|  | /* | 
|  | * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved. | 
|  | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|  | * | 
|  | * This code is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 only, as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This code is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * version 2 for more details (a copy is included in the LICENSE file that | 
|  | * accompanied this code). | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License version | 
|  | * 2 along with this work; if not, write to the Free Software Foundation, | 
|  | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | * | 
|  | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|  | * or visit www.oracle.com if you need additional information or have any | 
|  | * questions. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #ifndef SHARE_VM_OPTO_LOOPNODE_HPP | 
|  | #define SHARE_VM_OPTO_LOOPNODE_HPP | 
|  |  | 
|  | #include "opto/cfgnode.hpp" | 
|  | #include "opto/multnode.hpp" | 
|  | #include "opto/phaseX.hpp" | 
|  | #include "opto/subnode.hpp" | 
|  | #include "opto/type.hpp" | 
|  |  | 
|  | class CmpNode; | 
|  | class CountedLoopEndNode; | 
|  | class CountedLoopNode; | 
|  | class IdealLoopTree; | 
|  | class LoopNode; | 
|  | class Node; | 
|  | class PhaseIdealLoop; | 
|  | class VectorSet; | 
|  | class Invariance; | 
|  | struct small_cache; | 
|  |  | 
|  | // | 
|  | //                  I D E A L I Z E D   L O O P S | 
|  | // | 
|  | // Idealized loops are the set of loops I perform more interesting | 
|  | // transformations on, beyond simple hoisting. | 
|  |  | 
|  | //------------------------------LoopNode--------------------------------------- | 
|  | // Simple loop header.  Fall in path on left, loop-back path on right. | 
|  | class LoopNode : public RegionNode { | 
|  | // Size is bigger to hold the flags.  However, the flags do not change | 
|  | // the semantics so it does not appear in the hash & cmp functions. | 
|  | virtual uint size_of() const { return sizeof(*this); } | 
|  | protected: | 
|  | short _loop_flags; | 
|  | // Names for flag bitfields | 
|  | enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3, | 
|  | MainHasNoPreLoop=4, | 
|  | HasExactTripCount=8, | 
|  | InnerLoop=16, | 
|  | PartialPeelLoop=32, | 
|  | PartialPeelFailed=64 }; | 
|  | char _unswitch_count; | 
|  | enum { _unswitch_max=3 }; | 
|  |  | 
|  | public: | 
|  | // Names for edge indices | 
|  | enum { Self=0, EntryControl, LoopBackControl }; | 
|  |  | 
|  | int is_inner_loop() const { return _loop_flags & InnerLoop; } | 
|  | void set_inner_loop() { _loop_flags |= InnerLoop; } | 
|  |  | 
|  | int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; } | 
|  | void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; } | 
|  | int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; } | 
|  | void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; } | 
|  |  | 
|  | int unswitch_max() { return _unswitch_max; } | 
|  | int unswitch_count() { return _unswitch_count; } | 
|  | void set_unswitch_count(int val) { | 
|  | assert (val <= unswitch_max(), "too many unswitches"); | 
|  | _unswitch_count = val; | 
|  | } | 
|  |  | 
|  | LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) { | 
|  | init_class_id(Class_Loop); | 
|  | init_req(EntryControl, entry); | 
|  | init_req(LoopBackControl, backedge); | 
|  | } | 
|  |  | 
|  | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); | 
|  | virtual int Opcode() const; | 
|  | bool can_be_counted_loop(PhaseTransform* phase) const { | 
|  | return req() == 3 && in(0) != NULL && | 
|  | in(1) != NULL && phase->type(in(1)) != Type::TOP && | 
|  | in(2) != NULL && phase->type(in(2)) != Type::TOP; | 
|  | } | 
|  | bool is_valid_counted_loop() const; | 
|  | #ifndef PRODUCT | 
|  | virtual void dump_spec(outputStream *st) const; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | //------------------------------Counted Loops---------------------------------- | 
|  | // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit | 
|  | // path (and maybe some other exit paths).  The trip-counter exit is always | 
|  | // last in the loop.  The trip-counter have to stride by a constant; | 
|  | // the exit value is also loop invariant. | 
|  |  | 
|  | // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The | 
|  | // CountedLoopNode has the incoming loop control and the loop-back-control | 
