blob: 65f21112520f68b06c1e73eff8cafef5377dc443 [file] [log] [blame]
$Id: README.solaris,v 1.13 2005/12/01 13:09:48 dts12 Exp $
This document describes issues relating to compiling,
installing and using net-snmp on Solaris.
0. Introduction
1. Things you will need
2. Disabling Sun's SNMP daemons
3. Compiling net-snmp
4. Obtaining and installing binaries
5. Creating snmpd.conf and testing
6. Creating your own binaries
7. Using Sun's SNMP daemon and net-snmp together
8. Monitoring disks, processes and execs (DISMAN-EVENT-MIB)
9. Monitoring CPU temp, fan and power supply sensors (LM-SENSORS-MIB)
Additional compilation issues:
10. Files descriptors and fopen
11. Perl
12. sed and $PATH
13. OpenSSL
14. Wish list
Other issues:
15. Known Bugs!!
16. Discussion and further information
0. Introducion
This document is a compilation of information relating to
running net-snmp ( on Sun SPARC and ULTRA
hardware under the Solaris operating system.
This can be done either in conjunction with or as a
replacement for Sun's SNMP daemons.
This is discussed in detail in the sections below. Since
this is the work of several authors, credit is given.
Discussion, however, should take place on the net-snmp-users
or net-snmp-coders mailing lists so everybody can
benefit. See .
Use "net-snmp-users" for general usage questions and "net-snmp-coders" for
discussion of net-snmp source code.
No warranty is implied by this document.
This document is copyright but usage allowed under the same
licensing as net-snmp in general. See
1. Things you will need
A. Root access
Root access is required to follow pretty much any of
the steps below. At a bare minimum, you will need
to be able to start and stop daemons, which requires root.
B. Determine existing SNMP functionality
SNMP uses ports 161 and 162 by default. Only one application
can use them at a time. If there is an existing SNMP
application (eg. Sun's snmpdx daemon) you need to either
turn this off or work around it. You may also have
a previous version of net-snmp, the older ucd-snmp, or
something completely different. The following commands:
ps -ef | grep snm
ps -ef | grep mibi
will give you a fairly good idea what is going on.
If you see something like:
root 643 1 0 Jan 16 ? 5:49 /usr/local/sbin/snmpd
that's probably a version of net-snmp. The instructions in various
sections below should give you clues on what to do next.
If you see something like:
root 16178 1 0 13:16:04 pts/2 0:00 /usr/lib/snmp/snmpdx -y -c /etc/snmp/conf
root 21371 1 0 Feb 07 ? 0:52 mibiisa -r -p 41178
then Sun's SNMP daemons are running.
If you need this, for example if you use the Solstice Enterprise
Agent, you may wish to run net-snmp as a sub-agent (see section 7).
Otherwise, you will need to disable Sun's daemons (see section 2).
Regardless you may wish to compile net-snmp from source
and install it (see sections 3, 5 and 6) or install
binaries (see sections 4 and 5).
If some other SNMP daemon is running, you will need to determine
where it came from and what it's being used for. You get clues by
typing "snmpd -v" or "snmpd --help". In some cases it may be
a subagent or agent from another application, such as ORACLE. If
you disable its agent, you will need to re-create this functionality
under net-snmp (eg. by running it as a sub-agent). ORACLE's SNMP
functionality is turned on by default and may be unnecessary if
you aren't using ORACLE's Enterprise Manager. Refer to ORACLE's
documentation on how to disable it.
C. gnu tar
At present the application will not untar properly using Sun's tar.
The problem may be related to path length. A working tar
is available at
If you have decided to compile your own net-snmp, you will need ...
D. A compilation environment
-a compiler (gcc or Sun's Forte cc) or the gcc libraries
(note, the cc in /usr/ucb is NOT a full-blown compiler)
-OpenSSL ( or source
-zlib ( or source
-an SNMP community string ("public" is deprecated)
If you are installing on a development machine, it may be best
to compile openssl and zlib from source, otherwise
obtain the appropriate zlib for your platform from sunfreeware
and install (it goes to /usr/local automatically).
Obtain the appropriate openssl for your platform from sunfreeware
and install (it goes to /usr/local), you may need the gcc libraries.
These libraries should not need to be installed if you are using
binaries, but your mileage may vary. Note the library problem
with libcrypto noted below (section 11).
There are two choices for compilers. Sun has a Forte development
suite that includes a standalone C compiler. If you have it, it
is likely installed in /opt/SUNWspro/bin.
The more common choice is gcc (currently 2.95.3 or 3.4)
available from If you install gcc, you do not
need the gcc libraries. 3.3.2 or later is recommended.
Given that net-snmp is developed to work on a wide variety of
platforms, but especially for linux, there's a better chance of
it working using gcc at any given time. Hence, gcc may
simply be the better choice regardless of whether you have
another compiler.
-- Bruce Shaw <Bruce.Shaw at>
2. Disabling Sun's SNMP daemons
Note: Sun has included net-snmp with Solaris 10. These
instructions are written with Solaris 8 and previous in mind.
Out of the box, Sun runs four SNMP daemons; mibiisa, idmispd,
xnmpXdmid and snmpdx.
These must be disabled before running net-snmp unless you are planning
on running them together (see Section 7 below). Here is the procedure:
cd /etc/rc3.d
./S76snmpdx stop
./S77dmi stop
mv S76snmpdx s76snmpdx
mv S77dmi s77dmi
If you are using Solstice Disksuite, you may also be running
mdlogd. Leave this alone.
You will need to create a new script to start net-snmp.
