blob: c39589d6d683d70d974712d89c70f90861608760 [file] [log] [blame]
// Copyright 2003-2009 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef RE2_RE2_H_
#define RE2_RE2_H_
// C++ interface to the re2 regular-expression library.
// RE2 supports Perl-style regular expressions (with extensions like
// \d, \w, \s, ...).
//
// -----------------------------------------------------------------------
// REGEXP SYNTAX:
//
// This module uses the re2 library and hence supports
// its syntax for regular expressions, which is similar to Perl's with
// some of the more complicated things thrown away. In particular,
// backreferences and generalized assertions are not available, nor is \Z.
//
// See https://github.com/google/re2/wiki/Syntax for the syntax
// supported by RE2, and a comparison with PCRE and PERL regexps.
//
// For those not familiar with Perl's regular expressions,
// here are some examples of the most commonly used extensions:
//
// "hello (\\w+) world" -- \w matches a "word" character
// "version (\\d+)" -- \d matches a digit
// "hello\\s+world" -- \s matches any whitespace character
// "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary
// "(?i)hello" -- (?i) turns on case-insensitive matching
// "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible
//
// -----------------------------------------------------------------------
// MATCHING INTERFACE:
//
// The "FullMatch" operation checks that supplied text matches a
// supplied pattern exactly.
//
// Example: successful match
// CHECK(RE2::FullMatch("hello", "h.*o"));
//
// Example: unsuccessful match (requires full match):
// CHECK(!RE2::FullMatch("hello", "e"));
//
// -----------------------------------------------------------------------
// UTF-8 AND THE MATCHING INTERFACE:
//
// By default, the pattern and input text are interpreted as UTF-8.
// The RE2::Latin1 option causes them to be interpreted as Latin-1.
//
// Example:
// CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
// CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
//
// -----------------------------------------------------------------------
// MATCHING WITH SUBSTRING EXTRACTION:
//
// You can supply extra pointer arguments to extract matched substrings.
// On match failure, none of the pointees will have been modified.
// On match success, the substrings will be converted (as necessary) and
// their values will be assigned to their pointees until all conversions
// have succeeded or one conversion has failed.
// On conversion failure, the pointees will be in an indeterminate state
// because the caller has no way of knowing which conversion failed.
// However, conversion cannot fail for types like string and StringPiece
// that do not inspect the substring contents. Hence, in the common case
// where all of the pointees are of such types, failure is always due to
// match failure and thus none of the pointees will have been modified.
//
// Example: extracts "ruby" into "s" and 1234 into "i"
// int i;
// std::string s;
// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
//
// Example: fails because string cannot be stored in integer
// CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
//
// Example: fails because there aren't enough sub-patterns
// CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
//
// Example: does not try to extract any extra sub-patterns
// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
//
// Example: does not try to extract into NULL
// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
//
// Example: integer overflow causes failure
// CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
//
// NOTE(rsc): Asking for substrings slows successful matches quite a bit.
// This may get a little faster in the future, but right now is slower
// than PCRE. On the other hand, failed matches run *very* fast (faster
// than PCRE), as do matches without substring extraction.
//
// -----------------------------------------------------------------------
// PARTIAL MATCHES
//
// You can use the "PartialMatch" operation when you want the pattern
// to match any substring of the text.
//
// Example: simple search for a string:
// CHECK(RE2::PartialMatch("hello", "ell"));
//
// Example: find first number in a string
// int number;
// CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
// CHECK_EQ(number, 100);
//
// -----------------------------------------------------------------------
// PRE-COMPILED REGULAR EXPRESSIONS
//
// RE2 makes it easy to use any string as a regular expression, without
// requiring a separate compilation step.
//
// If speed is of the essence, you can create a pre-compiled "RE2"
// object from the pattern and use it multiple times. If you do so,
// you can typically parse text faster than with sscanf.
//
// Example: precompile pattern for faster matching:
// RE2 pattern("h.*o");
// while (ReadLine(&str)) {
// if (RE2::FullMatch(str, pattern)) ...;
// }
//
// -----------------------------------------------------------------------
// SCANNING TEXT INCREMENTALLY
//
// The "Consume" operation may be useful if you want to repeatedly
// match regular expressions at the front of a string and skip over
// them as they match. This requires use of the "StringPiece" type,
// which represents a sub-range of a real string.