|  | // which is always the IfTrue before the matching CountedLoopEndNode.  The | 
|  | // CountedLoopEndNode has an incoming control (possibly not the | 
|  | // CountedLoopNode if there is control flow in the loop), the post-increment | 
|  | // trip-counter value, and the limit.  The trip-counter value is always of | 
|  | // the form (Op old-trip-counter stride).  The old-trip-counter is produced | 
|  | // by a Phi connected to the CountedLoopNode.  The stride is constant. | 
|  | // The Op is any commutable opcode, including Add, Mul, Xor.  The | 
|  | // CountedLoopEndNode also takes in the loop-invariant limit value. | 
|  |  | 
|  | // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the | 
|  | // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes | 
|  | // via the old-trip-counter from the Op node. | 
|  |  | 
|  | //------------------------------CountedLoopNode-------------------------------- | 
|  | // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as | 
|  | // inputs the incoming loop-start control and the loop-back control, so they | 
|  | // act like RegionNodes.  They also take in the initial trip counter, the | 
|  | // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes | 
|  | // produce a loop-body control and the trip counter value.  Since | 
|  | // CountedLoopNodes behave like RegionNodes I still have a standard CFG model. | 
|  |  | 
|  | class CountedLoopNode : public LoopNode { | 
|  | // Size is bigger to hold _main_idx.  However, _main_idx does not change | 
|  | // the semantics so it does not appear in the hash & cmp functions. | 
|  | virtual uint size_of() const { return sizeof(*this); } | 
|  |  | 
|  | // For Pre- and Post-loops during debugging ONLY, this holds the index of | 
|  | // the Main CountedLoop.  Used to assert that we understand the graph shape. | 
|  | node_idx_t _main_idx; | 
|  |  | 
|  | // Known trip count calculated by compute_exact_trip_count() | 
|  | uint  _trip_count; | 
|  |  | 
|  | // Expected trip count from profile data | 
|  | float _profile_trip_cnt; | 
|  |  | 
|  | // Log2 of original loop bodies in unrolled loop | 
|  | int _unrolled_count_log2; | 
|  |  | 
|  | // Node count prior to last unrolling - used to decide if | 
|  | // unroll,optimize,unroll,optimize,... is making progress | 
|  | int _node_count_before_unroll; | 
|  |  | 
|  | public: | 
|  | CountedLoopNode( Node *entry, Node *backedge ) | 
|  | : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint), | 
|  | _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0), | 
|  | _node_count_before_unroll(0) { | 
|  | init_class_id(Class_CountedLoop); | 
|  | // Initialize _trip_count to the largest possible value. | 
|  | // Will be reset (lower) if the loop's trip count is known. | 
|  | } | 
|  |  | 
|  | virtual int Opcode() const; | 
|  | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); | 
|  |  | 
|  | Node *init_control() const { return in(EntryControl); } | 
|  | Node *back_control() const { return in(LoopBackControl); } | 
|  | CountedLoopEndNode *loopexit() const; | 
|  | Node *init_trip() const; | 
|  | Node *stride() const; | 
|  | int   stride_con() const; | 
|  | bool  stride_is_con() const; | 
|  | Node *limit() const; | 
|  | Node *incr() const; | 
|  | Node *phi() const; | 
|  |  | 
|  | // Match increment with optional truncation | 
|  | static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type); | 
|  |  | 
|  | // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop | 
|  | // can run short a few iterations and may start a few iterations in. | 
|  | // It will be RCE'd and unrolled and aligned. | 
|  |  | 
|  | // A following 'post' loop will run any remaining iterations.  Used | 
|  | // during Range Check Elimination, the 'post' loop will do any final | 
|  | // iterations with full checks.  Also used by Loop Unrolling, where | 
|  | // the 'post' loop will do any epilog iterations needed.  Basically, | 
|  | // a 'post' loop can not profitably be further unrolled or RCE'd. | 
|  |  | 
|  | // A preceding 'pre' loop will run at least 1 iteration (to do peeling), | 
|  | // it may do under-flow checks for RCE and may do alignment iterations | 
|  | // so the following main loop 'knows' that it is striding down cache | 
|  | // lines. | 
|  |  | 
|  | // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or | 
|  | // Aligned, may be missing it's pre-loop. | 
|  | int is_normal_loop() const { return (_loop_flags&PreMainPostFlagsMask) == Normal; } | 
