blob: 0120f891d2c37206b7782f910f8679b2b7780f64 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Scopers help you manage ownership of a pointer, helping you easily manage a
// pointer within a scope, and automatically destroying the pointer at the end
// of a scope. There are two main classes you will use, which correspond to the
// operators new/delete and new[]/delete[].
//
// Example usage (scoped_ptr<T>):
// {
// scoped_ptr<Foo> foo(new Foo("wee"));
// } // foo goes out of scope, releasing the pointer with it.
//
// {
// scoped_ptr<Foo> foo; // No pointer managed.
// foo.reset(new Foo("wee")); // Now a pointer is managed.
// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
// foo->Method(); // Foo::Method() called.
// foo.get()->Method(); // Foo::Method() called.
// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
// // manages a pointer.
// foo.reset(new Foo("wee4")); // foo manages a pointer again.
// foo.reset(); // Foo("wee4") destroyed, foo no longer
// // manages a pointer.
// } // foo wasn't managing a pointer, so nothing was destroyed.
//
// Example usage (scoped_ptr<T[]>):
// {
// scoped_ptr<Foo[]> foo(new Foo[100]);
// foo.get()->Method(); // Foo::Method on the 0th element.
// foo[10].Method(); // Foo::Method on the 10th element.
// }
//
// These scopers also implement part of the functionality of C++11 unique_ptr
// in that they are "movable but not copyable." You can use the scopers in
// the parameter and return types of functions to signify ownership transfer
// in to and out of a function. When calling a function that has a scoper
// as the argument type, it must be called with an rvalue of a scoper, which
// can be created by using std::move(), or the result of another function that
// generates a temporary; passing by copy will NOT work. Here is an example
// using scoped_ptr:
//
// void TakesOwnership(scoped_ptr<Foo> arg) {
// // Do something with arg.
// }
// scoped_ptr<Foo> CreateFoo() {
// // No need for calling std::move() for returning a move-only value, or
// // when you already have an rvalue as we do here.
// return scoped_ptr<Foo>(new Foo("new"));
// }
// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
// return arg;
// }
//
// {
// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
// TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay").
// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
// PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr.
// }
//
// Notice that if you do not call std::move() when returning from PassThru(), or
// when invoking TakesOwnership(), the code will not compile because scopers
// are not copyable; they only implement move semantics which require calling
// the std::move() function to signify a destructive transfer of state.
// CreateFoo() is different though because we are constructing a temporary on
// the return line and thus can avoid needing to call std::move().
//
// The conversion move-constructor properly handles upcast in initialization,
// i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
//
// scoped_ptr<Foo> foo(new Foo());
// scoped_ptr<FooParent> parent(std::move(foo));
#ifndef BASE_MEMORY_SCOPED_PTR_H_
#define BASE_MEMORY_SCOPED_PTR_H_
// This is an implementation designed to match the anticipated future TR2
// implementation of the scoped_ptr class.
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <iosfwd>
#include <memory>
#include <type_traits>
#include <utility>
#include "base/basictypes.h"
#include "base/compiler_specific.h"
#include "base/move.h"
#include "base/template_util.h"
namespace base {
namespace subtle {
class RefCountedBase;
class RefCountedThreadSafeBase;
} // namespace subtle
// Function object which invokes 'free' on its parameter, which must be
// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
//
// scoped_ptr<int, base::FreeDeleter> foo_ptr(
// static_cast<int*>(malloc(sizeof(int))));
struct FreeDeleter {
inline void operator()(void* ptr) const {
free(ptr);
}
};
namespace internal {
template <typename T> struct IsNotRefCounted {
enum {
value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
!base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
value
};
};
// Minimal implementation of the core logic of scoped_ptr, suitable for
// reuse in both scoped_ptr and its specializations.
template <class T, class D>
class scoped_ptr_impl {
public:
explicit scoped_ptr_impl(T* p) : data_(p) {}
// Initializer for deleters that have data parameters.
scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
// Templated constructor that destructively takes the value from another
// scoped_ptr_impl.
template <typename U, typename V>
scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
: data_(other->release(), other->get_deleter()) {
// We do not support move-only deleters. We could modify our move
// emulation to have base::subtle::move() and base::subtle::forward()
// functions that are imperfect emulations of their C++11 equivalents,
// but until there's a requirement, just assume deleters are copyable.