Here's an example:
::::: /etc/rc3.d/S78net-snmp ::::::
# /etc/rc3.d/S78net-snmp
# pkill has moved over the years so we need to find it
X=`which pkill`
case "$1" in
$X -TERM -x -u 0 snmpd
echo "Usage: $0 { start | stop }"
exit 1
exit 0
-- Bruce Shaw <Bruce.Shaw at>
3. Compiling net-snmp
It is strongly recommended that you compile net-snmp from source.
That way you are guaranteed a working version for your specific
configuration of operating system, applications and libraries.
If, for some reason, you cannot compile on a specific machine,
there are binaries available for download (see section 4).
In addition, you may create your own binaries (see section 6).
You need to set your $PATH. This is extremely important
because otherwise there may be conflicts between the various
components of the development environment.
If you are using FORTE:
If you are using gcc:
Obtain a current version of net-snmp (which, if you're reading this,
presumably you have - don't you love recursion?)
Uncompress it and untar it in a working directory eg. /usr/local/src/net-snmp
Note: Sun's tar (/usr/bin/tar) may have problem with long directory
paths. You may need to install gnu tar available from
In order to save a lot of typing, you should create a "configure"
script eg. in the directory below eg. /usr/local/src.
./configure --with-mib-modules="host disman/event-mib ucd-snmp/diskio \
smux agentx mibII/mta_sendmail" --with-cc=gcc
(note, see the long discussion about Perl below)
(note, subtitute "cc" for "gcc" as appropriate)
(note, if you wish to use the new LM-SENSORS-MIB component, see
discussion below)
then call this script from the net-snmp directory ie ../
and answer the appropriate questions (usually with the default).
When it completes, you should see something like:
Net-SNMP configuration summary:
Net-SNMP Version: 5.2
Building for: solaris2
Network transport support: Callback Unix TCP UDP
SNMPv3 Security Modules: usm
Agent MIB code: mibII ucd_snmp snmpv3mibs notification target
\agent_mibs agentx agent_mibs utilities host disman/event-mib
\ucd-snmp/diskio smux agentx mibII/mta_sendmail
SNMP Perl modules: disabled
Embedded perl support: disabled
Authentication support: MD5 SHA1
Encryption support: DES
and watch for compile errors.
You will receive numerous warnings. This is normal,
a side effect of supporting a variety of development environments.
Now type:
make test
and watch for failures. Also watch for the special tests for Solaris.
If you are satisfied with the tests, stop any snmpd daemons
that may be running (see section 2) and type:
make install
When complete, go on to section 5 below.
-- Bruce Shaw <Bruce.Shaw at>
4. Obtaining and installing binaries
It is strongly recommended that you compile net-snmp from source.
That way you are guaranteed a working version for your specific
configuration of operating system, applications and libraries.
Binaries for Solaris may be found in two locations. - this installs as a package.
It does not have Perl support.
Therefore, I recommend: (you will be redirected)
This is the official repository for binaries.
To determine which binary you need, you will need several pieces of
-operating system version,
-hardware platform
-net-snmp version desired
The first two may be obtained by typing:
uname -a
It will return something like:
SunOS foo 5.8 Generic_108528-14 sun4u sparc SUNW,Ultra-4
5.8 means Solaris 8
5.7 means Solaris 7 etc.
"sun4u" is the Ultra hardware platform
"sun4m" is SuperSPARC eg. Sparc 5 or Sparc 10
"sun4d" is older SPARC boxes.
You can then decode the binary version by its name eg.:
means "net-snmp version 5.0.9 for Solaris version 5.8 running on Ultra
Once you have found the appropriate version, download it to a
distribution directory (making one if necessary) eg. /usr/local/dist
Type the following: (using the sample above)
cd /
tar -xvf /usr/local/dist/net-snmp-5.0.9-SunOS_5.8_sun4u.tar
The binaries, libraries, etc. will be installed in /usr/local.
There may be a problem with Sun's tar. See discussion above.
Remove the tar file to save space. Create an snmpd.conf (see below)
or use an existing one from another machine.
It installs in /usr/local/share/snmp.
Install a startup script (see section 1).
For further information, see README.solaris.binaries.x
--Bruce Shaw <Bruce.Shaw at>
5. Creating snmpd.conf and testing
When everything is installed, run:
snmpconf -g basic_setup
and answer the questions appropriately. If you are using
the defaults, place the resulting snmpd.conf file in:
A security note - use of the "public" community is deprecated.
This example uses "whatever" as a community.
When you have the daemon running either with the script above or running:
test the daemon's functionality by typing:
snmpget -v 1 -c whatever localhost sysUpTime.0
snmpwalk -v 2c -c whatever -m ALL localhost .1.3 | more
and paging through the results.
If you have problems, you can examine diagnostic messages
by running:
/usr/local/sbin/snmpd -f -L
or use gdb (available from as follows:
cd /usr/local/sbin
gdb snmpd
run -f -L
and when it blows up:
to get the backtrace.
You can use:
run -f -L -D <modulename>
to display debug messages.
To display all debug messages type:
run -f -L -D ALL
but this will be extremely verbose.
-- Bruce Shaw <Bruce.Shaw at> with suggestions by Thushara Wickram
6. Creating your own binaries
Pick an appropriate name for a tarfile
eg. net-snmp-5.2.custom-SunOS_5.8_sun4u.tar (see above)
(this particular one means "a customized version of
net-snmp 5.2 that works under Solaris 8 running on Ultra hardware")
Create an empty directory such as /usr/local/dist, then do the following
from the source directory (using the example above):
make install prefix=/usr/local/dist/usr/local \
cd /usr/local/dist
tar -cvf net-snmp-5.2.custom-SunOS_5.8_sun4u.tar usr
Transfer this file to the machine where you want to install from binary.
