blob: 291fa449993fb553d2f937440957a238fb2cf419 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* PHY drivers for the sungem ethernet driver.
*
* This file could be shared with other drivers.
*
* (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
*
* TODO:
* - Add support for PHYs that provide an IRQ line
* - Eventually moved the entire polling state machine in
* there (out of the eth driver), so that it can easily be
* skipped on PHYs that implement it in hardware.
* - On LXT971 & BCM5201, Apple uses some chip specific regs
* to read the link status. Figure out why and if it makes
* sense to do the same (magic aneg ?)
* - Apple has some additional power management code for some
* Broadcom PHYs that they "hide" from the OpenSource version
* of darwin, still need to reverse engineer that
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/delay.h>
#ifdef CONFIG_PPC_PMAC
#include <asm/prom.h>
#endif
#include <linux/sungem_phy.h>
/* Link modes of the BCM5400 PHY */
static const int phy_BCM5400_link_table[8][3] = {
{ 0, 0, 0 }, /* No link */
{ 0, 0, 0 }, /* 10BT Half Duplex */
{ 1, 0, 0 }, /* 10BT Full Duplex */
{ 0, 1, 0 }, /* 100BT Half Duplex */
{ 0, 1, 0 }, /* 100BT Half Duplex */
{ 1, 1, 0 }, /* 100BT Full Duplex*/
{ 1, 0, 1 }, /* 1000BT */
{ 1, 0, 1 }, /* 1000BT */
};
static inline int __sungem_phy_read(struct mii_phy* phy, int id, int reg)
{
return phy->mdio_read(phy->dev, id, reg);
}
static inline void __sungem_phy_write(struct mii_phy* phy, int id, int reg, int val)
{
phy->mdio_write(phy->dev, id, reg, val);
}
static inline int sungem_phy_read(struct mii_phy* phy, int reg)
{
return phy->mdio_read(phy->dev, phy->mii_id, reg);
}
static inline void sungem_phy_write(struct mii_phy* phy, int reg, int val)
{
phy->mdio_write(phy->dev, phy->mii_id, reg, val);
}
static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
{
u16 val;
int limit = 10000;
val = __sungem_phy_read(phy, phy_id, MII_BMCR);
val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
val |= BMCR_RESET;
__sungem_phy_write(phy, phy_id, MII_BMCR, val);
udelay(100);
while (--limit) {
val = __sungem_phy_read(phy, phy_id, MII_BMCR);
if ((val & BMCR_RESET) == 0)
break;
udelay(10);
}
if ((val & BMCR_ISOLATE) && limit > 0)
__sungem_phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
return limit <= 0;
}
static int bcm5201_init(struct mii_phy* phy)
{
u16 data;
data = sungem_phy_read(phy, MII_BCM5201_MULTIPHY);
data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
sungem_phy_write(phy, MII_BCM5201_MULTIPHY, data);
sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
return 0;
}
static int bcm5201_suspend(struct mii_phy* phy)
{
sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
sungem_phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
return 0;
}
static int bcm5221_init(struct mii_phy* phy)
{
u16 data;
data = sungem_phy_read(phy, MII_BCM5221_TEST);
sungem_phy_write(phy, MII_BCM5221_TEST,
data | MII_BCM5221_TEST_ENABLE_SHADOWS);
data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
data = sungem_phy_read(phy, MII_BCM5221_TEST);
sungem_phy_write(phy, MII_BCM5221_TEST,
data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
return 0;
}
static int bcm5221_suspend(struct mii_phy* phy)
{
u16 data;
data = sungem_phy_read(phy, MII_BCM5221_TEST);
sungem_phy_write(phy, MII_BCM5221_TEST,
data | MII_BCM5221_TEST_ENABLE_SHADOWS);
data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
return 0;
}
static int bcm5241_init(struct mii_phy* phy)
{
u16 data;
data = sungem_phy_read(phy, MII_BCM5221_TEST);
sungem_phy_write(phy, MII_BCM5221_TEST,
data | MII_BCM5221_TEST_ENABLE_SHADOWS);
data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
data = sungem_phy_read(phy, MII_BCM5221_TEST);
sungem_phy_write(phy, MII_BCM5221_TEST,
data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
return 0;
}
static int bcm5241_suspend(struct mii_phy* phy)
{
u16 data;
data = sungem_phy_read(phy, MII_BCM5221_TEST);
