blob: b2d5c0a6325232688cabacd0083f653a8dbcf1bc [file] [log] [blame]
// Copyright 2006-2007 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Tested by search_test.cc.
//
// Prog::SearchNFA, an NFA search.
// This is an actual NFA like the theorists talk about,
// not the pseudo-NFA found in backtracking regexp implementations.
//
// IMPLEMENTATION
//
// This algorithm is a variant of one that appeared in Rob Pike's sam editor,
// which is a variant of the one described in Thompson's 1968 CACM paper.
// See http://swtch.com/~rsc/regexp/ for various history. The main feature
// over the DFA implementation is that it tracks submatch boundaries.
//
// When the choice of submatch boundaries is ambiguous, this particular
// implementation makes the same choices that traditional backtracking
// implementations (in particular, Perl and PCRE) do.
// Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential
// time in the length of the input.
//
// Like Thompson's original machine and like the DFA implementation, this
// implementation notices a match only once it is one byte past it.
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include "re2/prog.h"
#include "re2/regexp.h"
#include "util/logging.h"
#include "util/sparse_array.h"
#include "util/sparse_set.h"
#include "util/strutil.h"
namespace re2 {
static const bool ExtraDebug = false;
class NFA {
public:
NFA(Prog* prog);
~NFA();
// Searches for a matching string.
// * If anchored is true, only considers matches starting at offset.
// Otherwise finds lefmost match at or after offset.
// * If longest is true, returns the longest match starting
// at the chosen start point. Otherwise returns the so-called
// left-biased match, the one traditional backtracking engines
// (like Perl and PCRE) find.
// Records submatch boundaries in submatch[1..nsubmatch-1].
// Submatch[0] is the entire match. When there is a choice in
// which text matches each subexpression, the submatch boundaries
// are chosen to match what a backtracking implementation would choose.
bool Search(const StringPiece& text, const StringPiece& context,
bool anchored, bool longest,
StringPiece* submatch, int nsubmatch);
private:
struct Thread {
union {
int ref;
Thread* next; // when on free list
};
const char** capture;
};
// State for explicit stack in AddToThreadq.
struct AddState {
int id; // Inst to process
Thread* t; // if not null, set t0 = t before processing id
AddState()
: id(0), t(NULL) {}
explicit AddState(int id)
: id(id), t(NULL) {}
AddState(int id, Thread* t)
: id(id), t(t) {}
};
// Threadq is a list of threads. The list is sorted by the order
// in which Perl would explore that particular state -- the earlier
// choices appear earlier in the list.
typedef SparseArray<Thread*> Threadq;
inline Thread* AllocThread();
inline Thread* Incref(Thread* t);
inline void Decref(Thread* t);
// Follows all empty arrows from id0 and enqueues all the states reached.
// Enqueues only the ByteRange instructions that match byte c.
// context is used (with p) for evaluating empty-width specials.
// p is the current input position, and t0 is the current thread.
void AddToThreadq(Threadq* q, int id0, int c, const StringPiece& context,
const char* p, Thread* t0);
// Run runq on byte c, appending new states to nextq.
// Updates matched_ and match_ as new, better matches are found.
// context is used (with p) for evaluating empty-width specials.
// p is the position of byte c in the input string for AddToThreadq;
// p-1 will be used when processing Match instructions.
// Frees all the threads on runq.
// If there is a shortcut to the end, returns that shortcut.
int Step(Threadq* runq, Threadq* nextq, int c, const StringPiece& context,
const char* p);
// Returns text version of capture information, for debugging.
string FormatCapture(const char** capture);
inline void CopyCapture(const char** dst, const char** src);
Prog* prog_; // underlying program
int start_; // start instruction in program
int ncapture_; // number of submatches to track
bool longest_; // whether searching for longest match
bool endmatch_; // whether match must end at text.end()
const char* btext_; // beginning of text being matched (for FormatSubmatch)
const char* etext_; // end of text being matched (for endmatch_)
Threadq q0_, q1_; // pre-allocated for Search.
const char** match_; // best match so far
bool matched_; // any match so far?