Place it in a distribution directory eg. /usr/local/dist
Type the following (using the example above):
cd /
tar -xvf /usr/local/dist/net-snmp-5.1.custom-SunOS_5.8_sun4u.tar
Remove the tar file to save space. Create an snmpd.conf (see above)
or use an existing one from another machine. If you are using
the defaults, it installs in /usr/local/share/snmp. Install
a startup script (see section 2).
Note that if you create a binary with Perl support (see below) an
identically configured Perl needs to be installed as well.
-- Bruce Shaw <Bruce.Shaw at>
7. Using Sun's SNMP daemon and net-snmp together
Net-snmp may be used as a sub-agent in conjunction with Sun's snmpdx daemon.
To do this, you will need to modify several files,
all located in /etc/snmp/conf.
First, do the following:
/etc/rc3.d/S76snmpdx stop (assuming you haven't done so already, and...)
/etc/rc3.d/S77dmi stop (...assuming you haven't renamed them)
cd /etc/snmp/conf
cp snmpd.conf snmpd.conf.orig
cp snmpdx.acl snmpdx.acl.orig
cp snmpdx.reg snmpdx.reg.orig
cp snmpdx.rsrc snmpdx.rsrc.orig
cp mibiisa.reg mibiisa.reg.orig
cp mibiisa.rsrc mibiisa.rsrc.orig
modify snmpd.conf with the correct:
read-community (in my example below I will use community "whatever")
managers (leave blank for all)
modify snmpd.acl with the correct:
Make sure that in snmpdx.reg the port is 161.
You will now need to add two files - net-snmp.reg and net-snmp.rscs
In this example, "subtrees" is set for HOST-RESOURCES-MIB, and UCD-SNMP-MIB.
Do not use net-snmp's MIB-2 information as this is already provided by
Sun's mib and may cause a conflict.
::::: net-snmp.reg ::::::
# net-snmp.reg
# mib-2 is already provided by the mibiisa process
# that is a default sub agent of snmpdx
# we are specifying only hostmib and ucd
# agents #
agents =
name = "net-snmp"
subtrees = {, } # hostmib, ucd
timeout = 2000000
watch-dog-time = 86400
::::: net-snmp.rscs ::::::
# /etc/snmp/conf/net-snmp.rsrc
resource =
registration_file = "/etc/snmp/conf/net-snmp.reg"
policy = "spawn"
type = "legacy"
command = "/usr/local/sbin/snmpd $PORT"
Stop any net-snmp processes that may be running.
Start Sun's daemons by typing:
/etc/rc3.d/S76snmpdx start (assuming you haven't renamed it)
/etc/rc3.d/S77dmi start (assuming you haven't renamed it)
Wait a moment for everything to stabilize, then try these two queries:
snmpget -v 1 -c whatever localhost sysDescr.0
snmpget -v 1 -c whatever localhost hrSystemUptime.0
You should see something like:
SNMPv2-MIB::sysDescr.0 = STRING: SunOS foo 5.6 Generic_105181-30 sun4u
which is Sun's daemon talking, and:
HOST-RESOURCES-MIB::hrSystemUptime.0 = Timeticks: (78540910) 9 days, 2:10:09.10
which is net-snmp talking. It is acting as a sub-agent through Sun's daemon.
If Sun's daemons fail, you will need to shut down the snmpd daemons by typing:
pkill snmpd
Then do the following:
/etc/rc3.d/S76snmpdx stop (assuming you haven't renamed it)
/etc/rc3.d/S77dmi stop (assuming you haven't renamed it)
/etc/rc3.d/S76snmpdx start (assuming you haven't renamed it)
/etc/rc3.d/S77dmi start (assuming you haven't renamed it)
rather than trying to individually clobber all the various Sun daemons.
This configuration appears to deal properly with snmpgets
and handle mistakes gracefully.
Beyond this, your mileage may vary.
You may wish to modify the subtrees in net-snmp.reg as you find things
that do and don't work. Remember to keep backup copies of working
-- Bruce Shaw <Bruce.Shaw at> from notes by Stefan Radman and C Wells
8. Monitoring disks, processes and execs (DISMAN-EVENT-MIB)
For a full explanation of using DISMAN-EVENT-MIB, see:
To use this compoenent, net-snmp must be compiled with the option..
This discussion concerns the use of DISMAN-EVENT-MIB with Solaris.
There is a bug preventing the use of some of its functionality. This
discussion will document what is known to work and how to use it.
The problem revolves around the use of monitors. The...
defaultMonitors yes
token will NOT work for reasons discussed below. I suspect that the
notificationEvent tokens will not work for the same reason but this
has not been tested. Your mileage may vary. Same with includeAllDisks.
The documentation suggests using...
monitor -o prNames -o prErrMessage "process table" prErrorFlag != 0
to monitor all processes. This will fail with ambiguous results.
To monitor processes, put a separate monitor line for each process.
For example:
proc smail
proc mdlogd
monitor -r 30 -i -o prNames.1 -o prErrMessage.1 "Process smail" prErrorFlag.1 !=0
monitor -r 30 -i -o prNames.2 -o prErrMessage.2 "Process Solstice Disksuite SNMP trap" prErrorFlag.2 !=0
To monitor disks, do the same. An example:
# This example sends a trap if root has less than 10% available and /usr6 less t
han 90%
disk / 10%
disk /usr6 90%
monitor -i -r 30 -o dskPath.1 -o dskErrorMsg.1 "root file system" dskErrorFlag.1 !=0
monitor -i -r 30 -o dskPath.2 -o dskErrorMsg.2 "ORACLE file system" dskErrorFlag.2 != 0
To implement an external program then monitor its results you need to set up your script.