}
template <typename U, typename V>
void TakeState(scoped_ptr_impl<U, V>* other) {
// See comment in templated constructor above regarding lack of support
// for move-only deleters.
reset(other->release());
get_deleter() = other->get_deleter();
}
~scoped_ptr_impl() {
// Match libc++, which calls reset() in its destructor.
// Use nullptr as the new value for three reasons:
// 1. libc++ does it.
// 2. Avoids infinitely recursing into destructors if two classes are owned
// in a reference cycle (see ScopedPtrTest.ReferenceCycle).
// 3. If |this| is accessed in the future, in a use-after-free bug, attempts
// to dereference |this|'s pointer should cause either a failure or a
// segfault closer to the problem. If |this| wasn't reset to nullptr,
// the access would cause the deleted memory to be read or written
// leading to other more subtle issues.
reset(nullptr);
}
void reset(T* p) {
// Match C++11's definition of unique_ptr::reset(), which requires changing
// the pointer before invoking the deleter on the old pointer. This prevents
// |this| from being accessed after the deleter is run, which may destroy
// |this|.
T* old = data_.ptr;
data_.ptr = p;
if (old != nullptr)
static_cast<D&>(data_)(old);
}
T* get() const { return data_.ptr; }
D& get_deleter() { return data_; }
const D& get_deleter() const { return data_; }
void swap(scoped_ptr_impl& p2) {
// Standard swap idiom: 'using std::swap' ensures that std::swap is
// present in the overload set, but we call swap unqualified so that
// any more-specific overloads can be used, if available.
using std::swap;
swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
swap(data_.ptr, p2.data_.ptr);
}
T* release() {
T* old_ptr = data_.ptr;
data_.ptr = nullptr;
return old_ptr;
}
private:
// Needed to allow type-converting constructor.
template <typename U, typename V> friend class scoped_ptr_impl;
// Use the empty base class optimization to allow us to have a D
// member, while avoiding any space overhead for it when D is an
// empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
// discussion of this technique.
struct Data : public D {
explicit Data(T* ptr_in) : ptr(ptr_in) {}
Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
T* ptr;
};
Data data_;
DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
};
} // namespace internal
} // namespace base
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, scoped_ptr<T> owns the T object that it points to.
// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
// dereference it, you get the thread safety guarantees of T.
//
// The size of scoped_ptr is small. On most compilers, when using the
// std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters
// will increase the size proportional to whatever state they need to have. See
// comments inside scoped_ptr_impl<> for details.
//
// Current implementation targets having a strict subset of C++11's
// unique_ptr<> features. Known deficiencies include not supporting move-only
// deleteres, function pointers as deleters, and deleters with reference
// types.
template <class T, class D = std::default_delete<T>>
class scoped_ptr {
MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr)
static_assert(base::internal::IsNotRefCounted<T>::value,
"T is a refcounted type and needs a scoped_refptr");
public:
// The element and deleter types.
using element_type = T;
using deleter_type = D;
// Constructor. Defaults to initializing with nullptr.
scoped_ptr() : impl_(nullptr) {}
// Constructor. Takes ownership of p.
explicit scoped_ptr(element_type* p) : impl_(p) {}
// Constructor. Allows initialization of a stateful deleter.
scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
// Constructor. Allows construction from a nullptr.
scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
// Move constructor.
//
// IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and
// not just the conversion constructor) in order to warn on pessimizing moves.
// The requirements for the move constructor are specified in C++11
// 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As
// we don't support reference (or move-only) deleters, the post conditions are
// trivially true: we always copy construct the deleter from other's deleter.
scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
// Conversion constructor. Allows construction from a scoped_ptr rvalue for a
// convertible type and deleter.
//
// IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only
// participate in overload resolution if all the following are true:
// - U is implicitly convertible to T: this is important for 2 reasons:
// 1. So type traits don't incorrectly return true, e.g.
// std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value
// should be false.
// 2. To make sure code like this compiles:
// void F(scoped_ptr<int>);
// void F(scoped_ptr<Base>);
// // Ambiguous since both conversion constructors match.
// F(scoped_ptr<Derived>());
// - U is not an array type: to prevent conversions from scoped_ptr<T[]> to
// scoped_ptr<T>.