sungem_phy_write(phy, MII_BCM5221_TEST,
data | MII_BCM5221_TEST_ENABLE_SHADOWS);
data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
return 0;
}
static int bcm5400_init(struct mii_phy* phy)
{
u16 data;
/* Configure for gigabit full duplex */
data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
udelay(100);
/* Reset and configure cascaded 10/100 PHY */
(void)reset_one_mii_phy(phy, 0x1f);
data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
data |= MII_BCM5201_MULTIPHY_SERIALMODE;
__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
return 0;
}
static int bcm5400_suspend(struct mii_phy* phy)
{
#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
#endif
return 0;
}
static int bcm5401_init(struct mii_phy* phy)
{
u16 data;
int rev;
rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
if (rev == 0 || rev == 3) {
/* Some revisions of 5401 appear to need this
* initialisation sequence to disable, according
* to OF, "tap power management"
*
* WARNING ! OF and Darwin don't agree on the
* register addresses. OF seem to interpret the
* register numbers below as decimal
*
* Note: This should (and does) match tg3_init_5401phy_dsp
* in the tg3.c driver. -DaveM
*/
sungem_phy_write(phy, 0x18, 0x0c20);
sungem_phy_write(phy, 0x17, 0x0012);
sungem_phy_write(phy, 0x15, 0x1804);
sungem_phy_write(phy, 0x17, 0x0013);
sungem_phy_write(phy, 0x15, 0x1204);
sungem_phy_write(phy, 0x17, 0x8006);
sungem_phy_write(phy, 0x15, 0x0132);
sungem_phy_write(phy, 0x17, 0x8006);
sungem_phy_write(phy, 0x15, 0x0232);
sungem_phy_write(phy, 0x17, 0x201f);
sungem_phy_write(phy, 0x15, 0x0a20);
}
/* Configure for gigabit full duplex */
data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
udelay(10);
/* Reset and configure cascaded 10/100 PHY */
(void)reset_one_mii_phy(phy, 0x1f);
data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
data |= MII_BCM5201_MULTIPHY_SERIALMODE;
__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
return 0;
}
static int bcm5401_suspend(struct mii_phy* phy)
{
#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
#endif
return 0;
}
static int bcm5411_init(struct mii_phy* phy)
{
u16 data;
/* Here's some more Apple black magic to setup
* some voltage stuffs.
*/
sungem_phy_write(phy, 0x1c, 0x8c23);
sungem_phy_write(phy, 0x1c, 0x8ca3);
sungem_phy_write(phy, 0x1c, 0x8c23);
/* Here, Apple seems to want to reset it, do
* it as well
*/
sungem_phy_write(phy, MII_BMCR, BMCR_RESET);
sungem_phy_write(phy, MII_BMCR, 0x1340);
data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
udelay(10);
/* Reset and configure cascaded 10/100 PHY */
(void)reset_one_mii_phy(phy, 0x1f);
return 0;
}
static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
{
u16 ctl, adv;
phy->autoneg = 1;
phy->speed = SPEED_10;
phy->duplex = DUPLEX_HALF;
phy->pause = 0;
phy->advertising = advertise;
/* Setup standard advertise */
adv = sungem_phy_read(phy, MII_ADVERTISE);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (advertise & ADVERTISED_10baseT_Half)
adv |= ADVERTISE_10HALF;
if (advertise & ADVERTISED_10baseT_Full)
adv |= ADVERTISE_10FULL;
if (advertise & ADVERTISED_100baseT_Half)
adv |= ADVERTISE_100HALF;
if (advertise & ADVERTISED_100baseT_Full)
adv |= ADVERTISE_100FULL;
sungem_phy_write(phy, MII_ADVERTISE, adv);
/* Start/Restart aneg */
ctl = sungem_phy_read(phy, MII_BMCR);
ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
sungem_phy_write(phy, MII_BMCR, ctl);
return 0;
}
static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
{
u16 ctl;
phy->autoneg = 0;
phy->speed = speed;
phy->duplex = fd;
phy->pause = 0;
ctl = sungem_phy_read(phy, MII_BMCR);
ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
/* First reset the PHY */
sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
/* Select speed & duplex */
switch(speed) {
case SPEED_10:
break;
case SPEED_100:
ctl |= BMCR_SPEED100;
break;
case SPEED_1000:
default:
return -EINVAL;
}
if (fd == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