Here is a sample script.
if [ $xstatus -eq 0 ];then
echo success: $0
echo FAILURE: $0
exit $xstatus
###end of script tester##
Place this script in /usr/local/src and make it executable. Make copies called
tester1, tester2 etc.
and make them executable.
Here is a sample snmpd.conf snippet that makes use of the exec feature:
exec tester1 /usr/local/src/tester1
exec tester2 /usr/local/src/tester2
exec tester3 /usr/local/src/tester3
exec tester4 /usr/local/src/tester4
exec tester5 /usr/local/src/tester5
monitor -i -r 60 -o extNames.1 -o extOutput.1 "status table 1" extResult.1 != 0
monitor -i -r 60 -o extNames.2 -o extOutput.2 "status table 2" extResult.2 != 0
monitor -i -r 60 -o extNames.3 -o extOutput.3 "status table 3" extResult.3 != 0
monitor -i -r 60 -o extNames.4 -o extOutput.4 "status table 4" extResult.4 != 0
monitor -i -r 60 -o extNames.5 -o extOutput.5 "status table 5" extResult.5 != 0
While snmpd is running, go to /usr/local/src and modify one of the tester programs eg. tester1
and save the file. Sometime in the next 60 seconds, a trap will be generated.
Change the value
back to 0, then modify another file.
If you are unsure of the correct row number within a specific table, do an snmpwalk eg.
snmpwalk -v 2c -c public -m ALL localhost prNames
The same methodology can presumably be used for fileName and laNames. Your mileage may vary.
-- Bruce Shaw <Bruce.Shaw at> with Allan McIntosh and Wes Hardaker
9. Monitoring CPU temp, fan and power supply sensors (LM-SENSORS-MIB)
NOTE!! This is a new and experimental module. It should be considered "alpha"
for this first release. Use with caution as its impact on machine performance
(ie. CPU usage) has yet to be determined. The module works in "read only"
mode to examine sensors. It cannot change switch or fan settings.
It has been tested on the following platforms:
Enterprise 450
If you have information about other platforms this is desperately needed. For
example, the only "state" that I'm aware of for an i2c is "OK". The more
information we have, the richer the components.
Please report any performance statistics, bugs or omissions to the users list.
Please report any code suggestions to the coders list. See links below.
This component delivers information that you would normally see by typing:
/usr/platform/`uname -m`/sbin/prtdiag -v
At present this is only supported on the Ultra (sun4u) platform.
To display this information, net-snmp must be compiled with the option:
Early Ultra servers such as the Ultra 1 or Ultra 2 did not report
any sensor information at all. Later servers, such as the Enterprise 450
reported this information using kstat. Sun's latest servers make use
of the picld daemon to control system resources and report fan information. This
module reads in the information from picld. It cannot modify settings.
You can see this information by typing:
prtpicl -v | more
The following is typical output:
E450# snmpwalk -v 2c -c public -m ALL localhost lmSensors
LM-SENSORS-MIB::lmTempSensorsIndex.1 = INTEGER: 0
LM-SENSORS-MIB::lmTempSensorsIndex.2 = INTEGER: 1
LM-SENSORS-MIB::lmTempSensorsIndex.3 = INTEGER: 2
LM-SENSORS-MIB::lmTempSensorsIndex.4 = INTEGER: 3
LM-SENSORS-MIB::lmTempSensorsDevice.1 = STRING: Ambient
LM-SENSORS-MIB::lmTempSensorsDevice.2 = STRING: CPU1
LM-SENSORS-MIB::lmTempSensorsDevice.3 = STRING: CPU2
LM-SENSORS-MIB::lmTempSensorsDevice.4 = STRING: CPU3
LM-SENSORS-MIB::lmTempSensorsValue.1 = Gauge32: 22
LM-SENSORS-MIB::lmTempSensorsValue.2 = Gauge32: 45
LM-SENSORS-MIB::lmTempSensorsValue.3 = Gauge32: 46
LM-SENSORS-MIB::lmTempSensorsValue.4 = Gauge32: 49
LM-SENSORS-MIB::lmFanSensorsIndex.1 = INTEGER: 0
LM-SENSORS-MIB::lmFanSensorsIndex.2 = INTEGER: 1
LM-SENSORS-MIB::lmFanSensorsIndex.3 = INTEGER: 2
LM-SENSORS-MIB::lmFanSensorsDevice.1 = STRING: fan type CPU number 0
LM-SENSORS-MIB::lmFanSensorsDevice.2 = STRING: fan type PWR number 0
LM-SENSORS-MIB::lmFanSensorsDevice.3 = STRING: fan type AFB number 0
LM-SENSORS-MIB::lmFanSensorsValue.1 = Gauge32: 33
LM-SENSORS-MIB::lmFanSensorsValue.2 = Gauge32: 31
LM-SENSORS-MIB::lmFanSensorsValue.3 = Gauge32: 63
LM-SENSORS-MIB::lmVoltSensorsIndex.1 = INTEGER: 0
LM-SENSORS-MIB::lmVoltSensorsIndex.2 = INTEGER: 1
LM-SENSORS-MIB::lmVoltSensorsIndex.3 = INTEGER: 2