//
// Example: read lines of the form "var = value" from a string.
// std::string contents = ...; // Fill string somehow
// StringPiece input(contents); // Wrap a StringPiece around it
//
// std::string var;
// int value;
// while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
// ...;
// }
//
// Each successful call to "Consume" will set "var/value", and also
// advance "input" so it points past the matched text. Note that if the
// regular expression matches an empty string, input will advance
// by 0 bytes. If the regular expression being used might match
// an empty string, the loop body must check for this case and either
// advance the string or break out of the loop.
//
// The "FindAndConsume" operation is similar to "Consume" but does not
// anchor your match at the beginning of the string. For example, you
// could extract all words from a string by repeatedly calling
// RE2::FindAndConsume(&input, "(\\w+)", &word)
//
// -----------------------------------------------------------------------
// USING VARIABLE NUMBER OF ARGUMENTS
//
// The above operations require you to know the number of arguments
// when you write the code. This is not always possible or easy (for
// example, the regular expression may be calculated at run time).
// You can use the "N" version of the operations when the number of
// match arguments are determined at run time.
//
// Example:
// const RE2::Arg* args[10];
// int n;
// // ... populate args with pointers to RE2::Arg values ...
// // ... set n to the number of RE2::Arg objects ...
// bool match = RE2::FullMatchN(input, pattern, args, n);
//
// The last statement is equivalent to
//
// bool match = RE2::FullMatch(input, pattern,
// *args[0], *args[1], ..., *args[n - 1]);
//
// -----------------------------------------------------------------------
// PARSING HEX/OCTAL/C-RADIX NUMBERS
//
// By default, if you pass a pointer to a numeric value, the
// corresponding text is interpreted as a base-10 number. You can
// instead wrap the pointer with a call to one of the operators Hex(),
// Octal(), or CRadix() to interpret the text in another base. The
// CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
// prefixes, but defaults to base-10.
//
// Example:
// int a, b, c, d;
// CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
// RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
// will leave 64 in a, b, c, and d.
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <map>
#include <mutex>
#include <string>
#include "re2/stringpiece.h"
namespace re2 {
class Prog;
class Regexp;
} // namespace re2
namespace re2 {
// Interface for regular expression matching. Also corresponds to a
// pre-compiled regular expression. An "RE2" object is safe for
// concurrent use by multiple threads.
class RE2 {
public:
// We convert user-passed pointers into special Arg objects
class Arg;
class Options;
// Defined in set.h.
class Set;
enum ErrorCode {
NoError = 0,
// Unexpected error
ErrorInternal,
// Parse errors
ErrorBadEscape, // bad escape sequence
ErrorBadCharClass, // bad character class
ErrorBadCharRange, // bad character class range
ErrorMissingBracket, // missing closing ]
ErrorMissingParen, // missing closing )
ErrorTrailingBackslash, // trailing \ at end of regexp
ErrorRepeatArgument, // repeat argument missing, e.g. "*"
ErrorRepeatSize, // bad repetition argument
ErrorRepeatOp, // bad repetition operator
ErrorBadPerlOp, // bad perl operator
ErrorBadUTF8, // invalid UTF-8 in regexp
ErrorBadNamedCapture, // bad named capture group
ErrorPatternTooLarge // pattern too large (compile failed)
};
// Predefined common options.
// If you need more complicated things, instantiate
// an Option class, possibly passing one of these to
// the Option constructor, change the settings, and pass that
// Option class to the RE2 constructor.
enum CannedOptions {
DefaultOptions = 0,
Latin1, // treat input as Latin-1 (default UTF-8)
POSIX, // POSIX syntax, leftmost-longest match
Quiet // do not log about regexp parse errors
};
// Need to have the const char* and const std::string& forms for implicit
// conversions when passing string literals to FullMatch and PartialMatch.
// Otherwise the StringPiece form would be sufficient.