sungem_phy_write(phy, MII_BMCR, ctl);
return 0;
}
static int genmii_poll_link(struct mii_phy *phy)
{
u16 status;
(void)sungem_phy_read(phy, MII_BMSR);
status = sungem_phy_read(phy, MII_BMSR);
if ((status & BMSR_LSTATUS) == 0)
return 0;
if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
return 0;
return 1;
}
static int genmii_read_link(struct mii_phy *phy)
{
u16 lpa;
if (phy->autoneg) {
lpa = sungem_phy_read(phy, MII_LPA);
if (lpa & (LPA_10FULL | LPA_100FULL))
phy->duplex = DUPLEX_FULL;
else
phy->duplex = DUPLEX_HALF;
if (lpa & (LPA_100FULL | LPA_100HALF))
phy->speed = SPEED_100;
else
phy->speed = SPEED_10;
phy->pause = 0;
}
/* On non-aneg, we assume what we put in BMCR is the speed,
* though magic-aneg shouldn't prevent this case from occurring
*/
return 0;
}
static int generic_suspend(struct mii_phy* phy)
{
sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
return 0;
}
static int bcm5421_init(struct mii_phy* phy)
{
u16 data;
unsigned int id;
id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
/* Revision 0 of 5421 needs some fixups */
if (id == 0x002060e0) {
/* This is borrowed from MacOS
*/
sungem_phy_write(phy, 0x18, 0x1007);
data = sungem_phy_read(phy, 0x18);
sungem_phy_write(phy, 0x18, data | 0x0400);
sungem_phy_write(phy, 0x18, 0x0007);
data = sungem_phy_read(phy, 0x18);
sungem_phy_write(phy, 0x18, data | 0x0800);
sungem_phy_write(phy, 0x17, 0x000a);
data = sungem_phy_read(phy, 0x15);
sungem_phy_write(phy, 0x15, data | 0x0200);
}
/* Pick up some init code from OF for K2 version */
if ((id & 0xfffffff0) == 0x002062e0) {
sungem_phy_write(phy, 4, 0x01e1);
sungem_phy_write(phy, 9, 0x0300);
}
/* Check if we can enable automatic low power */
#ifdef CONFIG_PPC_PMAC
if (phy->platform_data) {
struct device_node *np = of_get_parent(phy->platform_data);
int can_low_power = 1;
if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
can_low_power = 0;
if (can_low_power) {
/* Enable automatic low-power */
sungem_phy_write(phy, 0x1c, 0x9002);
sungem_phy_write(phy, 0x1c, 0xa821);
sungem_phy_write(phy, 0x1c, 0x941d);
}
}
#endif /* CONFIG_PPC_PMAC */
return 0;
}
static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
{
u16 ctl, adv;
phy->autoneg = 1;
phy->speed = SPEED_10;
phy->duplex = DUPLEX_HALF;
phy->pause = 0;
phy->advertising = advertise;
/* Setup standard advertise */
adv = sungem_phy_read(phy, MII_ADVERTISE);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (advertise & ADVERTISED_10baseT_Half)
adv |= ADVERTISE_10HALF;
if (advertise & ADVERTISED_10baseT_Full)
adv |= ADVERTISE_10FULL;
if (advertise & ADVERTISED_100baseT_Half)
adv |= ADVERTISE_100HALF;
if (advertise & ADVERTISED_100baseT_Full)
adv |= ADVERTISE_100FULL;
if (advertise & ADVERTISED_Pause)
adv |= ADVERTISE_PAUSE_CAP;
if (advertise & ADVERTISED_Asym_Pause)
adv |= ADVERTISE_PAUSE_ASYM;
sungem_phy_write(phy, MII_ADVERTISE, adv);
/* Setup 1000BT advertise */
adv = sungem_phy_read(phy, MII_1000BASETCONTROL);
adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
if (advertise & SUPPORTED_1000baseT_Half)
adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
if (advertise & SUPPORTED_1000baseT_Full)
adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
/* Start/Restart aneg */
ctl = sungem_phy_read(phy, MII_BMCR);
ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
sungem_phy_write(phy, MII_BMCR, ctl);
return 0;
}
static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
{
u16 ctl;
phy->autoneg = 0;
phy->speed = speed;
phy->duplex = fd;
phy->pause = 0;
ctl = sungem_phy_read(phy, MII_BMCR);
ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
/* First reset the PHY */
sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
/* Select speed & duplex */
switch(speed) {
case SPEED_10:
break;
case SPEED_100:
ctl |= BMCR_SPEED100;
break;
case SPEED_1000:
ctl |= BMCR_SPD2;
}
if (fd == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
// XXX Should we set the sungem to GII now on 1000BT ?