LM-SENSORS-MIB::lmVoltSensorsDevice.1 = STRING: power supply 0
LM-SENSORS-MIB::lmVoltSensorsDevice.2 = STRING: power supply 1
LM-SENSORS-MIB::lmVoltSensorsDevice.3 = STRING: power supply 2
LM-SENSORS-MIB::lmVoltSensorsValue.1 = Gauge32: 38
LM-SENSORS-MIB::lmVoltSensorsValue.2 = Gauge32: 39
LM-SENSORS-MIB::lmVoltSensorsValue.3 = Gauge32: 39
LM-SENSORS-MIB::lmMiscSensorsIndex.1 = INTEGER: 0
LM-SENSORS-MIB::lmMiscSensorsIndex.2 = INTEGER: 1
LM-SENSORS-MIB::lmMiscSensorsIndex.3 = INTEGER: 2
LM-SENSORS-MIB::lmMiscSensorsDevice.1 = STRING: FSP
LM-SENSORS-MIB::lmMiscSensorsDevice.2 = STRING: Backplane4
LM-SENSORS-MIB::lmMiscSensorsDevice.3 = STRING: Backplane8
LM-SENSORS-MIB::lmMiscSensorsValue.1 = Gauge32: 192
LM-SENSORS-MIB::lmMiscSensorsValue.2 = Gauge32: 0
LM-SENSORS-MIB::lmMiscSensorsValue.3 = Gauge32: 0
V880# snmpwalk -v 2c -c public -m ALL localhost lmSensors
LM-SENSORS-MIB::lmTempSensorsIndex.1 = INTEGER: 0
LM-SENSORS-MIB::lmTempSensorsIndex.2 = INTEGER: 1
LM-SENSORS-MIB::lmTempSensorsIndex.3 = INTEGER: 2
LM-SENSORS-MIB::lmTempSensorsIndex.4 = INTEGER: 3
LM-SENSORS-MIB::lmTempSensorsIndex.5 = INTEGER: 4
LM-SENSORS-MIB::lmTempSensorsIndex.6 = INTEGER: 5
LM-SENSORS-MIB::lmTempSensorsIndex.7 = INTEGER: 6
LM-SENSORS-MIB::lmTempSensorsIndex.8 = INTEGER: 7
LM-SENSORS-MIB::lmTempSensorsIndex.9 = INTEGER: 8
LM-SENSORS-MIB::lmTempSensorsIndex.10 = INTEGER: 9
LM-SENSORS-MIB::lmTempSensorsValue.1 = Gauge32: 71
LM-SENSORS-MIB::lmTempSensorsValue.2 = Gauge32: 60
LM-SENSORS-MIB::lmTempSensorsValue.3 = Gauge32: 66
LM-SENSORS-MIB::lmTempSensorsValue.4 = Gauge32: 59
LM-SENSORS-MIB::lmTempSensorsValue.5 = Gauge32: 65
LM-SENSORS-MIB::lmTempSensorsValue.6 = Gauge32: 69
LM-SENSORS-MIB::lmTempSensorsValue.7 = Gauge32: 28
LM-SENSORS-MIB::lmTempSensorsValue.8 = Gauge32: 25
LM-SENSORS-MIB::lmTempSensorsValue.9 = Gauge32: 25
LM-SENSORS-MIB::lmTempSensorsValue.10 = Gauge32: 24
LM-SENSORS-MIB::lmFanSensorsIndex.1 = INTEGER: 0
LM-SENSORS-MIB::lmFanSensorsIndex.2 = INTEGER: 1
LM-SENSORS-MIB::lmFanSensorsIndex.3 = INTEGER: 2
LM-SENSORS-MIB::lmFanSensorsIndex.4 = INTEGER: 3
LM-SENSORS-MIB::lmFanSensorsIndex.5 = INTEGER: 4
LM-SENSORS-MIB::lmFanSensorsIndex.6 = INTEGER: 5
LM-SENSORS-MIB::lmFanSensorsIndex.7 = INTEGER: 6
LM-SENSORS-MIB::lmFanSensorsIndex.8 = INTEGER: 7
LM-SENSORS-MIB::lmFanSensorsIndex.9 = INTEGER: 8
LM-SENSORS-MIB::lmFanSensorsIndex.10 = INTEGER: 9
LM-SENSORS-MIB::lmFanSensorsValue.1 = Gauge32: 2439
LM-SENSORS-MIB::lmFanSensorsValue.2 = Gauge32: 2586
LM-SENSORS-MIB::lmFanSensorsValue.3 = Gauge32: 2459
LM-SENSORS-MIB::lmFanSensorsValue.4 = Gauge32: 2564
LM-SENSORS-MIB::lmFanSensorsValue.5 = Gauge32: 3409
LM-SENSORS-MIB::lmFanSensorsValue.6 = Gauge32: 0
LM-SENSORS-MIB::lmFanSensorsValue.7 = Gauge32: 3947
LM-SENSORS-MIB::lmFanSensorsValue.8 = Gauge32: 3896
LM-SENSORS-MIB::lmFanSensorsValue.9 = Gauge32: 4000
LM-SENSORS-MIB::lmFanSensorsValue.10 = Gauge32: 3896
LM-SENSORS-MIB::lmVoltSensorsIndex.1 = INTEGER: 0
LM-SENSORS-MIB::lmVoltSensorsIndex.2 = INTEGER: 1
LM-SENSORS-MIB::lmVoltSensorsIndex.3 = INTEGER: 2
LM-SENSORS-MIB::lmVoltSensorsIndex.4 = INTEGER: 3
LM-SENSORS-MIB::lmVoltSensorsIndex.5 = INTEGER: 4
LM-SENSORS-MIB::lmVoltSensorsIndex.6 = INTEGER: 5
LM-SENSORS-MIB::lmVoltSensorsIndex.7 = INTEGER: 6
LM-SENSORS-MIB::lmVoltSensorsIndex.8 = INTEGER: 7
LM-SENSORS-MIB::lmVoltSensorsIndex.9 = INTEGER: 8
LM-SENSORS-MIB::lmVoltSensorsIndex.10 = INTEGER: 9
LM-SENSORS-MIB::lmVoltSensorsIndex.11 = INTEGER: 10
LM-SENSORS-MIB::lmVoltSensorsIndex.12 = INTEGER: 11
LM-SENSORS-MIB::lmVoltSensorsDevice.1 = STRING: PS0_3_3V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.2 = STRING: PS0_5V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.3 = STRING: PS0_12V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.4 = STRING: PS0_48V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.5 = STRING: PS1_3_3V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.6 = STRING: PS1_5V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.7 = STRING: PS1_12V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.8 = STRING: PS1_48V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.9 = STRING: PS2_3_3V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.10 = STRING: PS2_5V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.11 = STRING: PS2_12V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsDevice.12 = STRING: PS2_48V_I_SENSOR