#ifndef SWIG
RE2(const char* pattern);
RE2(const std::string& pattern);
#endif
RE2(const StringPiece& pattern);
RE2(const StringPiece& pattern, const Options& options);
~RE2();
// Returns whether RE2 was created properly.
bool ok() const { return error_code() == NoError; }
// The string specification for this RE2. E.g.
// RE2 re("ab*c?d+");
// re.pattern(); // "ab*c?d+"
const std::string& pattern() const { return pattern_; }
// If RE2 could not be created properly, returns an error string.
// Else returns the empty string.
const std::string& error() const { return *error_; }
// If RE2 could not be created properly, returns an error code.
// Else returns RE2::NoError (== 0).
ErrorCode error_code() const { return error_code_; }
// If RE2 could not be created properly, returns the offending
// portion of the regexp.
const std::string& error_arg() const { return error_arg_; }
// Returns the program size, a very approximate measure of a regexp's "cost".
// Larger numbers are more expensive than smaller numbers.
int ProgramSize() const;
int ReverseProgramSize() const;
// EXPERIMENTAL! SUBJECT TO CHANGE!
// Outputs the program fanout as a histogram bucketed by powers of 2.
// Returns the number of the largest non-empty bucket.
int ProgramFanout(std::map<int, int>* histogram) const;
int ReverseProgramFanout(std::map<int, int>* histogram) const;
// Returns the underlying Regexp; not for general use.
// Returns entire_regexp_ so that callers don't need
// to know about prefix_ and prefix_foldcase_.
re2::Regexp* Regexp() const { return entire_regexp_; }
/***** The array-based matching interface ******/
// The functions here have names ending in 'N' and are used to implement
// the functions whose names are the prefix before the 'N'. It is sometimes
// useful to invoke them directly, but the syntax is awkward, so the 'N'-less
// versions should be preferred.
static bool FullMatchN(const StringPiece& text, const RE2& re,
const Arg* const args[], int n);
static bool PartialMatchN(const StringPiece& text, const RE2& re,
const Arg* const args[], int n);
static bool ConsumeN(StringPiece* input, const RE2& re,
const Arg* const args[], int n);
static bool FindAndConsumeN(StringPiece* input, const RE2& re,
const Arg* const args[], int n);
#ifndef SWIG
private:
template <typename F, typename SP>
static inline bool Apply(F f, SP sp, const RE2& re) {
return f(sp, re, NULL, 0);
}
template <typename F, typename SP, typename... A>
static inline bool Apply(F f, SP sp, const RE2& re, const A&... a) {
const Arg* const args[] = {&a...};
const int n = sizeof...(a);
return f(sp, re, args, n);
}
public:
// In order to allow FullMatch() et al. to be called with a varying number
// of arguments of varying types, we use two layers of variadic templates.
// The first layer constructs the temporary Arg objects. The second layer
// (above) constructs the array of pointers to the temporary Arg objects.
/***** The useful part: the matching interface *****/
// Matches "text" against "re". If pointer arguments are
// supplied, copies matched sub-patterns into them.
//
// You can pass in a "const char*" or a "std::string" for "text".
// You can pass in a "const char*" or a "std::string" or a "RE2" for "re".
//
// The provided pointer arguments can be pointers to any scalar numeric
// type, or one of:
// std::string (matched piece is copied to string)
// StringPiece (StringPiece is mutated to point to matched piece)
// T (where "bool T::ParseFrom(const char*, size_t)" exists)
// (void*)NULL (the corresponding matched sub-pattern is not copied)
//
// Returns true iff all of the following conditions are satisfied:
// a. "text" matches "re" exactly
// b. The number of matched sub-patterns is >= number of supplied pointers
// c. The "i"th argument has a suitable type for holding the
// string captured as the "i"th sub-pattern. If you pass in
// NULL for the "i"th argument, or pass fewer arguments than
// number of sub-patterns, "i"th captured sub-pattern is
// ignored.
