blob: ccc15728004912758c6ff487b03ef9e38756c147 [file] [log] [blame]
/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* DESCRIPTION
* Calculates cliping boundary for Affine functions.
*
*/
#include "mlib_image.h"
#include "mlib_SysMath.h"
#include "mlib_ImageAffine.h"
#include "safe_math.h"
/***************************************************************/
mlib_status mlib_AffineEdges(mlib_affine_param *param,
const mlib_image *dst,
const mlib_image *src,
void *buff_lcl,
mlib_s32 buff_size,
mlib_s32 kw,
mlib_s32 kh,
mlib_s32 kw1,
mlib_s32 kh1,
mlib_edge edge,
const mlib_d64 *mtx,
mlib_s32 shiftx,
mlib_s32 shifty)
{
mlib_u8 *buff = buff_lcl;
mlib_u8 **lineAddr = param->lineAddr;
mlib_s32 srcWidth, dstWidth, srcHeight, dstHeight, srcYStride, dstYStride;
mlib_s32 *leftEdges, *rightEdges, *xStarts, *yStarts, bsize0, bsize1 = 0;
mlib_u8 *srcData, *dstData;
mlib_u8 *paddings;
void *warp_tbl = NULL;
mlib_s32 yStart = 0, yFinish = -1, dX, dY;
mlib_d64 xClip, yClip, wClip, hClip;
mlib_d64 delta = 0.;
mlib_d64 minX, minY, maxX, maxY;
mlib_d64 coords[4][2];
mlib_d64 a = mtx[0], b = mtx[1], tx = mtx[2], c = mtx[3], d = mtx[4], ty = mtx[5];
mlib_d64 a2, b2, tx2, c2, d2, ty2;
mlib_d64 dx, dy, div;
mlib_s32 sdx, sdy;
mlib_d64 dTop;
mlib_d64 val0;
mlib_s32 top, bot;
mlib_s32 topIdx, max_xsize = 0;
mlib_s32 i, j, t;
srcData = mlib_ImageGetData(src);
dstData = mlib_ImageGetData(dst);
srcWidth = mlib_ImageGetWidth(src);
srcHeight = mlib_ImageGetHeight(src);
dstWidth = mlib_ImageGetWidth(dst);
dstHeight = mlib_ImageGetHeight(dst);
srcYStride = mlib_ImageGetStride(src);
dstYStride = mlib_ImageGetStride(dst);
paddings = mlib_ImageGetPaddings(src);
/* All the transformation matrix parameters should be finite. if not, return failure */
if (!(IS_FINITE(a) && IS_FINITE(b) && IS_FINITE(c) && IS_FINITE(d) &&
IS_FINITE(tx) && IS_FINITE(ty))) {
return MLIB_FAILURE;
}
if (srcWidth >= (1 << 15) || srcHeight >= (1 << 15)) {
return MLIB_FAILURE;
}
div = a * d - b * c;
if (div == 0.0) {
return MLIB_FAILURE;
}
bsize0 = (dstHeight * sizeof(mlib_s32) + 7) & ~7;
if (lineAddr == NULL) {
bsize1 = ((srcHeight + 4 * kh) * sizeof(mlib_u8 *) + 7) & ~7;
}
param->buff_malloc = NULL;
if ((4 * bsize0 + bsize1) > buff_size) {
buff = param->buff_malloc = mlib_malloc(4 * bsize0 + bsize1);
if (buff == NULL)
return MLIB_FAILURE;
}
leftEdges = (mlib_s32 *) (buff);
rightEdges = (mlib_s32 *) (buff += bsize0);
xStarts = (mlib_s32 *) (buff += bsize0);
yStarts = (mlib_s32 *) (buff += bsize0);
if (lineAddr == NULL) {
mlib_u8 *srcLinePtr = srcData;
lineAddr = (mlib_u8 **) (buff += bsize0);
for (i = 0; i < 2 * kh; i++)
lineAddr[i] = srcLinePtr;
lineAddr += 2 * kh;
for (i = 0; i < srcHeight - 1; i++) {
lineAddr[i] = srcLinePtr;
srcLinePtr += srcYStride;
}
for (i = srcHeight - 1; i < srcHeight + 2 * kh; i++)
lineAddr[i] = srcLinePtr;
}