AddState* astack_; // pre-allocated for AddToThreadq
int nastack_;
Thread* free_threads_; // free list
NFA(const NFA&) = delete;
NFA& operator=(const NFA&) = delete;
};
NFA::NFA(Prog* prog) {
prog_ = prog;
start_ = prog_->start();
ncapture_ = 0;
longest_ = false;
endmatch_ = false;
btext_ = NULL;
etext_ = NULL;
q0_.resize(prog_->size());
q1_.resize(prog_->size());
// See NFA::AddToThreadq() for why this is so.
nastack_ = 2*prog_->inst_count(kInstCapture) +
prog_->inst_count(kInstEmptyWidth) +
prog_->inst_count(kInstNop) + 1; // + 1 for start inst
astack_ = new AddState[nastack_];
match_ = NULL;
matched_ = false;
free_threads_ = NULL;
}
NFA::~NFA() {
delete[] match_;
delete[] astack_;
Thread* next;
for (Thread* t = free_threads_; t; t = next) {
next = t->next;
delete[] t->capture;
delete t;
}
}
NFA::Thread* NFA::AllocThread() {
Thread* t = free_threads_;
if (t == NULL) {
t = new Thread;
t->ref = 1;
t->capture = new const char*[ncapture_];
return t;
}
free_threads_ = t->next;
t->ref = 1;
return t;
}
NFA::Thread* NFA::Incref(Thread* t) {
DCHECK(t != NULL);
t->ref++;
return t;
}
void NFA::Decref(Thread* t) {
if (t == NULL)
return;
t->ref--;
if (t->ref > 0)
return;
DCHECK_EQ(t->ref, 0);
t->next = free_threads_;
free_threads_ = t;
}
void NFA::CopyCapture(const char** dst, const char** src) {
for (int i = 0; i < ncapture_; i+=2) {
dst[i] = src[i];
dst[i+1] = src[i+1];
}
}
// Follows all empty arrows from id0 and enqueues all the states reached.
// Enqueues only the ByteRange instructions that match byte c.
// context is used (with p) for evaluating empty-width specials.
// p is the current input position, and t0 is the current thread.
void NFA::AddToThreadq(Threadq* q, int id0, int c, const StringPiece& context,
const char* p, Thread* t0) {
if (id0 == 0)
return;
// Use astack_ to hold our stack of instructions yet to process.
// It was preallocated as follows:
// two entries per Capture;
// one entry per EmptyWidth; and
// one entry per Nop.
// This reflects the maximum number of stack pushes that each can
// perform. (Each instruction can be processed at most once.)
AddState* stk = astack_;
int nstk = 0;
stk[nstk++] = AddState(id0);
while (nstk > 0) {
DCHECK_LE(nstk, nastack_);
AddState a = stk[--nstk];
Loop:
if (a.t != NULL) {
// t0 was a thread that we allocated and copied in order to
// record the capture, so we must now decref it.
Decref(t0);
t0 = a.t;
}
int id = a.id;
if (id == 0)
continue;
if (q->has_index(id)) {
if (ExtraDebug)
fprintf(stderr, " [%d%s]\n", id, FormatCapture(t0->capture).c_str());
continue;
}
// Create entry in q no matter what. We might fill it in below,
// or we might not. Even if not, it is necessary to have it,
// so that we don't revisit id0 during the recursion.
q->set_new(id, NULL);
Thread** tp = &q->find(id)->second;
int j;
Thread* t;
Prog::Inst* ip = prog_->inst(id);
switch (ip->opcode()) {
default:
LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq";
break;
case kInstFail:
break;
case kInstAltMatch:
// Save state; will pick up at next byte.
t = Incref(t0);
*tp = t;
DCHECK(!ip->last());
a = AddState(id+1);
goto Loop;
case kInstNop:
if (!ip->last())
stk[nstk++] = AddState(id+1);
// Continue on.