//
// CAVEAT: An optional sub-pattern that does not exist in the
// matched string is assigned the empty string. Therefore, the
// following will return false (because the empty string is not a
// valid number):
// int number;
// RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
template <typename... A>
static bool FullMatch(const StringPiece& text, const RE2& re, A&&... a) {
return Apply(FullMatchN, text, re, Arg(std::forward<A>(a))...);
}
// Exactly like FullMatch(), except that "re" is allowed to match
// a substring of "text".
template <typename... A>
static bool PartialMatch(const StringPiece& text, const RE2& re, A&&... a) {
return Apply(PartialMatchN, text, re, Arg(std::forward<A>(a))...);
}
// Like FullMatch() and PartialMatch(), except that "re" has to match
// a prefix of the text, and "input" is advanced past the matched
// text. Note: "input" is modified iff this routine returns true
// and "re" matched a non-empty substring of "text".
template <typename... A>
static bool Consume(StringPiece* input, const RE2& re, A&&... a) {
return Apply(ConsumeN, input, re, Arg(std::forward<A>(a))...);
}
// Like Consume(), but does not anchor the match at the beginning of
// the text. That is, "re" need not start its match at the beginning
// of "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds
// the next word in "s" and stores it in "word".
template <typename... A>
static bool FindAndConsume(StringPiece* input, const RE2& re, A&&... a) {
return Apply(FindAndConsumeN, input, re, Arg(std::forward<A>(a))...);
}
#endif
// Replace the first match of "re" in "str" with "rewrite".
// Within "rewrite", backslash-escaped digits (\1 to \9) can be
// used to insert text matching corresponding parenthesized group
// from the pattern. \0 in "rewrite" refers to the entire matching
// text. E.g.,
//
// std::string s = "yabba dabba doo";
// CHECK(RE2::Replace(&s, "b+", "d"));
//
// will leave "s" containing "yada dabba doo"
//
// Returns true if the pattern matches and a replacement occurs,
// false otherwise.
static bool Replace(std::string* str,
const RE2& re,
const StringPiece& rewrite);
// Like Replace(), except replaces successive non-overlapping occurrences
// of the pattern in the string with the rewrite. E.g.
//
// std::string s = "yabba dabba doo";
// CHECK(RE2::GlobalReplace(&s, "b+", "d"));
//
// will leave "s" containing "yada dada doo"
// Replacements are not subject to re-matching.
//
// Because GlobalReplace only replaces non-overlapping matches,
// replacing "ana" within "banana" makes only one replacement, not two.
//
// Returns the number of replacements made.
static int GlobalReplace(std::string* str,
const RE2& re,
const StringPiece& rewrite);
// Like Replace, except that if the pattern matches, "rewrite"
// is copied into "out" with substitutions. The non-matching
// portions of "text" are ignored.
//
// Returns true iff a match occurred and the extraction happened
// successfully; if no match occurs, the string is left unaffected.
//
// REQUIRES: "text" must not alias any part of "*out".
static bool Extract(const StringPiece& text,
const RE2& re,
const StringPiece& rewrite,
std::string* out);
// Escapes all potentially meaningful regexp characters in
// 'unquoted'. The returned string, used as a regular expression,
// will exactly match the original string. For example,
// 1.5-2.0?
// may become:
// 1\.5\-2\.0\?
static std::string QuoteMeta(const StringPiece& unquoted);
// Computes range for any strings matching regexp. The min and max can in
// some cases be arbitrarily precise, so the caller gets to specify the
// maximum desired length of string returned.
//
// Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
// string s that is an anchored match for this regexp satisfies
// min <= s && s <= max.
//
// Note that PossibleMatchRange() will only consider the first copy of an
// infinitely repeated element (i.e., any regexp element followed by a '*' or
// '+' operator). Regexps with "{N}" constructions are not affected, as those
// do not compile down to infinite repetitions.
//
// Returns true on success, false on error.
bool PossibleMatchRange(std::string* min, std::string* max,
int maxlen) const;
// Generic matching interface
// Type of match.
enum Anchor {
UNANCHORED, // No anchoring
ANCHOR_START, // Anchor at start only
ANCHOR_BOTH // Anchor at start and end
};
// Return the number of capturing subpatterns, or -1 if the
// regexp wasn't valid on construction. The overall match ($0)
// does not count: if the regexp is "(a)(b)", returns 2.
int NumberOfCapturingGroups() const { return num_captures_; }
// Return a map from names to capturing indices.
