_SYSFS(id) { \
__ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
__ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
__ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
__ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
}
static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
};
static int doc_register_sysfs(struct platform_device *pdev,
struct docg3_cascade *cascade)
{
struct device *dev = &pdev->dev;
int floor;
int ret;
int i;
for (floor = 0;
floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
floor++) {
for (i = 0; i < 4; i++) {
ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
if (ret)
goto remove_files;
}
}
return 0;
remove_files:
do {
while (--i >= 0)
device_remove_file(dev, &doc_sys_attrs[floor][i]);
i = 4;
} while (--floor >= 0);
return ret;
}
static void doc_unregister_sysfs(struct platform_device *pdev,
struct docg3_cascade *cascade)
{
struct device *dev = &pdev->dev;
int floor, i;
for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
floor++)
for (i = 0; i < 4; i++)
device_remove_file(dev, &doc_sys_attrs[floor][i]);
}
/*
* Debug sysfs entries
*/
static int flashcontrol_show(struct seq_file *s, void *p)
{
struct docg3 *docg3 = (struct docg3 *)s->private;
u8 fctrl;
mutex_lock(&docg3->cascade->lock);
fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
mutex_unlock(&docg3->cascade->lock);
seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
fctrl,
fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
fctrl & DOC_CTRL_CE ? "active" : "inactive",
fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
return 0;
}
DEFINE_SHOW_ATTRIBUTE(flashcontrol);
static int asic_mode_show(struct seq_file *s, void *p)
{
struct docg3 *docg3 = (struct docg3 *)s->private;
int pctrl, mode;
mutex_lock(&docg3->cascade->lock);
pctrl = doc_register_readb(docg3, DOC_ASICMODE);
mode = pctrl & 0x03;
mutex_unlock(&docg3->cascade->lock);
seq_printf(s,
"%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
pctrl,
pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
mode >> 1, mode & 0x1);
switch (mode) {
case DOC_ASICMODE_RESET:
seq_puts(s, "reset");
break;
case DOC_ASICMODE_NORMAL:
seq_puts(s, "normal");
break;
case DOC_ASICMODE_POWERDOWN:
seq_puts(s, "powerdown");
break;
}
seq_puts(s, ")\n");
return 0;
}
DEFINE_SHOW_ATTRIBUTE(asic_mode);
static int device_id_show(struct seq_file *s, void *p)
{
struct docg3 *docg3 = (struct docg3 *)s->private;
int id;
mutex_lock(&docg3->cascade->lock);
id = doc_register_readb(docg3, DOC_DEVICESELECT);
mutex_unlock(&docg3->cascade->lock);
seq_printf(s, "DeviceId = %d\n", id);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(device_id);
static int protection_show(struct seq_file *s, void *p)
{
struct docg3 *docg3 = (struct docg3 *)s->private;
int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
mutex_lock(&docg3->cascade->lock);
protect = doc_register_readb(docg3, DOC_PROTECTION);
dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
mutex_unlock(&docg3->cascade->lock);
seq_printf(s, "Protection = 0x%02x (", protect);
if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
seq_puts(s, "FOUNDRY_OTP_LOCK,");
if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
seq_puts(s, "CUSTOMER_OTP_LOCK,");
if (protect & DOC_PROTECT_LOCK_INPUT)
seq_puts(s, "LOCK_INPUT,");
if (protect & DOC_PROTECT_STICKY_LOCK)
seq_puts(s, "STICKY_LOCK,");
if (protect & DOC_PROTECT_PROTECTION_ENABLED)
seq_puts(s, "PROTECTION ON,");
if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
seq_puts(s, "IPL_DOWNLOAD_LOCK,");
if (protect & DOC_PROTECT_PROTECTION_ERROR)
seq_puts(s, "PROTECT_ERR,");
else
seq_puts(s, "NO_PROTECT_ERR");
seq_puts(s, ")\n");
seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
dps0, dps0_low, dps0_high,
!!(dps0 & DOC_DPS_OTP_PROTECTED),
!!(dps0 & DOC_DPS_READ_PROTECTED),
!!(dps0 & DOC_DPS_WRITE_PROTECTED),
!!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
!!(dps0 & DOC_DPS_KEY_OK));
seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
dps1, dps1_low, dps1_high,
!!(dps1 & DOC_DPS_OTP_PROTECTED),
!!(dps1 & DOC_DPS_READ_PROTECTED),
!!(dps1 & DOC_DPS_WRITE_PROTECTED),
!!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
!!(dps1 & DOC_DPS_KEY_OK));
return 0;
}
DEFINE_SHOW_ATTRIBUTE(protection);
static void __init doc_dbg_register(struct mtd_info *floor)
{
struct dentry *root = floor->dbg.dfs_dir;