a = AddState(ip->out());
goto Loop;
case kInstCapture:
if (!ip->last())
stk[nstk++] = AddState(id+1);
if ((j=ip->cap()) < ncapture_) {
// Push a dummy whose only job is to restore t0
// once we finish exploring this possibility.
stk[nstk++] = AddState(0, t0);
// Record capture.
t = AllocThread();
CopyCapture(t->capture, t0->capture);
t->capture[j] = p;
t0 = t;
}
a = AddState(ip->out());
goto Loop;
case kInstByteRange:
if (!ip->Matches(c))
goto Next;
FALLTHROUGH_INTENDED;
case kInstMatch:
// Save state; will pick up at next byte.
t = Incref(t0);
*tp = t;
if (ExtraDebug)
fprintf(stderr, " + %d%s\n", id, FormatCapture(t0->capture).c_str());
Next:
if (ip->last())
break;
a = AddState(id+1);
goto Loop;
case kInstEmptyWidth:
if (!ip->last())
stk[nstk++] = AddState(id+1);
// Continue on if we have all the right flag bits.
if (ip->empty() & ~Prog::EmptyFlags(context, p))
break;
a = AddState(ip->out());
goto Loop;
}
}
}
// Run runq on byte c, appending new states to nextq.
// Updates matched_ and match_ as new, better matches are found.
// context is used (with p) for evaluating empty-width specials.
// p is the position of byte c in the input string for AddToThreadq;
// p-1 will be used when processing Match instructions.
// Frees all the threads on runq.
// If there is a shortcut to the end, returns that shortcut.
int NFA::Step(Threadq* runq, Threadq* nextq, int c, const StringPiece& context,
const char* p) {
nextq->clear();
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
Thread* t = i->second;
if (t == NULL)
continue;
if (longest_) {
// Can skip any threads started after our current best match.
if (matched_ && match_[0] < t->capture[0]) {
Decref(t);
continue;
}
}
int id = i->index();
Prog::Inst* ip = prog_->inst(id);
switch (ip->opcode()) {
default:
// Should only see the values handled below.
LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step";
break;
case kInstByteRange:
AddToThreadq(nextq, ip->out(), c, context, p, t);
break;
case kInstAltMatch:
if (i != runq->begin())
break;
// The match is ours if we want it.
if (ip->greedy(prog_) || longest_) {
CopyCapture(match_, t->capture);
matched_ = true;
Decref(t);
for (++i; i != runq->end(); ++i)
Decref(i->second);
runq->clear();
if (ip->greedy(prog_))
return ip->out1();
return ip->out();
}
break;
case kInstMatch: {
// Avoid invoking undefined behavior when p happens
// to be null - and p-1 would be meaningless anyway.
if (p == NULL)
break;
if (endmatch_ && p-1 != etext_)
break;
if (longest_) {
// Leftmost-longest mode: save this match only if
// it is either farther to the left or at the same
// point but longer than an existing match.
if (!matched_ || t->capture[0] < match_[0] ||
(t->capture[0] == match_[0] && p-1 > match_[1])) {
CopyCapture(match_, t->capture);
match_[1] = p-1;
matched_ = true;
}
} else {
// Leftmost-biased mode: this match is by definition
// better than what we've already found (see next line).
CopyCapture(match_, t->capture);
match_[1] = p-1;
matched_ = true;
// Cut off the threads that can only find matches
// worse than the one we just found: don't run the
// rest of the current Threadq.