// The map records the index of the leftmost group
// with the given name.
// Only valid until the re is deleted.
const std::map<std::string, int>& NamedCapturingGroups() const;
// Return a map from capturing indices to names.
// The map has no entries for unnamed groups.
// Only valid until the re is deleted.
const std::map<int, std::string>& CapturingGroupNames() const;
// General matching routine.
// Match against text starting at offset startpos
// and stopping the search at offset endpos.
// Returns true if match found, false if not.
// On a successful match, fills in submatch[] (up to nsubmatch entries)
// with information about submatches.
// I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, with
// submatch[0] = "barbaz", submatch[1].data() = NULL, submatch[2] = "bar",
// submatch[3].data() = NULL, ..., up to submatch[nsubmatch-1].data() = NULL.
// Caveat: submatch[] may be clobbered even on match failure.
//
// Don't ask for more match information than you will use:
// runs much faster with nsubmatch == 1 than nsubmatch > 1, and
// runs even faster if nsubmatch == 0.
// Doesn't make sense to use nsubmatch > 1 + NumberOfCapturingGroups(),
// but will be handled correctly.
//
// Passing text == StringPiece(NULL, 0) will be handled like any other
// empty string, but note that on return, it will not be possible to tell
// whether submatch i matched the empty string or did not match:
// either way, submatch[i].data() == NULL.
bool Match(const StringPiece& text,
size_t startpos,
size_t endpos,
Anchor re_anchor,
StringPiece* submatch,
int nsubmatch) const;
// Check that the given rewrite string is suitable for use with this
// regular expression. It checks that:
// * The regular expression has enough parenthesized subexpressions
// to satisfy all of the \N tokens in rewrite
// * The rewrite string doesn't have any syntax errors. E.g.,
// '\' followed by anything other than a digit or '\'.
// A true return value guarantees that Replace() and Extract() won't
// fail because of a bad rewrite string.
bool CheckRewriteString(const StringPiece& rewrite,
std::string* error) const;
// Returns the maximum submatch needed for the rewrite to be done by
// Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2.
static int MaxSubmatch(const StringPiece& rewrite);
// Append the "rewrite" string, with backslash subsitutions from "vec",
// to string "out".
// Returns true on success. This method can fail because of a malformed
// rewrite string. CheckRewriteString guarantees that the rewrite will
// be sucessful.
bool Rewrite(std::string* out,
const StringPiece& rewrite,
const StringPiece* vec,
int veclen) const;
// Constructor options
class Options {
public:
// The options are (defaults in parentheses):
//
// utf8 (true) text and pattern are UTF-8; otherwise Latin-1
// posix_syntax (false) restrict regexps to POSIX egrep syntax
// longest_match (false) search for longest match, not first match
// log_errors (true) log syntax and execution errors to ERROR
// max_mem (see below) approx. max memory footprint of RE2
// literal (false) interpret string as literal, not regexp
// never_nl (false) never match \n, even if it is in regexp
// dot_nl (false) dot matches everything including new line
// never_capture (false) parse all parens as non-capturing
// case_sensitive (true) match is case-sensitive (regexp can override
// with (?i) unless in posix_syntax mode)
//
// The following options are only consulted when posix_syntax == true.
// When posix_syntax == false, these features are always enabled and
// cannot be turned off; to perform multi-line matching in that case,
// begin the regexp with (?m).
// perl_classes (false) allow Perl's \d \s \w \D \S \W
// word_boundary (false) allow Perl's \b \B (word boundary and not)
// one_line (false) ^ and $ only match beginning and end of text
//
// The max_mem option controls how much memory can be used
// to hold the compiled form of the regexp (the Prog) and
// its cached DFA graphs. Code Search placed limits on the number
// of Prog instructions and DFA states: 10,000 for both.
// In RE2, those limits would translate to about 240 KB per Prog
// and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
// better job of keeping them small than Code Search did).
// Each RE2 has two Progs (one forward, one reverse), and each Prog
// can have two DFAs (one first match, one longest match).