sungem_phy_write(phy, MII_BMCR, ctl);
return 0;
}
static int bcm54xx_read_link(struct mii_phy *phy)
{
int link_mode;
u16 val;
if (phy->autoneg) {
val = sungem_phy_read(phy, MII_BCM5400_AUXSTATUS);
link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
DUPLEX_FULL : DUPLEX_HALF;
phy->speed = phy_BCM5400_link_table[link_mode][2] ?
SPEED_1000 :
(phy_BCM5400_link_table[link_mode][1] ?
SPEED_100 : SPEED_10);
val = sungem_phy_read(phy, MII_LPA);
phy->pause = (phy->duplex == DUPLEX_FULL) &&
((val & LPA_PAUSE) != 0);
}
/* On non-aneg, we assume what we put in BMCR is the speed,
* though magic-aneg shouldn't prevent this case from occurring
*/
return 0;
}
static int marvell88e1111_init(struct mii_phy* phy)
{
u16 rev;
/* magic init sequence for rev 0 */
rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
if (rev == 0) {
sungem_phy_write(phy, 0x1d, 0x000a);
sungem_phy_write(phy, 0x1e, 0x0821);
sungem_phy_write(phy, 0x1d, 0x0006);
sungem_phy_write(phy, 0x1e, 0x8600);
sungem_phy_write(phy, 0x1d, 0x000b);
sungem_phy_write(phy, 0x1e, 0x0100);
sungem_phy_write(phy, 0x1d, 0x0004);
sungem_phy_write(phy, 0x1e, 0x4850);
}
return 0;
}
#define BCM5421_MODE_MASK (1 << 5)
static int bcm5421_poll_link(struct mii_phy* phy)
{
u32 phy_reg;
int mode;
/* find out in what mode we are */
sungem_phy_write(phy, MII_NCONFIG, 0x1000);
phy_reg = sungem_phy_read(phy, MII_NCONFIG);
mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
if ( mode == BCM54XX_COPPER)
return genmii_poll_link(phy);
/* try to find out whether we have a link */
sungem_phy_write(phy, MII_NCONFIG, 0x2000);
phy_reg = sungem_phy_read(phy, MII_NCONFIG);
if (phy_reg & 0x0020)
return 0;
else
return 1;
}
static int bcm5421_read_link(struct mii_phy* phy)
{
u32 phy_reg;
int mode;
/* find out in what mode we are */
sungem_phy_write(phy, MII_NCONFIG, 0x1000);
phy_reg = sungem_phy_read(phy, MII_NCONFIG);
mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
if ( mode == BCM54XX_COPPER)
return bcm54xx_read_link(phy);
phy->speed = SPEED_1000;
/* find out whether we are running half- or full duplex */
sungem_phy_write(phy, MII_NCONFIG, 0x2000);
phy_reg = sungem_phy_read(phy, MII_NCONFIG);
if ( (phy_reg & 0x0080) >> 7)
phy->duplex |= DUPLEX_HALF;
else
phy->duplex |= DUPLEX_FULL;
return 0;
}
static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
{
/* enable fiber mode */
sungem_phy_write(phy, MII_NCONFIG, 0x9020);
/* LEDs active in both modes, autosense prio = fiber */
sungem_phy_write(phy, MII_NCONFIG, 0x945f);
if (!autoneg) {
/* switch off fibre autoneg */
sungem_phy_write(phy, MII_NCONFIG, 0xfc01);
sungem_phy_write(phy, 0x0b, 0x0004);
}
phy->autoneg = autoneg;