struct docg3 *docg3 = floor->priv;
if (IS_ERR_OR_NULL(root)) {
if (IS_ENABLED(CONFIG_DEBUG_FS) &&
!IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
dev_warn(floor->dev.parent,
"CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
return;
}
debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3,
&flashcontrol_fops);
debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3,
&asic_mode_fops);
debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3,
&device_id_fops);
debugfs_create_file("docg3_protection", S_IRUSR, root, docg3,
&protection_fops);
}
/**
* doc_set_driver_info - Fill the mtd_info structure and docg3 structure
* @chip_id: The chip ID of the supported chip
* @mtd: The structure to fill
*/
static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
{
struct docg3 *docg3 = mtd->priv;
int cfg;
cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
docg3->reliable = reliable_mode;
switch (chip_id) {
case DOC_CHIPID_G3:
mtd->name = devm_kasprintf(docg3->dev, GFP_KERNEL, "docg3.%d",
docg3->device_id);
if (!mtd->name)
return -ENOMEM;
docg3->max_block = 2047;
break;
}
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH;
mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
if (docg3->reliable == 2)
mtd->size /= 2;
mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
if (docg3->reliable == 2)
mtd->erasesize /= 2;
mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
mtd->_erase = doc_erase;
mtd->_read_oob = doc_read_oob;
mtd->_write_oob = doc_write_oob;
mtd->_block_isbad = doc_block_isbad;
mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops);
mtd->oobavail = 8;
mtd->ecc_strength = DOC_ECC_BCH_T;
return 0;
}
/**
* doc_probe_device - Check if a device is available
* @cascade: the cascade of chips this devices will belong to
* @floor: the floor of the probed device
* @dev: the device
*
* Checks whether a device at the specified IO range, and floor is available.
*
* Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
* if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
* launched.
*/
static struct mtd_info * __init
doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
{
int ret, bbt_nbpages;
u16 chip_id, chip_id_inv;
struct docg3 *docg3;
struct mtd_info *mtd;
ret = -ENOMEM;
docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
if (!docg3)
goto nomem1;
mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!mtd)
goto nomem2;
mtd->priv = docg3;
mtd->dev.parent = dev;
bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
8 * DOC_LAYOUT_PAGE_SIZE);
docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, bbt_nbpages, GFP_KERNEL);
if (!docg3->bbt)
goto nomem3;
docg3->dev = dev;
docg3->device_id = floor;
docg3->cascade = cascade;
doc_set_device_id(docg3, docg3->device_id);
if (!floor)
doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
chip_id = doc_register_readw(docg3, DOC_CHIPID);
chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
ret = 0;
if (chip_id != (u16)(~chip_id_inv)) {
goto nomem4;
}
switch (chip_id) {
case DOC_CHIPID_G3:
doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
docg3->cascade->base, floor);
break;
default:
doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
goto nomem4;
}
ret = doc_set_driver_info(chip_id, mtd);
if (ret)
goto nomem4;
doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
doc_reload_bbt(docg3);
return mtd;
nomem4:
kfree(docg3->bbt);
nomem3:
kfree(mtd);
nomem2:
kfree(docg3);
nomem1:
return ret ? ERR_PTR(ret) : NULL;
}
/**
* doc_release_device - Release a docg3 floor
* @mtd: the device
*/
static void doc_release_device(struct mtd_info *mtd)
{
struct docg3 *docg3 = mtd->priv;
mtd_device_unregister(mtd);
kfree(docg3->bbt);
kfree(docg3);
kfree(mtd);
}
/**
* docg3_resume - Awakens docg3 floor
* @pdev: platfrom device
*
* Returns 0 (always successful)
*/
static int docg3_resume(struct platform_device *pdev)
{
int i;
struct docg3_cascade *cascade;
struct mtd_info **docg3_floors, *mtd;
struct docg3 *docg3;
cascade = platform_get_drvdata(pdev);
docg3_floors = cascade->floors;
mtd = docg3_floors[0];
docg3 = mtd->priv;
doc_dbg("docg3_resume()\n");
for (i = 0; i < 12; i++)
doc_readb(docg3, DOC_IOSPACE_IPL);
return 0;
}
/**
* docg3_suspend - Put in low power mode the docg3 floor
* @pdev: platform device
* @state: power state
*
* Shuts off most of docg3 circuitery to lower power consumption.