LM-SENSORS-MIB::lmVoltSensorsValue.1 = Gauge32: 6
LM-SENSORS-MIB::lmVoltSensorsValue.2 = Gauge32: 4
LM-SENSORS-MIB::lmVoltSensorsValue.3 = Gauge32: 3
LM-SENSORS-MIB::lmVoltSensorsValue.4 = Gauge32: 4
LM-SENSORS-MIB::lmVoltSensorsValue.5 = Gauge32: 6
LM-SENSORS-MIB::lmVoltSensorsValue.6 = Gauge32: 4
LM-SENSORS-MIB::lmVoltSensorsValue.7 = Gauge32: 3
LM-SENSORS-MIB::lmVoltSensorsValue.8 = Gauge32: 4
LM-SENSORS-MIB::lmVoltSensorsValue.9 = Gauge32: 6
LM-SENSORS-MIB::lmVoltSensorsValue.10 = Gauge32: 4
LM-SENSORS-MIB::lmVoltSensorsValue.11 = Gauge32: 3
LM-SENSORS-MIB::lmVoltSensorsValue.12 = Gauge32: 4
This component also reports information for switches, LEDs
and i2c's (devices accessing the i2c bus).
Because the MIB only allows us to display numeric
information a certain amount of translation has been done.
0 = OFF
1 = ON
5 = DIAG
99 = other
0 = OFF
1 = ON
2 = BLINK (this may not exist)
99 = other
0 = OK
99 = other
In order to prevent inordinant consumption of machine resources,
some sensor information is cached. Currently, information
retrieved from picld is cached for six seconds.
-- Bruce Shaw <Bruce.Shaw at>
10. Files descriptors and fopen
Solaris has a limitation on the number of file descriptors (255)
available in stdio, so that fopen() fails if more than
255 file descriptors (sockets) are open. This prevents mibs from
being loaded after 250 sockets are open, since parse.c uses stdio.
SEan <> investigated this problem, and had this
report on using the SFIO package to solve this problem.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The SFIO package ( )
is a buffered streams IO package that is much more more sophisticated
than stdio, but it does support stdio API's for backward compatibility,
and that's the aspect that is important here.
To compile with SFIO, we simply add -I/usr/local/sfio/include to the
$CPPFLAGS before compiling net-snmp. This causes SFIO's stdio.h to
preempt Solaris stdio, mapping calls like fopen() and fprintf() to
the SFIO implementations. This produces a libnetsnmp that does not
have the fopen() limitation. Any application that links to this
libnetsnmp must also be linked to libsfio.
Here are the two caveats:
A. libsfio exports the functions 'getc' and 'putc', for reasons that
are not clear. These are the only symbols it exports that conflict
with stdio. While getc and putc are traditionally macros, Solaris
makes them functions in multithreaded code (compiled with -mt,
-pthread, or -D_REENTRANT). If your native stdio code links to the
libsfio versions, a crash will result.
There are two solutions to this problem. You may remove getc and putc
from libsfio, since SFIO defines getc and putc as macros, by doing:
ar d libsfio.a getc.o
ar d libsfio.a putc.o
or link to SFIO's stdio compatibility library, libstdio, ahead of
libsfio. This library wraps all of the native stdio calls with
versions that are safe for native or sfio streams, in case you
need to share streams between SFIO and native stdio codes.
B. libsfio provides 64-bit offsets in fseek(), ftell(). This is
a good thing, since SFIO is intened to avoid needless limitations,
but it means that SFIO's stdio.h defines off_t to be a 64-bit offset.
Net-SNMP uses readdir(), which returns a struct dirent containing
a 32-bit off_t, so the code compiled for SFIO doesn't access
struct dirent's correctly.
There are two solutions to this problem, as well. The first is to
include <dirent.h> at the start of SFIO's stdio.h. Since SFIO
defines a macro substitution for off_t, this leaves struct dirent's
definition unchanged.
An alternative, which I haven't verified, is to define _FILE_OFFSET_BITS
to be 64 when compiling libnetsnmp. According to what I see in Solaris's
/usr/include/sys/feature_tests.h, you can select a 64-bit off_t at
compile time with this setting, which should make readdir()'s off_t
compatible with SFIO's ftell(), fseek().
[[ We have received reports that this approach does not in fact work
(see Perl discussion below)]]
Finally, thanks to Phong Vo and AT&T Labs for a fast, robust and
portable package that solves this headache very neatly.