// - D is a reference type and E is the same type, or D is not a reference
// type and E is implicitly convertible to D: again, we don't support
// reference deleters, so we only worry about the latter requirement.
template <typename U,
typename E,
typename std::enable_if<!std::is_array<U>::value &&
std::is_convertible<U*, T*>::value &&
std::is_convertible<E, D>::value>::type* =
nullptr>
scoped_ptr(scoped_ptr<U, E>&& other)
: impl_(&other.impl_) {}
// operator=.
//
// IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to
// require a move assignment operator to trigger the pessimizing move warning:
// in this case, the warning triggers when moving a temporary. For consistency
// with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3
// defines several requirements around this: like the move constructor, the
// requirements are simplified by the fact that we don't support move-only or
// reference deleters.
scoped_ptr& operator=(scoped_ptr&& rhs) {
impl_.TakeState(&rhs.impl_);
return *this;
}
// operator=. Allows assignment from a scoped_ptr rvalue for a convertible
// type and deleter.
//
// IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
// the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the
// requirement for this operator, but like the conversion constructor, the
// requirements are greatly simplified by not supporting move-only or
// reference deleters.
template <typename U,
typename E,
typename std::enable_if<!std::is_array<U>::value &&
std::is_convertible<U*, T*>::value &&
// Note that this really should be
// std::is_assignable, but <type_traits>
// appears to be missing this on some
// platforms. This is close enough (though
// it's not the same).
std::is_convertible<D, E>::value>::type* =
nullptr>
scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) {
impl_.TakeState(&rhs.impl_);
return *this;
}
// operator=. Allows assignment from a nullptr. Deletes the currently owned
// object, if any.
scoped_ptr& operator=(std::nullptr_t) {
reset();
return *this;
}
// Reset. Deletes the currently owned object, if any.
// Then takes ownership of a new object, if given.
void reset(element_type* p = nullptr) { impl_.reset(p); }
// Accessors to get the owned object.
// operator* and operator-> will assert() if there is no current object.
element_type& operator*() const {
assert(impl_.get() != nullptr);
return *impl_.get();
}
element_type* operator->() const {
assert(impl_.get() != nullptr);
return impl_.get();
}
element_type* get() const { return impl_.get(); }
// Access to the deleter.
deleter_type& get_deleter() { return impl_.get_deleter(); }
const deleter_type& get_deleter() const { return impl_.get_deleter(); }
// Allow scoped_ptr<element_type> to be used in boolean expressions, but not
// implicitly convertible to a real bool (which is dangerous).
//
// Note that this trick is only safe when the == and != operators
// are declared explicitly, as otherwise "scoped_ptr1 ==
// scoped_ptr2" will compile but do the wrong thing (i.e., convert
// to Testable and then do the comparison).
private:
typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
scoped_ptr::*Testable;
public:
operator Testable() const {
return impl_.get() ? &scoped_ptr::impl_ : nullptr;
}
// Swap two scoped pointers.
void swap(scoped_ptr& p2) {
impl_.swap(p2.impl_);
}
// Release a pointer.
// The return value is the current pointer held by this object. If this object
// holds a nullptr, the return value is nullptr. After this operation, this
// object will hold a nullptr, and will not own the object any more.
element_type* release() WARN_UNUSED_RESULT {
return impl_.release();
}
private:
// Needed to reach into |impl_| in the constructor.
template <typename U, typename V> friend class scoped_ptr;
base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
// Forbidden for API compatibility with std::unique_ptr.
explicit scoped_ptr(int disallow_construction_from_null);
};
template <class T, class D>
class scoped_ptr<T[], D> {
MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr)
public:
// The element and deleter types.
using element_type = T;
using deleter_type = D;
// Constructor. Defaults to initializing with nullptr.
scoped_ptr() : impl_(nullptr) {}
// Constructor. Stores the given array. Note that the argument's type
// must exactly match T*. In particular:
// - it cannot be a pointer to a type derived from T, because it is
// inherently unsafe in the general case to access an array through a
// pointer whose dynamic type does not match its static type (eg., if
// T and the derived types had different sizes access would be
// incorrectly calculated). Deletion is also always undefined
// (C++98 [expr.delete]p3). If you're doing this, fix your code.