Decref(t);
for (++i; i != runq->end(); ++i)
Decref(i->second);
runq->clear();
return 0;
}
break;
}
}
Decref(t);
}
runq->clear();
return 0;
}
string NFA::FormatCapture(const char** capture) {
string s;
for (int i = 0; i < ncapture_; i+=2) {
if (capture[i] == NULL)
StringAppendF(&s, "(?,?)");
else if (capture[i+1] == NULL)
StringAppendF(&s, "(%d,?)", (int)(capture[i] - btext_));
else
StringAppendF(&s, "(%d,%d)",
(int)(capture[i] - btext_),
(int)(capture[i+1] - btext_));
}
return s;
}
bool NFA::Search(const StringPiece& text, const StringPiece& const_context,
bool anchored, bool longest,
StringPiece* submatch, int nsubmatch) {
if (start_ == 0)
return false;
StringPiece context = const_context;
if (context.begin() == NULL)
context = text;
// Sanity check: make sure that text lies within context.
if (text.begin() < context.begin() || text.end() > context.end()) {
LOG(DFATAL) << "context does not contain text";
return false;
}
if (prog_->anchor_start() && context.begin() != text.begin())
return false;
if (prog_->anchor_end() && context.end() != text.end())
return false;
anchored |= prog_->anchor_start();
if (prog_->anchor_end()) {
longest = true;
endmatch_ = true;
etext_ = text.end();
}
if (nsubmatch < 0) {
LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch;
return false;
}
// Save search parameters.
ncapture_ = 2*nsubmatch;
longest_ = longest;
if (nsubmatch == 0) {
// We need to maintain match[0], both to distinguish the
// longest match (if longest is true) and also to tell
// whether we've seen any matches at all.
ncapture_ = 2;
}
match_ = new const char*[ncapture_];
matched_ = false;
// For debugging prints.
btext_ = context.begin();
if (ExtraDebug)
fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n",
string(text).c_str(), string(context).c_str(), anchored, longest);
// Set up search.
Threadq* runq = &q0_;
Threadq* nextq = &q1_;
runq->clear();
nextq->clear();
memset(&match_[0], 0, ncapture_*sizeof match_[0]);
// Loop over the text, stepping the machine.
for (const char* p = text.begin();; p++) {
if (ExtraDebug) {
int c = 0;
if (p == context.begin())
c = '^';
else if (p > text.end())
c = '$';
else if (p < text.end())
c = p[0] & 0xFF;
fprintf(stderr, "%c:", c);
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
Thread* t = i->second;
if (t == NULL)
continue;
fprintf(stderr, " %d%s", i->index(), FormatCapture(t->capture).c_str());
}
fprintf(stderr, "\n");
}
// This is a no-op the first time around the loop because runq is empty.
int id = Step(runq, nextq, p < text.end() ? p[0] & 0xFF : -1, context, p);
DCHECK_EQ(runq->size(), 0);
using std::swap;
swap(nextq, runq);
nextq->clear();
if (id != 0) {
// We're done: full match ahead.
p = text.end();
for (;;) {
Prog::Inst* ip = prog_->inst(id);
switch (ip->opcode()) {
default:
LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode();
break;
case kInstCapture:
if (ip->cap() < ncapture_)
match_[ip->cap()] = p;
id = ip->out();
continue;
case kInstNop:
id = ip->out();
continue;
case kInstMatch:
match_[1] = p;
matched_ = true;
break;
}
break;
}
break;
}
if (p > text.end())
break;
// Start a new thread if there have not been any matches.
// (No point in starting a new thread if there have been
// matches, since it would be to the right of the match
// we already found.)
if (!matched_ && (!anchored || p == text.begin())) {
// If there's a required first byte for an unanchored search
// and we're not in the middle of any possible matches,
// use memchr to search for the byte quickly.
int fb = prog_->first_byte();
if (!anchored && runq->size() == 0 &&
fb >= 0 && p < text.end() && (p[0] & 0xFF) != fb) {
p = reinterpret_cast<const char*>(memchr(p, fb, text.end() - p));
if (p == NULL) {
p = text.end();
}
}
Thread* t = AllocThread();
CopyCapture(t->capture, match_);
t->capture[0] = p;
AddToThreadq(runq, start_, p < text.end() ? p[0] & 0xFF : -1, context, p,
t);
Decref(t);
}
// If all the threads have died, stop early.