-SEan <>
11. Perl
Net-snmp may be compiled with Perl support by adding the lines:
--enable-shared --enable-embedded-perl
to your ./configure invocation.
This should only be done if you are sure you really need Perl,
for the following reasons:
Solaris 8 and 9 ship with a version of Perl compiled using sun's cc.
This causes a problem when attempting to compile net-snmp
with Perl functionality ie.:
./configure --with-mib-modules="host disman/event-mib ucd-snmp/diskio \
smux agents mibII/mta_sendmail" --enable-shared --enable-embedded-perl
because during the Perl section of the compile, it attempts to do so
using the methodology used to compile the original Perl, not
what you're currently using. This can be discovered by typing:
perl -V
and it says (among other things)
and you don't have the full version of Sun's C compiler on your
system, it's going to break.
In addition if it was compiled with:
net-snmp will not compile correctly.
Given that the Perl provided with Solaris 8 (5.005_03)
and Solaris 9 (5.005_03 and 5.6.1) is somewhat stale,
upgrading may be to your advantage.
Perl did not ship with Solaris before version 8. If you installed a
version from, it is compiled with some extra flags
that cause the net-snmp compile to break.
In either case, you will need to compile and install Perl.
There are, however, some issues.
A. Some applications (eg. /usr/bin/kstat) require this exact version
of Perl because of libraries. These instructions below install Perl
in /usr/local/bin (and optionally /usr/bin/). The original is left
intact in /usr/perl5/bin/perl where, in fact, the kstat script looks
for it. If you have version specific scripts, you will need to do
the same either by invoking /usr/perl5/bin/perl or putting:
#!/usr/perl/bin/perl -w
as the first line of your script and making it executable
(see the /usr/bin/kstat source as an example).
B. The instructions below disable large file support.
This means that Perl would be unable to deal
successfully with files larger than 2 Gb.
Again, using /usr/perl5/bin/perl or a version compiled
with this functionality would solve this.
Hence the ideal solution is a net-snmp specific Perl in its own directory.
The following instructions will install a working Perl in /usr/local/net-snmp.
Install gcc version 3.3.2 (or later) from
Download the current stable release of Perl
and gunzip and untar. (This document assumes Perl 5.8.3)
cd to the source directory and type the following:
sh Configure -Dcc=gcc
Accept most of the defaults, with some specific changes:
Operating system name? [solaris]
Operating system version? [2.6] (or 2.7, 2.8, 2.9 ...)
Build Perl for SOCKS? [n]
Use the PerlIO abstraction layer? [y]
Build a threading Perl? [n]
Build Perl for multiplicity? [n]
Use which C compiler? [/usr/local/bin/gcc]
Directories to use for library searches?
[/usr/local/lib /usr/lib /usr/ccs/lib]
What is the file extension used for shared libraries? [so]
Try to use long doubles if available? [n]
What libraries to use? [-lsocket -lnsl -ldl -lm -lc]
What optimizer/debugger flag should be used? [-O]
Any additional cc flags? [-fno-strict-aliasing -I/usr/local/include]
Any additional ld flags (NOT including libraries)? [ -L/usr/local/lib]
Try to use 64-bit integers, if available? [y] (unless you're using 32-bit Solaris)
Try to use maximal 64-bit support, if available? [n]
What is your architecture name [sun4-solaris-64int]
Installation prefix to use? (~name ok) [/usr/local/net-snmp]
What installation prefix should I use for installing files? (~name ok)
Pathname where the private library files will reside? (~name ok)
Where do you want to put the public architecture-dependent libraries? (~name ok)
Do you wish to attempt to use the malloc that comes with perl5? [n]
Installation prefix to use for add-on modules and utilities? (~name ok)
Pathname for the site-specific library files? (~name ok)
Pathname for the site-specific architecture-dependent library files? (~name ok)
Do you want to configure vendor-specific add-on directories? [n]
Colon-separated list of additional directories for perl to search? [none]
Installation prefix to use for add-on modules and utilities? (~name ok)
Pathname where the public executables will reside? (~name ok)
Install any extra modules (y or n)? [n]
Directory for the main Perl5 html pages? (~name ok)
Directory for the Perl5 module html pages? (~name ok)
List of earlier versions to include in @INC? [none]
Do you want to install perl as /usr/bin/perl? [n]
Shall I use /usr/local/bin/nm to extract C symbols from the libraries? [n]
Do you wish to use dynamic loading? [y]
Source file to use for dynamic loading [ext/DynaLoader/dl_dlopen.xs]
Any special flags to pass to /usr/local/bin/gcc -c to compile shared library modules?
What command should be used to create dynamic libraries?
Any special flags to pass to /usr/local/bin/gcc to create a dynamically loaded library?
[-G -L/usr/local/lib]
Any special flags to pass to /usr/local/bin/gcc to use dynamic linking?
Build a shared (y/n) [n]
Where do the main Perl5 manual pages (source) go? (~name ok)
What suffix should be used for the main Perl5 man pages? [1]
Where do the perl5 library man pages (source) go? (~name ok)
What suffix should be used for the perl5 library man pages? [3]
Your host name appears to be "foo". Right? [y]
What is your domain name? []
What is your e-mail address? []
Perl administrator e-mail address []
Do you want to install only the version-specific parts of perl? [n]
Where do you keep publicly executable scripts? (~name ok)
Pathname where the add-on public executables should be installed? (~name ok)
Pathname where the site-specific html pages should be installed? (~name ok)
Pathname where the site-specific library html pages should be installed? (~name ok)
Pathname where the site-specific manual pages should be installed? (~name ok)
Pathname where the site-specific library manual pages should be installed? (~name ok)
Pathname where add-on public executable scripts should be installed? (~name ok)
Use the "fast stdio" if available? [y]
Try to understand large files, if available? [n]
What is the extension of dynamically loaded modules [so]
Shall I ignore gethostname() from now on? [n]
What is the size of a character (in bytes)? [1]
Do you still want to use vfork()? [n]
Doubles must be aligned on a how-many-byte boundary? [8]
Use which function to generate random numbers? [drand48]
What type pointer is the second argument to getgroups() and setgroups()?
