blob: 417c663e306d28caa15122669b9251d0ce7a8236 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/bpf_dsl/verifier.h"
#include <string.h>
#include <limits>
#include "sandbox/linux/bpf_dsl/bpf_dsl.h"
#include "sandbox/linux/bpf_dsl/bpf_dsl_impl.h"
#include "sandbox/linux/bpf_dsl/policy.h"
#include "sandbox/linux/bpf_dsl/policy_compiler.h"
#include "sandbox/linux/bpf_dsl/seccomp_macros.h"
#include "sandbox/linux/bpf_dsl/syscall_set.h"
#include "sandbox/linux/seccomp-bpf/errorcode.h"
#include "sandbox/linux/system_headers/linux_filter.h"
#include "sandbox/linux/system_headers/linux_seccomp.h"
namespace sandbox {
namespace bpf_dsl {
namespace {
const uint64_t kLower32Bits = std::numeric_limits<uint32_t>::max();
const uint64_t kUpper32Bits = static_cast<uint64_t>(kLower32Bits) << 32;
struct State {
State(const std::vector<struct sock_filter>& p,
const struct arch_seccomp_data& d)
: program(p), data(d), ip(0), accumulator(0), acc_is_valid(false) {}
const std::vector<struct sock_filter>& program;
const struct arch_seccomp_data& data;
unsigned int ip;
uint32_t accumulator;
bool acc_is_valid;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(State);
};
uint32_t EvaluateErrorCode(bpf_dsl::PolicyCompiler* compiler,
const ErrorCode& code,
const struct arch_seccomp_data& data) {
if (code.error_type() == ErrorCode::ET_SIMPLE ||
code.error_type() == ErrorCode::ET_TRAP) {
return code.err();
} else if (code.error_type() == ErrorCode::ET_COND) {
if (code.width() == ErrorCode::TP_32BIT &&
(data.args[code.argno()] >> 32) &&
(data.args[code.argno()] & 0xFFFFFFFF80000000ull) !=
0xFFFFFFFF80000000ull) {
return compiler->Unexpected64bitArgument().err();
}
bool equal = (data.args[code.argno()] & code.mask()) == code.value();
return EvaluateErrorCode(compiler, equal ? *code.passed() : *code.failed(),
data);
} else {
return SECCOMP_RET_INVALID;
}
}
bool VerifyErrorCode(bpf_dsl::PolicyCompiler* compiler,
const std::vector<struct sock_filter>& program,
struct arch_seccomp_data* data,
const ErrorCode& root_code,
const ErrorCode& code,
const char** err) {
if (code.error_type() == ErrorCode::ET_SIMPLE ||
code.error_type() == ErrorCode::ET_TRAP) {
const uint32_t computed_ret = Verifier::EvaluateBPF(program, *data, err);
if (*err) {
return false;
}
const uint32_t policy_ret = EvaluateErrorCode(compiler, root_code, *data);
if (computed_ret != policy_ret) {
// For efficiency's sake, we'd much rather compare "computed_ret"
// against "code.err()". This works most of the time, but it doesn't
// always work for nested conditional expressions. The test values
// that we generate on the fly to probe expressions can trigger
// code flow decisions in multiple nodes of the decision tree, and the
// only way to compute the correct error code in that situation is by
// calling EvaluateErrorCode().
*err = "Exit code from BPF program doesn't match";
return false;
}
} else if (code.error_type() == ErrorCode::ET_COND) {
if (code.argno() < 0 || code.argno() >= 6) {
*err = "Invalid argument number in error code";
return false;
}
// TODO(mdempsky): The test values generated here try to provide good
// coverage for generated BPF instructions while avoiding combinatorial
// explosion on large policies. Ideally we would instead take a fuzzing-like
// approach and generate a bounded number of test cases regardless of policy
// size.