|  | int is_pre_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    } | 
|  | int is_main_loop  () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   } | 
|  | int is_post_loop  () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   } | 
|  | int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; } | 
|  | void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; } | 
|  |  | 
|  | int main_idx() const { return _main_idx; } | 
|  |  | 
|  |  | 
|  | void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; } | 
|  | void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         } | 
|  | void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; } | 
|  | void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; } | 
|  |  | 
|  | void set_trip_count(uint tc) { _trip_count = tc; } | 
|  | uint trip_count()            { return _trip_count; } | 
|  |  | 
|  | bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; } | 
|  | void set_exact_trip_count(uint tc) { | 
|  | _trip_count = tc; | 
|  | _loop_flags |= HasExactTripCount; | 
|  | } | 
|  | void set_nonexact_trip_count() { | 
|  | _loop_flags &= ~HasExactTripCount; | 
|  | } | 
|  |  | 
|  | void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; } | 
|  | float profile_trip_cnt()             { return _profile_trip_cnt; } | 
|  |  | 
|  | void double_unrolled_count() { _unrolled_count_log2++; } | 
|  | int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); } | 
|  |  | 
|  | void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; } | 
|  | int  node_count_before_unroll()           { return _node_count_before_unroll; } | 
|  |  | 
|  | #ifndef PRODUCT | 
|  | virtual void dump_spec(outputStream *st) const; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | //------------------------------CountedLoopEndNode----------------------------- | 
|  | // CountedLoopEndNodes end simple trip counted loops.  They act much like | 
|  | // IfNodes. | 
|  | class CountedLoopEndNode : public IfNode { | 
|  | public: | 
|  | enum { TestControl, TestValue }; | 
|  |  | 
|  | CountedLoopEndNode( Node *control, Node *test, float prob, float cnt ) | 
|  | : IfNode( control, test, prob, cnt) { | 
|  | init_class_id(Class_CountedLoopEnd); | 
|  | } | 
|  | virtual int Opcode() const; | 
|  |  | 
|  | Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; } | 
|  | Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; } | 
|  | Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; } | 
|  | Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; } | 
|  | Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; } | 
|  | Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; } | 
|  | int stride_con() const; | 
|  | bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); } | 
|  | BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; } | 
|  | CountedLoopNode *loopnode() const { | 
|  | // The CountedLoopNode that goes with this CountedLoopEndNode may | 
|  | // have been optimized out by the IGVN so be cautious with the | 
|  | // pattern matching on the graph | 
|  | if (phi() == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | Node *ln = phi()->in(0); | 
|  | if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) { | 
|  | return (CountedLoopNode*)ln; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifndef PRODUCT | 
|  | virtual void dump_spec(outputStream *st) const; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  |  | 
|  | inline CountedLoopEndNode *CountedLoopNode::loopexit() const { | 
|  | Node *bc = back_control(); | 
|  | if( bc == NULL ) return NULL; | 
|  | Node *le = bc->in(0); | 
|  | if( le->Opcode() != Op_CountedLoopEnd ) | 
|  | return NULL; | 
|  | return (CountedLoopEndNode*)le; | 
|  | } | 
|  | inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; } | 
|  | inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; } | 
|  | inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; } | 
|  | inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); } | 
|  | inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; } | 
|  | inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; } | 
|  | inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; } | 
|  |  | 
|  | //------------------------------LoopLimitNode----------------------------- | 
|  | // Counted Loop limit node which represents exact final iterator value: | 
|  | // trip_count = (limit - init_trip + stride - 1)/stride | 
|  | // final_value= trip_count * stride + init_trip. | 