if ((mlib_s32) edge < 0) { /* process edges */
minX = 0;
minY = 0;
maxX = srcWidth;
maxY = srcHeight;
}
else {
if (kw > 1)
delta = -0.5; /* for MLIB_NEAREST filter delta = 0. */
minX = (kw1 - delta);
minY = (kh1 - delta);
maxX = srcWidth - ((kw - 1) - (kw1 - delta));
maxY = srcHeight - ((kh - 1) - (kh1 - delta));
if (edge == MLIB_EDGE_SRC_PADDED) {
if (minX < paddings[0])
minX = paddings[0];
if (minY < paddings[1])
minY = paddings[1];
if (maxX > (srcWidth - paddings[2]))
maxX = srcWidth - paddings[2];
if (maxY > (srcHeight - paddings[3]))
maxY = srcHeight - paddings[3];
}
}
xClip = minX;
yClip = minY;
wClip = maxX;
hClip = maxY;
/*
* STORE_PARAM(param, src);
* STORE_PARAM(param, dst);
*/
param->src = (void *)src;
param->dst = (void *)dst;
STORE_PARAM(param, lineAddr);
STORE_PARAM(param, dstData);
STORE_PARAM(param, srcYStride);
STORE_PARAM(param, dstYStride);
STORE_PARAM(param, leftEdges);
STORE_PARAM(param, rightEdges);
STORE_PARAM(param, xStarts);
STORE_PARAM(param, yStarts);
STORE_PARAM(param, max_xsize);
STORE_PARAM(param, yStart);
STORE_PARAM(param, yFinish);
STORE_PARAM(param, warp_tbl);
if ((xClip >= wClip) || (yClip >= hClip)) {
return MLIB_SUCCESS;
}
a2 = d;
b2 = -b;
tx2 = (-d * tx + b * ty);
c2 = -c;
d2 = a;
ty2 = (c * tx - a * ty);
dx = a2;
dy = c2;
tx -= 0.5;
ty -= 0.5;
coords[0][0] = xClip * a + yClip * b + tx;
coords[0][1] = xClip * c + yClip * d + ty;
coords[2][0] = wClip * a + hClip * b + tx;
coords[2][1] = wClip * c + hClip * d + ty;
if (div > 0) {
coords[1][0] = wClip * a + yClip * b + tx;
coords[1][1] = wClip * c + yClip * d + ty;
coords[3][0] = xClip * a + hClip * b + tx;
coords[3][1] = xClip * c + hClip * d + ty;
}
else {
coords[3][0] = wClip * a + yClip * b + tx;
coords[3][1] = wClip * c + yClip * d + ty;
coords[1][0] = xClip * a + hClip * b + tx;
coords[1][1] = xClip * c + hClip * d + ty;
}
topIdx = 0;
for (i = 1; i < 4; i++) {
if (coords[i][1] < coords[topIdx][1])
topIdx = i;
}
dTop = coords[topIdx][1];
val0 = dTop;
SAT32(top);
bot = -1;
if (top >= dstHeight) {
return MLIB_SUCCESS;
}
if (dTop >= 0.0) {
mlib_d64 xLeft, xRight, x;
mlib_s32 nextIdx;
if (dTop == top) {
xLeft = coords[topIdx][0];
xRight = coords[topIdx][0];
nextIdx = (topIdx + 1) & 0x3;
if (dTop == coords[nextIdx][1]) {
x = coords[nextIdx][0];
xLeft = (xLeft <= x) ? xLeft : x;
xRight = (xRight >= x) ? xRight : x;
}
nextIdx = (topIdx - 1) & 0x3;
if (dTop == coords[nextIdx][1]) {
x = coords[nextIdx][0];
xLeft = (xLeft <= x) ? xLeft : x;
xRight = (xRight >= x) ? xRight : x;
}
val0 = xLeft;
SAT32(t);
leftEdges[top] = (t >= xLeft) ? t : ++t;
if (xLeft >= MLIB_S32_MAX)
leftEdges[top] = MLIB_S32_MAX;
val0 = xRight;
SAT32(rightEdges[top]);
}
else
top++;
}
else
top = 0;
for (i = 0; i < 2; i++) {
mlib_d64 dY1 = coords[(topIdx - i) & 0x3][1];
mlib_d64 dX1 = coords[(topIdx - i) & 0x3][0];