// Verify that we can check a value for simple equality.
data->args[code.argno()] = code.value();
if (!VerifyErrorCode(compiler, program, data, root_code, *code.passed(),
err)) {
return false;
}
// If mask ignores any bits, verify that setting those bits is still
// detected as equality.
uint64_t ignored_bits = ~code.mask();
if (code.width() == ErrorCode::TP_32BIT) {
ignored_bits = static_cast<uint32_t>(ignored_bits);
}
if ((ignored_bits & kLower32Bits) != 0) {
data->args[code.argno()] = code.value() | (ignored_bits & kLower32Bits);
if (!VerifyErrorCode(compiler, program, data, root_code, *code.passed(),
err)) {
return false;
}
}
if ((ignored_bits & kUpper32Bits) != 0) {
data->args[code.argno()] = code.value() | (ignored_bits & kUpper32Bits);
if (!VerifyErrorCode(compiler, program, data, root_code, *code.passed(),
err)) {
return false;
}
}
// Verify that changing bits included in the mask is detected as inequality.
if ((code.mask() & kLower32Bits) != 0) {
data->args[code.argno()] = code.value() ^ (code.mask() & kLower32Bits);
if (!VerifyErrorCode(compiler, program, data, root_code, *code.failed(),
err)) {
return false;
}
}
if ((code.mask() & kUpper32Bits) != 0) {
data->args[code.argno()] = code.value() ^ (code.mask() & kUpper32Bits);
if (!VerifyErrorCode(compiler, program, data, root_code, *code.failed(),
err)) {
return false;
}
}
if (code.width() == ErrorCode::TP_32BIT) {
// For 32-bit system call arguments, we emit additional instructions to
// validate the upper 32-bits. Here we test that validation.
// Arbitrary 64-bit values should be rejected.
data->args[code.argno()] = 1ULL << 32;
if (!VerifyErrorCode(compiler, program, data, root_code,
compiler->Unexpected64bitArgument(), err)) {
return false;
}
// Upper 32-bits set without the MSB of the lower 32-bits set should be
// rejected too.
data->args[code.argno()] = kUpper32Bits;
if (!VerifyErrorCode(compiler, program, data, root_code,
compiler->Unexpected64bitArgument(), err)) {
return false;
}
}
} else {
*err = "Attempting to return invalid error code from BPF program";
return false;
}
return true;
}
void Ld(State* state, const struct sock_filter& insn, const char** err) {
if (BPF_SIZE(insn.code) != BPF_W || BPF_MODE(insn.code) != BPF_ABS ||
insn.jt != 0 || insn.jf != 0) {
*err = "Invalid BPF_LD instruction";
return;
}
if (insn.k < sizeof(struct arch_seccomp_data) && (insn.k & 3) == 0) {
// We only allow loading of properly aligned 32bit quantities.
memcpy(&state->accumulator,
reinterpret_cast<const char*>(&state->data) + insn.k, 4);
} else {
*err = "Invalid operand in BPF_LD instruction";
return;
}
state->acc_is_valid = true;
return;
}
void Jmp(State* state, const struct sock_filter& insn, const char** err) {
if (BPF_OP(insn.code) == BPF_JA) {
if (state->ip + insn.k + 1 >= state->program.size() ||
state->ip + insn.k + 1 <= state->ip) {
compilation_failure:
*err = "Invalid BPF_JMP instruction";
return;
}
state->ip += insn.k;
} else {
if (BPF_SRC(insn.code) != BPF_K || !state->acc_is_valid ||
state->ip + insn.jt + 1 >= state->program.size() ||
state->ip + insn.jf + 1 >= state->program.size()) {
goto compilation_failure;
}
switch (BPF_OP(insn.code)) {
case BPF_JEQ:
if (state->accumulator == insn.k) {
state->ip += insn.jt;
} else {
state->ip += insn.jf;
}
break;
case BPF_JGT:
if (state->accumulator > insn.k) {
state->ip += insn.jt;
} else {
state->ip += insn.jf;
}
break;
case BPF_JGE:
if (state->accumulator >= insn.k) {
state->ip += insn.jt;
} else {
state->ip += insn.jf;
}
break;
case BPF_JSET:
if (state->accumulator & insn.k) {
state->ip += insn.jt;
} else {
state->ip += insn.jf;
}
break;
default:
goto compilation_failure;
}
}
}