|  | // Use HW instructions to calculate it when it can overflow in integer. | 
|  | // Note, final_value should fit into integer since counted loop has | 
|  | // limit check: limit <= max_int-stride. | 
|  | class LoopLimitNode : public Node { | 
|  | enum { Init=1, Limit=2, Stride=3 }; | 
|  | public: | 
|  | LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) { | 
|  | // Put it on the Macro nodes list to optimize during macro nodes expansion. | 
|  | init_flags(Flag_is_macro); | 
|  | C->add_macro_node(this); | 
|  | } | 
|  | virtual int Opcode() const; | 
|  | virtual const Type *bottom_type() const { return TypeInt::INT; } | 
|  | virtual uint ideal_reg() const { return Op_RegI; } | 
|  | virtual const Type *Value( PhaseTransform *phase ) const; | 
|  | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); | 
|  | virtual Node *Identity( PhaseTransform *phase ); | 
|  | }; | 
|  |  | 
|  | // -----------------------------IdealLoopTree---------------------------------- | 
|  | class IdealLoopTree : public ResourceObj { | 
|  | public: | 
|  | IdealLoopTree *_parent;       // Parent in loop tree | 
|  | IdealLoopTree *_next;         // Next sibling in loop tree | 
|  | IdealLoopTree *_child;        // First child in loop tree | 
|  |  | 
|  | // The head-tail backedge defines the loop. | 
|  | // If tail is NULL then this loop has multiple backedges as part of the | 
|  | // same loop.  During cleanup I'll peel off the multiple backedges; merge | 
|  | // them at the loop bottom and flow 1 real backedge into the loop. | 
|  | Node *_head;                  // Head of loop | 
|  | Node *_tail;                  // Tail of loop | 
|  | inline Node *tail();          // Handle lazy update of _tail field | 
|  | PhaseIdealLoop* _phase; | 
|  |  | 
|  | Node_List _body;              // Loop body for inner loops | 
|  |  | 
|  | uint8 _nest;                  // Nesting depth | 
|  | uint8 _irreducible:1,         // True if irreducible | 
|  | _has_call:1,            // True if has call safepoint | 
|  | _has_sfpt:1,            // True if has non-call safepoint | 
|  | _rce_candidate:1;       // True if candidate for range check elimination | 
|  |  | 
|  | Node_List* _safepts;          // List of safepoints in this loop | 
|  | Node_List* _required_safept;  // A inner loop cannot delete these safepts; | 
|  | bool  _allow_optimizations;   // Allow loop optimizations | 
|  |  | 
|  | IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail ) | 
|  | : _parent(0), _next(0), _child(0), | 
|  | _head(head), _tail(tail), | 
|  | _phase(phase), | 
|  | _safepts(NULL), | 
|  | _required_safept(NULL), | 
|  | _allow_optimizations(true), | 
|  | _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0) | 
|  | { } | 
|  |  | 
|  | // Is 'l' a member of 'this'? | 
|  | int is_member( const IdealLoopTree *l ) const; // Test for nested membership | 
|  |  | 
|  | // Set loop nesting depth.  Accumulate has_call bits. | 
|  | int set_nest( uint depth ); | 
|  |  | 
|  | // Split out multiple fall-in edges from the loop header.  Move them to a | 
|  | // private RegionNode before the loop.  This becomes the loop landing pad. | 
|  | void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ); | 
|  |  | 
|  | // Split out the outermost loop from this shared header. | 
|  | void split_outer_loop( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Merge all the backedges from the shared header into a private Region. | 
|  | // Feed that region as the one backedge to this loop. | 
|  | void merge_many_backedges( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Split shared headers and insert loop landing pads. | 
|  | // Insert a LoopNode to replace the RegionNode. | 
|  | // Returns TRUE if loop tree is structurally changed. | 
|  | bool beautify_loops( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Perform optimization to use the loop predicates for null checks and range checks. | 
|  | // Applies to any loop level (not just the innermost one) | 
|  | bool loop_predication( PhaseIdealLoop *phase); | 
|  |  | 
|  | // Perform iteration-splitting on inner loops.  Split iterations to | 
|  | // avoid range checks or one-shot null checks.  Returns false if the | 
|  | // current round of loop opts should stop. | 
|  | bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new ); | 
|  |  | 
|  | // Driver for various flavors of iteration splitting.  Returns false | 
|  | // if the current round of loop opts should stop. | 