// That makes 4 DFAs:
//
// forward, first-match - used for UNANCHORED or ANCHOR_START searches
// if opt.longest_match() == false
// forward, longest-match - used for all ANCHOR_BOTH searches,
// and the other two kinds if
// opt.longest_match() == true
// reverse, first-match - never used
// reverse, longest-match - used as second phase for unanchored searches
//
// The RE2 memory budget is statically divided between the two
// Progs and then the DFAs: two thirds to the forward Prog
// and one third to the reverse Prog. The forward Prog gives half
// of what it has left over to each of its DFAs. The reverse Prog
// gives it all to its longest-match DFA.
//
// Once a DFA fills its budget, it flushes its cache and starts over.
// If this happens too often, RE2 falls back on the NFA implementation.
// For now, make the default budget something close to Code Search.
static const int kDefaultMaxMem = 8<<20;
enum Encoding {
EncodingUTF8 = 1,
EncodingLatin1
};
Options() :
encoding_(EncodingUTF8),
posix_syntax_(false),
longest_match_(false),
log_errors_(true),
max_mem_(kDefaultMaxMem),
literal_(false),
never_nl_(false),
dot_nl_(false),
never_capture_(false),
case_sensitive_(true),
perl_classes_(false),
word_boundary_(false),
one_line_(false) {
}
/*implicit*/ Options(CannedOptions);
Encoding encoding() const { return encoding_; }
void set_encoding(Encoding encoding) { encoding_ = encoding; }
// Legacy interface to encoding.
// TODO(rsc): Remove once clients have been converted.
bool utf8() const { return encoding_ == EncodingUTF8; }
void set_utf8(bool b) {
if (b) {
encoding_ = EncodingUTF8;
} else {
encoding_ = EncodingLatin1;
}
}
bool posix_syntax() const { return posix_syntax_; }
void set_posix_syntax(bool b) { posix_syntax_ = b; }
bool longest_match() const { return longest_match_; }
void set_longest_match(bool b) { longest_match_ = b; }
bool log_errors() const { return log_errors_; }
void set_log_errors(bool b) { log_errors_ = b; }
int64_t max_mem() const { return max_mem_; }
void set_max_mem(int64_t m) { max_mem_ = m; }
bool literal() const { return literal_; }
void set_literal(bool b) { literal_ = b; }
bool never_nl() const { return never_nl_; }
void set_never_nl(bool b) { never_nl_ = b; }
bool dot_nl() const { return dot_nl_; }
void set_dot_nl(bool b) { dot_nl_ = b; }
bool never_capture() const { return never_capture_; }
void set_never_capture(bool b) { never_capture_ = b; }
bool case_sensitive() const { return case_sensitive_; }
void set_case_sensitive(bool b) { case_sensitive_ = b; }
bool perl_classes() const { return perl_classes_; }
void set_perl_classes(bool b) { perl_classes_ = b; }
bool word_boundary() const { return word_boundary_; }
void set_word_boundary(bool b) { word_boundary_ = b; }
bool one_line() const { return one_line_; }
void set_one_line(bool b) { one_line_ = b; }
void Copy(const Options& src) {
*this = src;
}
int ParseFlags() const;
private:
Encoding encoding_;
bool posix_syntax_;
bool longest_match_;
bool log_errors_;
int64_t max_mem_;
bool literal_;
bool never_nl_;
bool dot_nl_;
bool never_capture_;
bool case_sensitive_;
bool perl_classes_;
bool word_boundary_;
bool one_line_;
};
// Returns the options set in the constructor.
const Options& options() const { return options_; }
// Argument converters; see below.