uint32_t Ret(State*, const struct sock_filter& insn, const char** err) {
if (BPF_SRC(insn.code) != BPF_K) {
*err = "Invalid BPF_RET instruction";
return 0;
}
return insn.k;
}
void Alu(State* state, const struct sock_filter& insn, const char** err) {
if (BPF_OP(insn.code) == BPF_NEG) {
state->accumulator = -state->accumulator;
return;
} else {
if (BPF_SRC(insn.code) != BPF_K) {
*err = "Unexpected source operand in arithmetic operation";
return;
}
switch (BPF_OP(insn.code)) {
case BPF_ADD:
state->accumulator += insn.k;
break;
case BPF_SUB:
state->accumulator -= insn.k;
break;
case BPF_MUL:
state->accumulator *= insn.k;
break;
case BPF_DIV:
if (!insn.k) {
*err = "Illegal division by zero";
break;
}
state->accumulator /= insn.k;
break;
case BPF_MOD:
if (!insn.k) {
*err = "Illegal division by zero";
break;
}
state->accumulator %= insn.k;
break;
case BPF_OR:
state->accumulator |= insn.k;
break;
case BPF_XOR:
state->accumulator ^= insn.k;
break;
case BPF_AND:
state->accumulator &= insn.k;
break;
case BPF_LSH:
if (insn.k > 32) {
*err = "Illegal shift operation";
break;
}
state->accumulator <<= insn.k;
break;
case BPF_RSH:
if (insn.k > 32) {
*err = "Illegal shift operation";
break;
}
state->accumulator >>= insn.k;
break;
default:
*err = "Invalid operator in arithmetic operation";
break;
}
}
}
} // namespace
bool Verifier::VerifyBPF(bpf_dsl::PolicyCompiler* compiler,
const std::vector<struct sock_filter>& program,
const bpf_dsl::Policy& policy,
const char** err) {
*err = NULL;
for (uint32_t sysnum : SyscallSet::All()) {
// We ideally want to iterate over the full system call range and values
// just above and just below this range. This gives us the full result set
// of the "evaluators".
// On Intel systems, this can fail in a surprising way, as a cleared bit 30
// indicates either i386 or x86-64; and a set bit 30 indicates x32. And
// unless we pay attention to setting this bit correctly, an early check in
// our BPF program will make us fail with a misleading error code.
struct arch_seccomp_data data = {static_cast<int>(sysnum),
static_cast<uint32_t>(SECCOMP_ARCH)};
#if defined(__i386__) || defined(__x86_64__)
#if defined(__x86_64__) && defined(__ILP32__)
if (!(sysnum & 0x40000000u)) {
continue;
}
#else
if (sysnum & 0x40000000u) {
continue;
}
#endif
#endif
ErrorCode code = SyscallSet::IsValid(sysnum)
? policy.EvaluateSyscall(sysnum)->Compile(compiler)
: policy.InvalidSyscall()->Compile(compiler);
if (!VerifyErrorCode(compiler, program, &data, code, code, err)) {
return false;
}
}
return true;
}
uint32_t Verifier::EvaluateBPF(const std::vector<struct sock_filter>& program,
const struct arch_seccomp_data& data,
const char** err) {
*err = NULL;
if (program.size() < 1 || program.size() >= SECCOMP_MAX_PROGRAM_SIZE) {
*err = "Invalid program length";
return 0;
}
for (State state(program, data); !*err; ++state.ip) {
if (state.ip >= program.size()) {
*err = "Invalid instruction pointer in BPF program";
break;
}
const struct sock_filter& insn = program[state.ip];
switch (BPF_CLASS(insn.code)) {
case BPF_LD:
Ld(&state, insn, err);
break;
case BPF_JMP:
Jmp(&state, insn, err);
break;
case BPF_RET: {
uint32_t r = Ret(&state, insn, err);
switch (r & SECCOMP_RET_ACTION) {
case SECCOMP_RET_TRAP:
case SECCOMP_RET_ERRNO:
case SECCOMP_RET_TRACE:
case SECCOMP_RET_ALLOW:
break;
case SECCOMP_RET_KILL: // We don't ever generate this
case SECCOMP_RET_INVALID: // Should never show up in BPF program
default:
*err = "Unexpected return code found in BPF program";
return 0;
}
return r;
}
case BPF_ALU:
Alu(&state, insn, err);
break;
default:
*err = "Unexpected instruction in BPF program";
break;
}
}
return 0;
}
} // namespace bpf_dsl
} // namespace sandbox