|  | bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ); | 
|  |  | 
|  | // Given dominators, try to find loops with calls that must always be | 
|  | // executed (call dominates loop tail).  These loops do not need non-call | 
|  | // safepoints (ncsfpt). | 
|  | void check_safepts(VectorSet &visited, Node_List &stack); | 
|  |  | 
|  | // Allpaths backwards scan from loop tail, terminating each path at first safepoint | 
|  | // encountered. | 
|  | void allpaths_check_safepts(VectorSet &visited, Node_List &stack); | 
|  |  | 
|  | // Remove safepoints from loop. Optionally keeping one. | 
|  | void remove_safepoints(PhaseIdealLoop* phase, bool keep_one); | 
|  |  | 
|  | // Convert to counted loops where possible | 
|  | void counted_loop( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Check for Node being a loop-breaking test | 
|  | Node *is_loop_exit(Node *iff) const; | 
|  |  | 
|  | // Returns true if ctrl is executed on every complete iteration | 
|  | bool dominates_backedge(Node* ctrl); | 
|  |  | 
|  | // Remove simplistic dead code from loop body | 
|  | void DCE_loop_body(); | 
|  |  | 
|  | // Look for loop-exit tests with my 50/50 guesses from the Parsing stage. | 
|  | // Replace with a 1-in-10 exit guess. | 
|  | void adjust_loop_exit_prob( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Return TRUE or FALSE if the loop should never be RCE'd or aligned. | 
|  | // Useful for unrolling loops with NO array accesses. | 
|  | bool policy_peel_only( PhaseIdealLoop *phase ) const; | 
|  |  | 
|  | // Return TRUE or FALSE if the loop should be unswitched -- clone | 
|  | // loop with an invariant test | 
|  | bool policy_unswitching( PhaseIdealLoop *phase ) const; | 
|  |  | 
|  | // Micro-benchmark spamming.  Remove empty loops. | 
|  | bool policy_do_remove_empty_loop( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Convert one iteration loop into normal code. | 
|  | bool policy_do_one_iteration_loop( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can | 
|  | // make some loop-invariant test (usually a null-check) happen before the | 
|  | // loop. | 
|  | bool policy_peeling( PhaseIdealLoop *phase ) const; | 
|  |  | 
|  | // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any | 
|  | // known trip count in the counted loop node. | 
|  | bool policy_maximally_unroll( PhaseIdealLoop *phase ) const; | 
|  |  | 
|  | // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if | 
|  | // the loop is a CountedLoop and the body is small enough. | 
|  | bool policy_unroll( PhaseIdealLoop *phase ) const; | 
|  |  | 
|  | // Return TRUE or FALSE if the loop should be range-check-eliminated. | 
|  | // Gather a list of IF tests that are dominated by iteration splitting; | 
|  | // also gather the end of the first split and the start of the 2nd split. | 
|  | bool policy_range_check( PhaseIdealLoop *phase ) const; | 
|  |  | 
|  | // Return TRUE or FALSE if the loop should be cache-line aligned. | 
|  | // Gather the expression that does the alignment.  Note that only | 
|  | // one array base can be aligned in a loop (unless the VM guarantees | 
|  | // mutual alignment).  Note that if we vectorize short memory ops | 
|  | // into longer memory ops, we may want to increase alignment. | 
|  | bool policy_align( PhaseIdealLoop *phase ) const; | 
|  |  | 
|  | // Return TRUE if "iff" is a range check. | 
|  | bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const; | 
|  |  | 
|  | // Compute loop exact trip count if possible | 
|  | void compute_exact_trip_count( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Compute loop trip count from profile data | 
|  | void compute_profile_trip_cnt( PhaseIdealLoop *phase ); | 
|  |  | 
|  | // Reassociate invariant expressions. | 
|  | void reassociate_invariants(PhaseIdealLoop *phase); | 
|  | // Reassociate invariant add and subtract expressions. | 
|  | Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase); | 
|  | // Return nonzero index of invariant operand if invariant and variant | 
|  | // are combined with an Add or Sub. Helper for reassociate_invariants. | 
|  | int is_invariant_addition(Node* n, PhaseIdealLoop *phase); | 
|  |  | 
|  | // Return true if n is invariant | 
|  | bool is_invariant(Node* n) const; | 
|  |  | 
|  | // Put loop body on igvn work list | 
|  | void record_for_igvn(); | 
|  |  | 
|  | bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); } | 
|  | bool is_inner()   { return is_loop() && _child == NULL; } | 