static inline Arg CRadix(short* x);
static inline Arg CRadix(unsigned short* x);
static inline Arg CRadix(int* x);
static inline Arg CRadix(unsigned int* x);
static inline Arg CRadix(long* x);
static inline Arg CRadix(unsigned long* x);
static inline Arg CRadix(long long* x);
static inline Arg CRadix(unsigned long long* x);
static inline Arg Hex(short* x);
static inline Arg Hex(unsigned short* x);
static inline Arg Hex(int* x);
static inline Arg Hex(unsigned int* x);
static inline Arg Hex(long* x);
static inline Arg Hex(unsigned long* x);
static inline Arg Hex(long long* x);
static inline Arg Hex(unsigned long long* x);
static inline Arg Octal(short* x);
static inline Arg Octal(unsigned short* x);
static inline Arg Octal(int* x);
static inline Arg Octal(unsigned int* x);
static inline Arg Octal(long* x);
static inline Arg Octal(unsigned long* x);
static inline Arg Octal(long long* x);
static inline Arg Octal(unsigned long long* x);
private:
void Init(const StringPiece& pattern, const Options& options);
bool DoMatch(const StringPiece& text,
Anchor re_anchor,
size_t* consumed,
const Arg* const args[],
int n) const;
re2::Prog* ReverseProg() const;
std::string pattern_; // string regular expression
Options options_; // option flags
std::string prefix_; // required prefix (before regexp_)
bool prefix_foldcase_; // prefix is ASCII case-insensitive
re2::Regexp* entire_regexp_; // parsed regular expression
re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed
re2::Prog* prog_; // compiled program for regexp
int num_captures_; // Number of capturing groups
bool is_one_pass_; // can use prog_->SearchOnePass?
mutable re2::Prog* rprog_; // reverse program for regexp
mutable const std::string* error_; // Error indicator
// (or points to empty string)
mutable ErrorCode error_code_; // Error code
mutable std::string error_arg_; // Fragment of regexp showing error
// Map from capture names to indices
mutable const std::map<std::string, int>* named_groups_;
// Map from capture indices to names
mutable const std::map<int, std::string>* group_names_;
// Onces for lazy computations.
mutable std::once_flag rprog_once_;
mutable std::once_flag named_groups_once_;
mutable std::once_flag group_names_once_;
RE2(const RE2&) = delete;
RE2& operator=(const RE2&) = delete;
};
/***** Implementation details *****/
// Hex/Octal/Binary?
// Special class for parsing into objects that define a ParseFrom() method
template <class T>
class _RE2_MatchObject {
public:
static inline bool Parse(const char* str, size_t n, void* dest) {
if (dest == NULL) return true;
T* object = reinterpret_cast<T*>(dest);
return object->ParseFrom(str, n);
}
};
class RE2::Arg {
public:
// Empty constructor so we can declare arrays of RE2::Arg
Arg();
// Constructor specially designed for NULL arguments
Arg(void*);
Arg(std::nullptr_t);
typedef bool (*Parser)(const char* str, size_t n, void* dest);
// Type-specific parsers
#define MAKE_PARSER(type, name) \
Arg(type* p) : arg_(p), parser_(name) {} \
Arg(type* p, Parser parser) : arg_(p), parser_(parser) {}
MAKE_PARSER(char, parse_char)
MAKE_PARSER(signed char, parse_schar)
MAKE_PARSER(unsigned char, parse_uchar)
MAKE_PARSER(float, parse_float)
MAKE_PARSER(double, parse_double)
MAKE_PARSER(std::string, parse_string)
MAKE_PARSER(StringPiece, parse_stringpiece)
MAKE_PARSER(short, parse_short)
MAKE_PARSER(unsigned short, parse_ushort)
MAKE_PARSER(int, parse_int)
MAKE_PARSER(unsigned int, parse_uint)
MAKE_PARSER(long, parse_long)
MAKE_PARSER(unsigned long, parse_ulong)
MAKE_PARSER(long long, parse_longlong)
MAKE_PARSER(unsigned long long, parse_ulonglong)
#undef MAKE_PARSER
// Generic constructor templates
template <class T> Arg(T* p)
: arg_(p), parser_(_RE2_MatchObject<T>::Parse) { }
template <class T> Arg(T* p, Parser parser)
: arg_(p), parser_(parser) { }
// Parse the data
bool Parse(const char* str, size_t n) const;