return 0;
}
#define BCM5461_FIBER_LINK (1 << 2)
#define BCM5461_MODE_MASK (3 << 1)
static int bcm5461_poll_link(struct mii_phy* phy)
{
u32 phy_reg;
int mode;
/* find out in what mode we are */
sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
phy_reg = sungem_phy_read(phy, MII_NCONFIG);
mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
if ( mode == BCM54XX_COPPER)
return genmii_poll_link(phy);
/* find out whether we have a link */
sungem_phy_write(phy, MII_NCONFIG, 0x7000);
phy_reg = sungem_phy_read(phy, MII_NCONFIG);
if (phy_reg & BCM5461_FIBER_LINK)
return 1;
else
return 0;
}
#define BCM5461_FIBER_DUPLEX (1 << 3)
static int bcm5461_read_link(struct mii_phy* phy)
{
u32 phy_reg;
int mode;
/* find out in what mode we are */
sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
phy_reg = sungem_phy_read(phy, MII_NCONFIG);
mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
if ( mode == BCM54XX_COPPER) {
return bcm54xx_read_link(phy);
}
phy->speed = SPEED_1000;
/* find out whether we are running half- or full duplex */
sungem_phy_write(phy, MII_NCONFIG, 0x7000);
phy_reg = sungem_phy_read(phy, MII_NCONFIG);
if (phy_reg & BCM5461_FIBER_DUPLEX)
phy->duplex |= DUPLEX_FULL;
else
phy->duplex |= DUPLEX_HALF;
return 0;
}
static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
{
/* select fiber mode, enable 1000 base-X registers */
sungem_phy_write(phy, MII_NCONFIG, 0xfc0b);
if (autoneg) {
/* enable fiber with no autonegotiation */
sungem_phy_write(phy, MII_ADVERTISE, 0x01e0);
sungem_phy_write(phy, MII_BMCR, 0x1140);
} else {
/* enable fiber with autonegotiation */
sungem_phy_write(phy, MII_BMCR, 0x0140);
}
phy->autoneg = autoneg;
return 0;
}
static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
{
u16 ctl, adv;
phy->autoneg = 1;
phy->speed = SPEED_10;
phy->duplex = DUPLEX_HALF;
phy->pause = 0;
phy->advertising = advertise;
/* Setup standard advertise */
adv = sungem_phy_read(phy, MII_ADVERTISE);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (advertise & ADVERTISED_10baseT_Half)
adv |= ADVERTISE_10HALF;
if (advertise & ADVERTISED_10baseT_Full)
adv |= ADVERTISE_10FULL;
if (advertise & ADVERTISED_100baseT_Half)
adv |= ADVERTISE_100HALF;
if (advertise & ADVERTISED_100baseT_Full)
adv |= ADVERTISE_100FULL;
if (advertise & ADVERTISED_Pause)
adv |= ADVERTISE_PAUSE_CAP;
if (advertise & ADVERTISED_Asym_Pause)
adv |= ADVERTISE_PAUSE_ASYM;
sungem_phy_write(phy, MII_ADVERTISE, adv);
/* Setup 1000BT advertise & enable crossover detect
* XXX How do we advertise 1000BT ? Darwin source is
* confusing here, they read from specific control and
* write to control... Someone has specs for those
* beasts ?