|  | bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); } | 
|  |  | 
|  | #ifndef PRODUCT | 
|  | void dump_head( ) const;      // Dump loop head only | 
|  | void dump() const;            // Dump this loop recursively | 
|  | void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const; | 
|  | #endif | 
|  |  | 
|  | }; | 
|  |  | 
|  | // -----------------------------PhaseIdealLoop--------------------------------- | 
|  | // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a | 
|  | // loop tree.  Drives the loop-based transformations on the ideal graph. | 
|  | class PhaseIdealLoop : public PhaseTransform { | 
|  | friend class IdealLoopTree; | 
|  | friend class SuperWord; | 
|  | // Pre-computed def-use info | 
|  | PhaseIterGVN &_igvn; | 
|  |  | 
|  | // Head of loop tree | 
|  | IdealLoopTree *_ltree_root; | 
|  |  | 
|  | // Array of pre-order numbers, plus post-visited bit. | 
|  | // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited. | 
|  | // ODD for post-visited.  Other bits are the pre-order number. | 
|  | uint *_preorders; | 
|  | uint _max_preorder; | 
|  |  | 
|  | const PhaseIdealLoop* _verify_me; | 
|  | bool _verify_only; | 
|  |  | 
|  | // Allocate _preorders[] array | 
|  | void allocate_preorders() { | 
|  | _max_preorder = C->unique()+8; | 
|  | _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder); | 
|  | memset(_preorders, 0, sizeof(uint) * _max_preorder); | 
|  | } | 
|  |  | 
|  | // Allocate _preorders[] array | 
|  | void reallocate_preorders() { | 
|  | if ( _max_preorder < C->unique() ) { | 
|  | _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique()); | 
|  | _max_preorder = C->unique(); | 
|  | } | 
|  | memset(_preorders, 0, sizeof(uint) * _max_preorder); | 
|  | } | 
|  |  | 
|  | // Check to grow _preorders[] array for the case when build_loop_tree_impl() | 
|  | // adds new nodes. | 
|  | void check_grow_preorders( ) { | 
|  | if ( _max_preorder < C->unique() ) { | 
|  | uint newsize = _max_preorder<<1;  // double size of array | 
|  | _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize); | 
|  | memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder)); | 
|  | _max_preorder = newsize; | 
|  | } | 
|  | } | 
|  | // Check for pre-visited.  Zero for NOT visited; non-zero for visited. | 
|  | int is_visited( Node *n ) const { return _preorders[n->_idx]; } | 
|  | // Pre-order numbers are written to the Nodes array as low-bit-set values. | 
|  | void set_preorder_visited( Node *n, int pre_order ) { | 
|  | assert( !is_visited( n ), "already set" ); | 
|  | _preorders[n->_idx] = (pre_order<<1); | 
|  | }; | 
|  | // Return pre-order number. | 
|  | int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; } | 
|  |  | 
|  | // Check for being post-visited. | 
|  | // Should be previsited already (checked with assert(is_visited(n))). | 
|  | int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; } | 
|  |  | 
|  | // Mark as post visited | 
|  | void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; } | 
|  |  | 
|  | // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree | 
|  | // Returns true if "n" is a data node, false if it's a control node. | 
|  | bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; } | 
|  |  | 
|  | // clear out dead code after build_loop_late | 
|  | Node_List _deadlist; | 
|  |  | 
|  | // Support for faster execution of get_late_ctrl()/dom_lca() | 
|  | // when a node has many uses and dominator depth is deep. | 
|  | Node_Array _dom_lca_tags; | 
|  | void   init_dom_lca_tags(); | 
|  | void   clear_dom_lca_tags(); | 
|  |  | 
|  | // Helper for debugging bad dominance relationships | 
|  | bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early); | 
|  |  | 
|  | Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false); | 
|  |  | 
|  | // Inline wrapper for frequent cases: | 
|  | // 1) only one use | 
|  | // 2) a use is the same as the current LCA passed as 'n1' | 
|  | Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) { | 
|  | assert( n->is_CFG(), "" ); | 
|  | // Fast-path NULL lca | 
|  | if( lca != NULL && lca != n ) { | 
|  | assert( lca->is_CFG(), "" ); | 
|  | // find LCA of all uses | 
|  | n = dom_lca_for_get_late_ctrl_internal( lca, n, tag ); | 
|  | } | 
|  | return find_non_split_ctrl(n); | 
|  | } | 
|  | Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag ); | 
|  |  | 
|  | // Helper function for directing control inputs away from CFG split | 