*
* Returns 0 if suspend succeeded, -EIO if chip refused suspend
*/
static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
{
int floor, i;
struct docg3_cascade *cascade;
struct mtd_info **docg3_floors, *mtd;
struct docg3 *docg3;
u8 ctrl, pwr_down;
cascade = platform_get_drvdata(pdev);
docg3_floors = cascade->floors;
for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
mtd = docg3_floors[floor];
if (!mtd)
continue;
docg3 = mtd->priv;
doc_writeb(docg3, floor, DOC_DEVICESELECT);
ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
for (i = 0; i < 10; i++) {
usleep_range(3000, 4000);
pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
if (pwr_down & DOC_POWERDOWN_READY)
break;
}
if (pwr_down & DOC_POWERDOWN_READY) {
doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
floor);
} else {
doc_err("docg3_suspend(): floor %d powerdown failed\n",
floor);
return -EIO;
}
}
mtd = docg3_floors[0];
docg3 = mtd->priv;
doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
return 0;
}
/**
* doc_probe - Probe the IO space for a DiskOnChip G3 chip
* @pdev: platform device
*
* Probes for a G3 chip at the specified IO space in the platform data
* ressources. The floor 0 must be available.
*
* Returns 0 on success, -ENOMEM, -ENXIO on error
*/
static int __init docg3_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mtd_info *mtd;
struct resource *ress;
void __iomem *base;
int ret, floor;
struct docg3_cascade *cascade;
ret = -ENXIO;
ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!ress) {
dev_err(dev, "No I/O memory resource defined\n");
return ret;
}
base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
ret = -ENOMEM;
cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, sizeof(*cascade),
GFP_KERNEL);
if (!cascade)
return ret;
cascade->base = base;
mutex_init(&cascade->lock);
cascade->bch = bch_init(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
DOC_ECC_BCH_PRIMPOLY, false);
if (!cascade->bch)
return ret;
for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
mtd = doc_probe_device(cascade, floor, dev);
if (IS_ERR(mtd)) {
ret = PTR_ERR(mtd);
goto err_probe;
}
if (!mtd) {
if (floor == 0)
goto notfound;
else
continue;
}
cascade->floors[floor] = mtd;
ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
0);
if (ret)
goto err_probe;
doc_dbg_register(cascade->floors[floor]);
}
ret = doc_register_sysfs(pdev, cascade);
if (ret)
goto err_probe;
platform_set_drvdata(pdev, cascade);
return 0;
notfound:
ret = -ENODEV;
dev_info(dev, "No supported DiskOnChip found\n");
err_probe:
bch_free(cascade->bch);
for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
if (cascade->floors[floor])
doc_release_device(cascade->floors[floor]);
return ret;
}
/**
* docg3_release - Release the driver
* @pdev: the platform device
*
* Returns 0
*/
static int docg3_release(struct platform_device *pdev)
{
struct docg3_cascade *cascade = platform_get_drvdata(pdev);
struct docg3 *docg3 = cascade->floors[0]->priv;
int floor;
doc_unregister_sysfs(pdev, cascade);
for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
if (cascade->floors[floor])
doc_release_device(cascade->floors[floor]);
bch_free(docg3->cascade->bch);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id docg3_dt_ids[] = {
{ .compatible = "m-systems,diskonchip-g3" },
{}
};
MODULE_DEVICE_TABLE(of, docg3_dt_ids);
#endif
static struct platform_driver g3_driver = {
.driver = {
.name = "docg3",
.of_match_table = of_match_ptr(docg3_dt_ids),
},
.suspend = docg3_suspend,
.resume = docg3_resume,
.remove = docg3_release,
};
module_platform_driver_probe(g3_driver, docg3_probe);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");