*/
adv = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
MII_1000BASETCONTROL_HALFDUPLEXCAP);
if (advertise & SUPPORTED_1000baseT_Half)
adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
if (advertise & SUPPORTED_1000baseT_Full)
adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
/* Start/Restart aneg */
ctl = sungem_phy_read(phy, MII_BMCR);
ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
sungem_phy_write(phy, MII_BMCR, ctl);
return 0;
}
static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
{
u16 ctl, ctl2;
phy->autoneg = 0;
phy->speed = speed;
phy->duplex = fd;
phy->pause = 0;
ctl = sungem_phy_read(phy, MII_BMCR);
ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
ctl |= BMCR_RESET;
/* Select speed & duplex */
switch(speed) {
case SPEED_10:
break;
case SPEED_100:
ctl |= BMCR_SPEED100;
break;
/* I'm not sure about the one below, again, Darwin source is
* quite confusing and I lack chip specs
*/
case SPEED_1000:
ctl |= BMCR_SPD2;
}
if (fd == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
/* Disable crossover. Again, the way Apple does it is strange,
* though I don't assume they are wrong ;)
*/
ctl2 = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
MII_1000BASETCONTROL_FULLDUPLEXCAP |
MII_1000BASETCONTROL_HALFDUPLEXCAP);
if (speed == SPEED_1000)
ctl2 |= (fd == DUPLEX_FULL) ?
MII_1000BASETCONTROL_FULLDUPLEXCAP :
MII_1000BASETCONTROL_HALFDUPLEXCAP;
sungem_phy_write(phy, MII_1000BASETCONTROL, ctl2);
// XXX Should we set the sungem to GII now on 1000BT ?
sungem_phy_write(phy, MII_BMCR, ctl);
return 0;
}
static int marvell_read_link(struct mii_phy *phy)
{
u16 status, pmask;
if (phy->autoneg) {
status = sungem_phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
return -EAGAIN;
if (status & MII_M1011_PHY_SPEC_STATUS_1000)
phy->speed = SPEED_1000;
else if (status & MII_M1011_PHY_SPEC_STATUS_100)
phy->speed = SPEED_100;
else
phy->speed = SPEED_10;
if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
phy->duplex = DUPLEX_FULL;
else
phy->duplex = DUPLEX_HALF;
pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
phy->pause = (status & pmask) == pmask;
}
/* On non-aneg, we assume what we put in BMCR is the speed,
* though magic-aneg shouldn't prevent this case from occurring
*/
return 0;
}
#define MII_BASIC_FEATURES \
(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII | \
SUPPORTED_Pause)
/* On gigabit capable PHYs, we advertise Pause support but not asym pause
* support for now as I'm not sure it's supported and Darwin doesn't do
* it neither. --BenH.
*/
#define MII_GBIT_FEATURES \
(MII_BASIC_FEATURES | \
SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
/* Broadcom BCM 5201 */
static const struct mii_phy_ops bcm5201_phy_ops = {
.init = bcm5201_init,
.suspend = bcm5201_suspend,
.setup_aneg = genmii_setup_aneg,
.setup_forced = genmii_setup_forced,
.poll_link = genmii_poll_link,
.read_link = genmii_read_link,
};
static struct mii_phy_def bcm5201_phy_def = {
.phy_id = 0x00406210,
.phy_id_mask = 0xfffffff0,
.name = "BCM5201",
.features = MII_BASIC_FEATURES,
.magic_aneg = 1,
.ops = &bcm5201_phy_ops
};
/* Broadcom BCM 5221 */
static const struct mii_phy_ops bcm5221_phy_ops = {
.suspend = bcm5221_suspend,
.init = bcm5221_init,
.setup_aneg = genmii_setup_aneg,
.setup_forced = genmii_setup_forced,
.poll_link = genmii_poll_link,
.read_link = genmii_read_link,
};
static struct mii_phy_def bcm5221_phy_def = {
.phy_id = 0x004061e0,
.phy_id_mask = 0xfffffff0,
.name = "BCM5221",
.features = MII_BASIC_FEATURES,
.magic_aneg = 1,
.ops = &bcm5221_phy_ops
};
/* Broadcom BCM 5241 */
static const struct mii_phy_ops bcm5241_phy_ops = {
.suspend = bcm5241_suspend,
.init = bcm5241_init,
.setup_aneg = genmii_setup_aneg,
.setup_forced = genmii_setup_forced,
.poll_link = genmii_poll_link,
.read_link = genmii_read_link,
};
static struct mii_phy_def bcm5241_phy_def = {
.phy_id = 0x0143bc30,
.phy_id_mask = 0xfffffff0,
.name = "BCM5241",