mlib_d64 dY2 = coords[(topIdx - i - 1) & 0x3][1];
mlib_d64 dX2 = coords[(topIdx - i - 1) & 0x3][0];
mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1);
mlib_s32 y1;
mlib_s32 y2;
if (dY1 == dY2)
continue;
if (!(IS_FINITE(slope))) {
continue;
}
if (dY1 < 0.0)
y1 = 0;
else {
val0 = dY1 + 1;
SAT32(y1);
}
val0 = dY2;
SAT32(y2);
if (y2 >= dstHeight)
y2 = (mlib_s32) (dstHeight - 1);
x += slope * (y1 - dY1);
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (j = y1; j <= y2; j++) {
val0 = x;
SAT32(t);
leftEdges[j] = (t >= x) ? t : ++t;
if (x >= MLIB_S32_MAX)
leftEdges[j] = MLIB_S32_MAX;
x += slope;
}
}
for (i = 0; i < 2; i++) {
mlib_d64 dY1 = coords[(topIdx + i) & 0x3][1];
mlib_d64 dX1 = coords[(topIdx + i) & 0x3][0];
mlib_d64 dY2 = coords[(topIdx + i + 1) & 0x3][1];
mlib_d64 dX2 = coords[(topIdx + i + 1) & 0x3][0];
mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1);
mlib_s32 y1;
mlib_s32 y2;
if (dY1 == dY2)
continue;
if (!(IS_FINITE(slope))) {
continue;
}
if (dY1 < 0.0)
y1 = 0;
else {
val0 = dY1 + 1;
SAT32(y1);
}
val0 = dY2;
SAT32(y2);
if (y2 >= dstHeight)
y2 = (mlib_s32) (dstHeight - 1);
x += slope * (y1 - dY1);
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (j = y1; j <= y2; j++) {
val0 = x;
SAT32(rightEdges[j]);
x += slope;
}
bot = y2;
}
{
mlib_d64 dxCl = xClip * div;
mlib_d64 dyCl = yClip * div;
mlib_d64 dwCl = wClip * div;
mlib_d64 dhCl = hClip * div;
mlib_s32 xCl = (mlib_s32) (xClip + delta);
mlib_s32 yCl = (mlib_s32) (yClip + delta);
mlib_s32 wCl = (mlib_s32) (wClip + delta);
mlib_s32 hCl = (mlib_s32) (hClip + delta);
/*
* mlib_s32 xCl = (mlib_s32)(xClip + delta);
* mlib_s32 yCl = (mlib_s32)(yClip + delta);
* mlib_s32 wCl = (mlib_s32)(wClip);
* mlib_s32 hCl = (mlib_s32)(hClip);
*/
if (edge == MLIB_EDGE_SRC_PADDED) {
xCl = kw1;
yCl = kh1;
wCl = (mlib_s32) (srcWidth - ((kw - 1) - kw1));
hCl = (mlib_s32) (srcHeight - ((kh - 1) - kh1));
}
div = 1.0 / div;
sdx = (mlib_s32) (a2 * div * (1 << shiftx));
sdy = (mlib_s32) (c2 * div * (1 << shifty));
if (div > 0) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = top; i <= bot; i++) {
mlib_s32 xLeft = leftEdges[i];
mlib_s32 xRight = rightEdges[i];
mlib_s32 xs, ys, x_e, y_e, x_s, y_s;
mlib_d64 dxs, dys, dxe, dye;
mlib_d64 xl, ii, xr;
xLeft = (xLeft < 0) ? 0 : xLeft;
xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight;
xl = xLeft + 0.5;
ii = i + 0.5;
xr = xRight + 0.5;
dxs = xl * a2 + ii * b2 + tx2;
dys = xl * c2 + ii * d2 + ty2;
if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl)) {
dxs += dx;
dys += dy;
xLeft++;
if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl))
xRight = -1;
}
dxe = xr * a2 + ii * b2 + tx2;
dye = xr * c2 + ii * d2 + ty2;
if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl)) {
dxe -= dx;
dye -= dy;
xRight--;
if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl))
xRight = -1;
}
xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx));
x_s = xs >> shiftx;
ys = (mlib_s32) ((dys * div + delta) * (1 << shifty));
y_s = ys >> shifty;
if (x_s < xCl)
xs = (xCl << shiftx);
else if (x_s >= wCl)
xs = ((wCl << shiftx) - 1);
if (y_s < yCl)
ys = (yCl << shifty);
else if (y_s >= hCl)
ys = ((hCl << shifty) - 1);
if (xRight >= xLeft) {
x_e = ((xRight - xLeft) * sdx + xs) >> shiftx;
y_e = ((xRight - xLeft) * sdy + ys) >> shifty;
if ((x_e < xCl) || (x_e >= wCl)) {
if (sdx > 0)
sdx -= 1;
else
sdx += 1;
}
if ((y_e < yCl) || (y_e >= hCl)) {
if (sdy > 0)
sdy -= 1;
else
sdy += 1;
}
}
leftEdges[i] = xLeft;
rightEdges[i] = xRight;
xStarts[i] = xs;
yStarts[i] = ys;
if ((xRight - xLeft + 1) > max_xsize)
max_xsize = (xRight - xLeft + 1);
}
}
else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = top; i <= bot; i++) {
mlib_s32 xLeft = leftEdges[i];
mlib_s32 xRight = rightEdges[i];
mlib_s32 xs, ys, x_e, y_e, x_s, y_s;
mlib_d64 dxs, dys, dxe, dye;
mlib_d64 xl, ii, xr;
xLeft = (xLeft < 0) ? 0 : xLeft;
xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight;
xl = xLeft + 0.5;
ii = i + 0.5;
xr = xRight + 0.5;
dxs = xl * a2 + ii * b2 + tx2;
dys = xl * c2 + ii * d2 + ty2;
if ((dxs > dxCl) || (dxs <= dwCl) || (dys > dyCl) || (dys <= dhCl)) {
dxs += dx;
dys += dy;
xLeft++;
if ((dxs > dxCl) || (dxs <= dwCl) || (dys > dyCl) || (dys <= dhCl))
xRight = -1;
}
dxe = xr * a2 + ii * b2 + tx2;
dye = xr * c2 + ii * d2 + ty2;
if ((dxe > dxCl) || (dxe <= dwCl) || (dye > dyCl) || (dye <= dhCl)) {
dxe -= dx;
dye -= dy;
xRight--;
if ((dxe > dxCl) || (dxe <= dwCl) || (dye > dyCl) || (dye <= dhCl))
xRight = -1;
}
xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx));
x_s = xs >> shiftx;
if (x_s < xCl)
xs = (xCl << shiftx);
else if (x_s >= wCl)
xs = ((wCl << shiftx) - 1);
ys = (mlib_s32) ((dys * div + delta) * (1 << shifty));
y_s = ys >> shifty;
if (y_s < yCl)
ys = (yCl << shifty);
else if (y_s >= hCl)
ys = ((hCl << shifty) - 1);
if (xRight >= xLeft) {
x_e = ((xRight - xLeft) * sdx + xs) >> shiftx;
y_e = ((xRight - xLeft) * sdy + ys) >> shifty;
if ((x_e < xCl) || (x_e >= wCl)) {
if (sdx > 0)
sdx -= 1;
else
sdx += 1;
}
if ((y_e < yCl) || (y_e >= hCl)) {
if (sdy > 0)
sdy -= 1;
else
sdy += 1;
}
}
leftEdges[i] = xLeft;
rightEdges[i] = xRight;
xStarts[i] = xs;
yStarts[i] = ys;
if ((xRight - xLeft + 1) > max_xsize)
max_xsize = (xRight - xLeft + 1);
}
}
}
while (leftEdges[top] > rightEdges[top] && top <= bot)
top++;
if (top < bot)
while (leftEdges[bot] > rightEdges[bot])
bot--;
yStart = top;
yFinish = bot;
dX = sdx;
dY = sdy;
dstData += (yStart - 1) * dstYStride;
STORE_PARAM(param, dstData);
STORE_PARAM(param, yStart);
STORE_PARAM(param, yFinish);
STORE_PARAM(param, max_xsize);
STORE_PARAM(param, dX);
STORE_PARAM(param, dY);
return MLIB_SUCCESS;
}
/***************************************************************/