if (runq->size() == 0) {
if (ExtraDebug)
fprintf(stderr, "dead\n");
break;
}
}
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i)
Decref(i->second);
if (matched_) {
for (int i = 0; i < nsubmatch; i++)
submatch[i] =
StringPiece(match_[2 * i],
static_cast<size_t>(match_[2 * i + 1] - match_[2 * i]));
if (ExtraDebug)
fprintf(stderr, "match (%td,%td)\n",
match_[0] - btext_, match_[1] - btext_);
return true;
}
return false;
}
// Computes whether all successful matches have a common first byte,
// and if so, returns that byte. If not, returns -1.
int Prog::ComputeFirstByte() {
int b = -1;
SparseSet q(size());
q.insert(start());
for (SparseSet::iterator it = q.begin(); it != q.end(); ++it) {
int id = *it;
Prog::Inst* ip = inst(id);
switch (ip->opcode()) {
default:
LOG(DFATAL) << "unhandled " << ip->opcode() << " in ComputeFirstByte";
break;
case kInstMatch:
// The empty string matches: no first byte.
return -1;
case kInstByteRange:
if (!ip->last())
q.insert(id+1);
// Must match only a single byte
if (ip->lo() != ip->hi())
return -1;
if (ip->foldcase() && 'a' <= ip->lo() && ip->lo() <= 'z')
return -1;
// If we haven't seen any bytes yet, record it;
// otherwise must match the one we saw before.
if (b == -1)
b = ip->lo();
else if (b != ip->lo())
return -1;
break;
case kInstNop:
case kInstCapture:
case kInstEmptyWidth:
if (!ip->last())
q.insert(id+1);
// Continue on.
// Ignore ip->empty() flags for kInstEmptyWidth
// in order to be as conservative as possible
// (assume all possible empty-width flags are true).
if (ip->out())
q.insert(ip->out());
break;
case kInstAltMatch:
DCHECK(!ip->last());
q.insert(id+1);
break;
case kInstFail:
break;
}
}
return b;
}
bool
Prog::SearchNFA(const StringPiece& text, const StringPiece& context,
Anchor anchor, MatchKind kind,
StringPiece* match, int nmatch) {
if (ExtraDebug)
Dump();
NFA nfa(this);
StringPiece sp;
if (kind == kFullMatch) {
anchor = kAnchored;
if (nmatch == 0) {
match = &sp;
nmatch = 1;
}
}
if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch))
return false;
if (kind == kFullMatch && match[0].end() != text.end())
return false;
return true;
}
// For each instruction i in the program reachable from the start, compute the
// number of instructions reachable from i by following only empty transitions
// and record that count as fanout[i].
//
// fanout holds the results and is also the work queue for the outer iteration.
// reachable holds the reached nodes for the inner iteration.
void Prog::Fanout(SparseArray<int>* fanout) {
DCHECK_EQ(fanout->max_size(), size());
SparseSet reachable(size());
fanout->clear();
fanout->set_new(start(), 0);
for (SparseArray<int>::iterator i = fanout->begin(); i != fanout->end(); ++i) {
int* count = &i->second;
reachable.clear();
reachable.insert(i->index());
for (SparseSet::iterator j = reachable.begin(); j != reachable.end(); ++j) {
int id = *j;
Prog::Inst* ip = inst(id);
switch (ip->opcode()) {
default:
LOG(DFATAL) << "unhandled " << ip->opcode() << " in Prog::Fanout()";
break;
case kInstByteRange:
if (!ip->last())
reachable.insert(id+1);
(*count)++;
if (!fanout->has_index(ip->out())) {
fanout->set_new(ip->out(), 0);
}
break;
case kInstAltMatch:
DCHECK(!ip->last());
reachable.insert(id+1);
break;
case kInstCapture:
case kInstEmptyWidth:
case kInstNop:
if (!ip->last())
reachable.insert(id+1);
reachable.insert(ip->out());
break;
case kInstMatch:
if (!ip->last())
reachable.insert(id+1);
break;
case kInstFail:
break;
}
}
}
}
} // namespace re2