.features = MII_BASIC_FEATURES,
.magic_aneg = 1,
.ops = &bcm5241_phy_ops
};
/* Broadcom BCM 5400 */
static const struct mii_phy_ops bcm5400_phy_ops = {
.init = bcm5400_init,
.suspend = bcm5400_suspend,
.setup_aneg = bcm54xx_setup_aneg,
.setup_forced = bcm54xx_setup_forced,
.poll_link = genmii_poll_link,
.read_link = bcm54xx_read_link,
};
static struct mii_phy_def bcm5400_phy_def = {
.phy_id = 0x00206040,
.phy_id_mask = 0xfffffff0,
.name = "BCM5400",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &bcm5400_phy_ops
};
/* Broadcom BCM 5401 */
static const struct mii_phy_ops bcm5401_phy_ops = {
.init = bcm5401_init,
.suspend = bcm5401_suspend,
.setup_aneg = bcm54xx_setup_aneg,
.setup_forced = bcm54xx_setup_forced,
.poll_link = genmii_poll_link,
.read_link = bcm54xx_read_link,
};
static struct mii_phy_def bcm5401_phy_def = {
.phy_id = 0x00206050,
.phy_id_mask = 0xfffffff0,
.name = "BCM5401",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &bcm5401_phy_ops
};
/* Broadcom BCM 5411 */
static const struct mii_phy_ops bcm5411_phy_ops = {
.init = bcm5411_init,
.suspend = generic_suspend,
.setup_aneg = bcm54xx_setup_aneg,
.setup_forced = bcm54xx_setup_forced,
.poll_link = genmii_poll_link,
.read_link = bcm54xx_read_link,
};
static struct mii_phy_def bcm5411_phy_def = {
.phy_id = 0x00206070,
.phy_id_mask = 0xfffffff0,
.name = "BCM5411",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &bcm5411_phy_ops
};
/* Broadcom BCM 5421 */
static const struct mii_phy_ops bcm5421_phy_ops = {
.init = bcm5421_init,
.suspend = generic_suspend,
.setup_aneg = bcm54xx_setup_aneg,
.setup_forced = bcm54xx_setup_forced,
.poll_link = bcm5421_poll_link,
.read_link = bcm5421_read_link,
.enable_fiber = bcm5421_enable_fiber,
};
static struct mii_phy_def bcm5421_phy_def = {
.phy_id = 0x002060e0,
.phy_id_mask = 0xfffffff0,
.name = "BCM5421",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &bcm5421_phy_ops
};
/* Broadcom BCM 5421 built-in K2 */
static const struct mii_phy_ops bcm5421k2_phy_ops = {
.init = bcm5421_init,
.suspend = generic_suspend,
.setup_aneg = bcm54xx_setup_aneg,
.setup_forced = bcm54xx_setup_forced,
.poll_link = genmii_poll_link,
.read_link = bcm54xx_read_link,
};
static struct mii_phy_def bcm5421k2_phy_def = {
.phy_id = 0x002062e0,
.phy_id_mask = 0xfffffff0,
.name = "BCM5421-K2",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &bcm5421k2_phy_ops
};
static const struct mii_phy_ops bcm5461_phy_ops = {
.init = bcm5421_init,
.suspend = generic_suspend,
.setup_aneg = bcm54xx_setup_aneg,
.setup_forced = bcm54xx_setup_forced,
.poll_link = bcm5461_poll_link,
.read_link = bcm5461_read_link,
.enable_fiber = bcm5461_enable_fiber,
};
static struct mii_phy_def bcm5461_phy_def = {
.phy_id = 0x002060c0,
.phy_id_mask = 0xfffffff0,
.name = "BCM5461",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &bcm5461_phy_ops
};
/* Broadcom BCM 5462 built-in Vesta */
static const struct mii_phy_ops bcm5462V_phy_ops = {
.init = bcm5421_init,
.suspend = generic_suspend,
.setup_aneg = bcm54xx_setup_aneg,
.setup_forced = bcm54xx_setup_forced,
.poll_link = genmii_poll_link,
.read_link = bcm54xx_read_link,
};
static struct mii_phy_def bcm5462V_phy_def = {
.phy_id = 0x002060d0,
.phy_id_mask = 0xfffffff0,
.name = "BCM5462-Vesta",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &bcm5462V_phy_ops
};
/* Marvell 88E1101 amd 88E1111 */
static const struct mii_phy_ops marvell88e1101_phy_ops = {
.suspend = generic_suspend,
.setup_aneg = marvell_setup_aneg,
.setup_forced = marvell_setup_forced,
.poll_link = genmii_poll_link,
.read_link = marvell_read_link
};
static const struct mii_phy_ops marvell88e1111_phy_ops = {
.init = marvell88e1111_init,
.suspend = generic_suspend,
.setup_aneg = marvell_setup_aneg,
.setup_forced = marvell_setup_forced,
.poll_link = genmii_poll_link,
.read_link = marvell_read_link
};
/* two revs in darwin for the 88e1101 ... I could use a datasheet
* to get the proper names...