private:
void* arg_;
Parser parser_;
static bool parse_null (const char* str, size_t n, void* dest);
static bool parse_char (const char* str, size_t n, void* dest);
static bool parse_schar (const char* str, size_t n, void* dest);
static bool parse_uchar (const char* str, size_t n, void* dest);
static bool parse_float (const char* str, size_t n, void* dest);
static bool parse_double (const char* str, size_t n, void* dest);
static bool parse_string (const char* str, size_t n, void* dest);
static bool parse_stringpiece (const char* str, size_t n, void* dest);
#define DECLARE_INTEGER_PARSER(name) \
private: \
static bool parse_##name(const char* str, size_t n, void* dest); \
static bool parse_##name##_radix(const char* str, size_t n, void* dest, \
int radix); \
\
public: \
static bool parse_##name##_hex(const char* str, size_t n, void* dest); \
static bool parse_##name##_octal(const char* str, size_t n, void* dest); \
static bool parse_##name##_cradix(const char* str, size_t n, void* dest);
DECLARE_INTEGER_PARSER(short)
DECLARE_INTEGER_PARSER(ushort)
DECLARE_INTEGER_PARSER(int)
DECLARE_INTEGER_PARSER(uint)
DECLARE_INTEGER_PARSER(long)
DECLARE_INTEGER_PARSER(ulong)
DECLARE_INTEGER_PARSER(longlong)
DECLARE_INTEGER_PARSER(ulonglong)
#undef DECLARE_INTEGER_PARSER
};
inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
inline RE2::Arg::Arg(std::nullptr_t p) : arg_(p), parser_(parse_null) { }
inline bool RE2::Arg::Parse(const char* str, size_t n) const {
return (*parser_)(str, n, arg_);
}
// This part of the parser, appropriate only for ints, deals with bases
#define MAKE_INTEGER_PARSER(type, name) \
inline RE2::Arg RE2::Hex(type* ptr) { \
return RE2::Arg(ptr, RE2::Arg::parse_##name##_hex); \
} \
inline RE2::Arg RE2::Octal(type* ptr) { \
return RE2::Arg(ptr, RE2::Arg::parse_##name##_octal); \
} \
inline RE2::Arg RE2::CRadix(type* ptr) { \
return RE2::Arg(ptr, RE2::Arg::parse_##name##_cradix); \
}
MAKE_INTEGER_PARSER(short, short)
MAKE_INTEGER_PARSER(unsigned short, ushort)
MAKE_INTEGER_PARSER(int, int)
MAKE_INTEGER_PARSER(unsigned int, uint)
MAKE_INTEGER_PARSER(long, long)
MAKE_INTEGER_PARSER(unsigned long, ulong)
MAKE_INTEGER_PARSER(long long, longlong)
MAKE_INTEGER_PARSER(unsigned long long, ulonglong)
#undef MAKE_INTEGER_PARSER
#ifndef SWIG
// Silence warnings about missing initializers for members of LazyRE2.
// Note that we test for Clang first because it defines __GNUC__ as well.
#if defined(__clang__)
#elif defined(__GNUC__) && __GNUC__ >= 6
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
// Helper for writing global or static RE2s safely.
// Write
// static LazyRE2 re = {".*"};
// and then use *re instead of writing
// static RE2 re(".*");
// The former is more careful about multithreaded
// situations than the latter.
//
// N.B. This class never deletes the RE2 object that
// it constructs: that's a feature, so that it can be used
// for global and function static variables.
class LazyRE2 {
private:
struct NoArg {};
public:
typedef RE2 element_type; // support std::pointer_traits
// Constructor omitted to preserve braced initialization in C++98.
// Pretend to be a pointer to Type (never NULL due to on-demand creation):
RE2& operator*() const { return *get(); }
RE2* operator->() const { return get(); }
// Named accessor/initializer:
RE2* get() const {
std::call_once(once_, &LazyRE2::Init, this);
return ptr_;
}
// All data fields must be public to support {"foo"} initialization.
const char* pattern_;
RE2::CannedOptions options_;
NoArg barrier_against_excess_initializers_;
mutable RE2* ptr_;
mutable std::once_flag once_;
private:
static void Init(const LazyRE2* lazy_re2) {
lazy_re2->ptr_ = new RE2(lazy_re2->pattern_, lazy_re2->options_);
}
void operator=(const LazyRE2&); // disallowed
};
#endif // SWIG
} // namespace re2
using re2::RE2;
using re2::LazyRE2;
#endif // RE2_RE2_H_