// - it cannot be const-qualified differently from T per unique_ptr spec
// (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
// to work around this may use const_cast<const T*>().
explicit scoped_ptr(element_type* array) : impl_(array) {}
// Constructor. Allows construction from a nullptr.
scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
// Constructor. Allows construction from a scoped_ptr rvalue.
scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
// operator=. Allows assignment from a scoped_ptr rvalue.
scoped_ptr& operator=(scoped_ptr&& rhs) {
impl_.TakeState(&rhs.impl_);
return *this;
}
// operator=. Allows assignment from a nullptr. Deletes the currently owned
// array, if any.
scoped_ptr& operator=(std::nullptr_t) {
reset();
return *this;
}
// Reset. Deletes the currently owned array, if any.
// Then takes ownership of a new object, if given.
void reset(element_type* array = nullptr) { impl_.reset(array); }
// Accessors to get the owned array.
element_type& operator[](size_t i) const {
assert(impl_.get() != nullptr);
return impl_.get()[i];
}
element_type* get() const { return impl_.get(); }
// Access to the deleter.
deleter_type& get_deleter() { return impl_.get_deleter(); }
const deleter_type& get_deleter() const { return impl_.get_deleter(); }
// Allow scoped_ptr<element_type> to be used in boolean expressions, but not
// implicitly convertible to a real bool (which is dangerous).
private:
typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
scoped_ptr::*Testable;
public:
operator Testable() const {
return impl_.get() ? &scoped_ptr::impl_ : nullptr;
}
// Swap two scoped pointers.
void swap(scoped_ptr& p2) {
impl_.swap(p2.impl_);
}
// Release a pointer.
// The return value is the current pointer held by this object. If this object
// holds a nullptr, the return value is nullptr. After this operation, this
// object will hold a nullptr, and will not own the object any more.
element_type* release() WARN_UNUSED_RESULT {
return impl_.release();
}
private:
// Force element_type to be a complete type.
enum { type_must_be_complete = sizeof(element_type) };
// Actually hold the data.
base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
// Disable initialization from any type other than element_type*, by
// providing a constructor that matches such an initialization, but is
// private and has no definition. This is disabled because it is not safe to
// call delete[] on an array whose static type does not match its dynamic
// type.
template <typename U> explicit scoped_ptr(U* array);
explicit scoped_ptr(int disallow_construction_from_null);
// Disable reset() from any type other than element_type*, for the same
// reasons as the constructor above.
template <typename U> void reset(U* array);
void reset(int disallow_reset_from_null);
};
// Free functions
template <class T, class D>
void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
p1.swap(p2);
}
template <class T1, class D1, class T2, class D2>
bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
return p1.get() == p2.get();
}
template <class T, class D>
bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) {
return p.get() == nullptr;
}
template <class T, class D>
bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) {
return p.get() == nullptr;
}
template <class T1, class D1, class T2, class D2>
bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
return !(p1 == p2);
}
template <class T, class D>
bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) {
return !(p == nullptr);
}
template <class T, class D>
bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) {
return !(p == nullptr);
}
template <class T1, class D1, class T2, class D2>
bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
return p1.get() < p2.get();
}
template <class T, class D>
bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) {
return p.get() < nullptr;
}
template <class T, class D>
bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) {
return nullptr < p.get();
}
template <class T1, class D1, class T2, class D2>
bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
return p2 < p1;
}
template <class T, class D>
bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) {
return nullptr < p;
}
template <class T, class D>
bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) {
return p < nullptr;
}
template <class T1, class D1, class T2, class D2>
bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
return !(p1 > p2);
}
template <class T, class D>
bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) {
return !(p > nullptr);
}
template <class T, class D>
bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) {
return !(nullptr > p);
}
template <class T1, class D1, class T2, class D2>
bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
return !(p1 < p2);
}
template <class T, class D>
bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) {
return !(p < nullptr);
}
template <class T, class D>
bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
return !(nullptr < p);
}
// A function to convert T* into scoped_ptr<T>
// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
template <typename T>
scoped_ptr<T> make_scoped_ptr(T* ptr) {
return scoped_ptr<T>(ptr);
}
template <typename T>
std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
return out << p.get();
}
#endif // BASE_MEMORY_SCOPED_PTR_H_