*/
static struct mii_phy_def marvell88e1101v1_phy_def = {
.phy_id = 0x01410c20,
.phy_id_mask = 0xfffffff0,
.name = "Marvell 88E1101v1",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &marvell88e1101_phy_ops
};
static struct mii_phy_def marvell88e1101v2_phy_def = {
.phy_id = 0x01410c60,
.phy_id_mask = 0xfffffff0,
.name = "Marvell 88E1101v2",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &marvell88e1101_phy_ops
};
static struct mii_phy_def marvell88e1111_phy_def = {
.phy_id = 0x01410cc0,
.phy_id_mask = 0xfffffff0,
.name = "Marvell 88E1111",
.features = MII_GBIT_FEATURES,
.magic_aneg = 1,
.ops = &marvell88e1111_phy_ops
};
/* Generic implementation for most 10/100 PHYs */
static const struct mii_phy_ops generic_phy_ops = {
.setup_aneg = genmii_setup_aneg,
.setup_forced = genmii_setup_forced,
.poll_link = genmii_poll_link,
.read_link = genmii_read_link
};
static struct mii_phy_def genmii_phy_def = {
.phy_id = 0x00000000,
.phy_id_mask = 0x00000000,
.name = "Generic MII",
.features = MII_BASIC_FEATURES,
.magic_aneg = 0,
.ops = &generic_phy_ops
};
static struct mii_phy_def* mii_phy_table[] = {
&bcm5201_phy_def,
&bcm5221_phy_def,
&bcm5241_phy_def,
&bcm5400_phy_def,
&bcm5401_phy_def,
&bcm5411_phy_def,
&bcm5421_phy_def,
&bcm5421k2_phy_def,
&bcm5461_phy_def,
&bcm5462V_phy_def,
&marvell88e1101v1_phy_def,
&marvell88e1101v2_phy_def,
&marvell88e1111_phy_def,
&genmii_phy_def,
NULL
};
int sungem_phy_probe(struct mii_phy *phy, int mii_id)
{
int rc;
u32 id;
struct mii_phy_def* def;
int i;
/* We do not reset the mii_phy structure as the driver
* may re-probe the PHY regulary
*/
phy->mii_id = mii_id;
/* Take PHY out of isloate mode and reset it. */
rc = reset_one_mii_phy(phy, mii_id);
if (rc)
goto fail;
/* Read ID and find matching entry */
id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
id, mii_id);
for (i=0; (def = mii_phy_table[i]) != NULL; i++)
if ((id & def->phy_id_mask) == def->phy_id)
break;
/* Should never be NULL (we have a generic entry), but... */
if (def == NULL)
goto fail;
phy->def = def;
return 0;
fail:
phy->speed = 0;
phy->duplex = 0;
phy->pause = 0;
phy->advertising = 0;
return -ENODEV;
}
EXPORT_SYMBOL(sungem_phy_probe);
MODULE_LICENSE("GPL");