What pager is used on your system? [/usr/bin/more]
Which compiler compiler (yacc) shall I use? [yacc]
What extensions do you wish to load dynamically?[blah..blah..blah] (use the default)
What extensions do you wish to load statically? [ ]
Run make depend now? [y]
When it is finished, do:
grep cppsymbols
and make sure "-D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64" does NOT appear.
Then do:
make test (ignore errors)
make install
/usr/local/net-snmp/bin/perl -V
if everything looks all right, compile net-snmp (see above) but with the following differences:
Set your path to:
perl -v
which perl
to make sure you get the correct version.
Your configure invocation should be...
./configure --with-gnu-ld --enable-shared --enable-embedded-perl --disable-developer \
--with-mib-modules="host disman/event-mib ucd-snmp/diskio examples/example smux \
agentx mibII/mta_sendmail" --with-cc=gcc
Once you have compiled and installed net-snmp you should test its Perl
capabilities by doing the following:
Copy the script found at
to /usr/local/net-snmp
and modify your /usr/local/share/snmp/snmpd.conf file to contain the entry:
perl do "/usr/local/net-snmp/";
then do:
/usr/local/bin/snmpwalk -v 2c -c whatever localhost .
It should return the following:
NET-SNMP-MIB::netSnmp.999.1.2.1 = STRING: "hello world"
WARNING!! If you are planning on created binary versions of net-snmp with Perl capability,
you will also need to ship the Perl which you created in /usr/local/net-snmp.
-- Bruce Shaw <Bruce.Shaw at>
12. sed and $PATH
(note, if you have followed the recommendations for $PATH
above, this is not an issue -- Bruce Shaw <Bruce.Shaw at>)
The version of sed in /usr/ucb on Solaris 2.5.1 and 2.6 can't
cope with the size of the subsitution strings used in config.status.
Putting /usr/bin ahead of /usr/ucb in the search path fixes this.
/usr/xpg4/bin/sed is seen to segfault under Solaris 8 when running configure.
Putting /usr/bin ahead of /usr/xpg4/bin fixes this.
Thanks to zach dot metzinger at removeme microtune dot com.
13. OpenSSL
If compiling with OpenSSL (e.g. from sunsolve), it's possible that
the agent won't successfully load the crypto library (typically
in /usr/local/ssl/lib) when it is in use and will return a
cannot find library error message of some sort.
To rectify this, you will need to use the /usr/bin/crle command, which
did NOT ship with some versions of Solaris, but came as part of later
patches. You should make sure the following patches are up to date:
107733 (Solaris 2.6)
106950 (Solaris 2.7)
109147 (Solaris 8)
115833 (Trusted Solaris 8)
112693 (Solaris 9)
Then type the following:
It will return something like:
Default configuration file (/var/ld/ld.config) not found
Default Library Path (ELF): /usr/lib (system default)
Trusted Directories (ELF): /usr/lib/secure (system default)
Find the location of the libcrypto libraries by typing:
find /usr -name "libcrypto*" -print
which will probably display:
which is the default installation for OpenSSL.
To include this in the loader search path, type:
/usr/bin/crle -u -l /usr/local/ssl/lib
/usr/bin/crle will now display:
Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib:/usr/local/ssl/lib
Trusted Directories (ELF): /usr/lib/secure (system default)
Command line:
crle -c /var/ld/ld.config -l /usr/lib:/usr/local/ssl/lib
If this fails, usually by displaying:
crle: /var/ld/ld.config: open failed: No such file or directory
you will need to create this directory by hand by doing the following:
mkdir /var/ld
cd /var/ld
ln -s . 32
mkdir sparcv9
chgrp bin sparcv9
ln -s sparcv9 64
touch ld.config
then do:
crle -c /var/ld/ld.config -l /usr/lib:/usr/local/ssl/lib
Thanks to Dave Shield and Johannes Schmidt-Fischer
-- Bruce Shaw <Bruce.Shaw at>
14. Wish list
A. Code cleanup
There may be opportunities for shared code between UCD-SNMP
There may be opportunities to optimize caching perhaps
using the new auto-caching code.
We need a complete list of sensors from various platforms so
they can be displayed properly.
How to get ORACLE's SNMP functionality to work as a sub-agent.
-- Bruce Shaw <Bruce.Shaw at>
15. Known Bugs!!
This section of code is only aware of disk controllers 0 through 7.
Hence, anything on controller c8 and above will be invisible.
B. hrPartitionTable (HOST-RESOURCES-MIB)
At present, hrPartitionSize data only works for regular ufs
partitions eg. /dev/dsk/c0t0d0s0 that are mounted. They
are displayed in partition order rather than the order
they are mounted. Partitions mounted as mirrors, metastate
database replicas, swap or members of a RAID display size 0.
As a workaround, put entries for disks you are
interested in in snmpd.conf and examine
Some of the functionality within DISMAN-EVENT-MIB does not
work as advertised. See long discussion under section 8 above.
-- Bruce Shaw <Bruce.Shaw at>
16. Discussion and further information
For discussion or further information contact the coders and users
lists at .