|  | // points. | 
|  | Node *find_non_split_ctrl( Node *ctrl ) const { | 
|  | if (ctrl != NULL) { | 
|  | if (ctrl->is_MultiBranch()) { | 
|  | ctrl = ctrl->in(0); | 
|  | } | 
|  | assert(ctrl->is_CFG(), "CFG"); | 
|  | } | 
|  | return ctrl; | 
|  | } | 
|  |  | 
|  | bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop); | 
|  |  | 
|  | public: | 
|  | bool has_node( Node* n ) const { | 
|  | guarantee(n != NULL, "No Node."); | 
|  | return _nodes[n->_idx] != NULL; | 
|  | } | 
|  | // check if transform created new nodes that need _ctrl recorded | 
|  | Node *get_late_ctrl( Node *n, Node *early ); | 
|  | Node *get_early_ctrl( Node *n ); | 
|  | Node *get_early_ctrl_for_expensive(Node *n, Node* earliest); | 
|  | void set_early_ctrl( Node *n ); | 
|  | void set_subtree_ctrl( Node *root ); | 
|  | void set_ctrl( Node *n, Node *ctrl ) { | 
|  | assert( !has_node(n) || has_ctrl(n), "" ); | 
|  | assert( ctrl->in(0), "cannot set dead control node" ); | 
|  | assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" ); | 
|  | _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) ); | 
|  | } | 
|  | // Set control and update loop membership | 
|  | void set_ctrl_and_loop(Node* n, Node* ctrl) { | 
|  | IdealLoopTree* old_loop = get_loop(get_ctrl(n)); | 
|  | IdealLoopTree* new_loop = get_loop(ctrl); | 
|  | if (old_loop != new_loop) { | 
|  | if (old_loop->_child == NULL) old_loop->_body.yank(n); | 
|  | if (new_loop->_child == NULL) new_loop->_body.push(n); | 
|  | } | 
|  | set_ctrl(n, ctrl); | 
|  | } | 
|  | // Control nodes can be replaced or subsumed.  During this pass they | 
|  | // get their replacement Node in slot 1.  Instead of updating the block | 
|  | // location of all Nodes in the subsumed block, we lazily do it.  As we | 
|  | // pull such a subsumed block out of the array, we write back the final | 
|  | // correct block. | 
|  | Node *get_ctrl( Node *i ) { | 
|  | assert(has_node(i), ""); | 
|  | Node *n = get_ctrl_no_update(i); | 
|  | _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) ); | 
|  | assert(has_node(i) && has_ctrl(i), ""); | 
|  | assert(n == find_non_split_ctrl(n), "must return legal ctrl" ); | 
|  | return n; | 
|  | } | 
|  | // true if CFG node d dominates CFG node n | 
|  | bool is_dominator(Node *d, Node *n); | 
|  | // return get_ctrl for a data node and self(n) for a CFG node | 
|  | Node* ctrl_or_self(Node* n) { | 
|  | if (has_ctrl(n)) | 
|  | return get_ctrl(n); | 
|  | else { | 
|  | assert (n->is_CFG(), "must be a CFG node"); | 
|  | return n; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | Node *get_ctrl_no_update_helper(Node *i) const { | 
|  | assert(has_ctrl(i), "should be control, not loop"); | 
|  | return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1); | 
|  | } | 
|  |  | 
|  | Node *get_ctrl_no_update(Node *i) const { | 
|  | assert( has_ctrl(i), "" ); | 
|  | Node *n = get_ctrl_no_update_helper(i); | 
|  | if (!n->in(0)) { | 
|  | // Skip dead CFG nodes | 
|  | do { | 
|  | n = get_ctrl_no_update_helper(n); | 
|  | } while (!n->in(0)); | 
|  | n = find_non_split_ctrl(n); | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | // Check for loop being set | 
|  | // "n" must be a control node. Returns true if "n" is known to be in a loop. | 
|  | bool has_loop( Node *n ) const { | 
|  | assert(!has_node(n) || !has_ctrl(n), ""); | 
|  | return has_node(n); | 
|  | } | 
|  | // Set loop | 
|  | void set_loop( Node *n, IdealLoopTree *loop ) { | 
|  | _nodes.map(n->_idx, (Node*)loop); | 
|  | } | 
|  | // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace | 
|  | // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference | 
|  | // from old_node to new_node to support the lazy update.  Reference | 
|  | // replaces loop reference, since that is not needed for dead node. | 
|  | public: | 
|  | void lazy_update(Node *old_node, Node *new_node) { | 
|  | assert(old_node != new_node, "no cycles please"); | 
|  | // Re-use the side array slot for this node to provide the | 
|  | // forwarding pointer. | 
|  | _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1)); | 
|  | } | 
|  | void lazy_replace(Node *old_node, Node *new_node) { | 
|  | _igvn.replace_node(old_node, new_node); | 
|  | lazy_update(old_node, new_node); | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | // Place 'n' in some loop nest, where 'n' is a CFG node | 
|  | void build_loop_tree(); | 
|  | int build_loop_tree_impl( Node *n, int pre_order ); | 
|  | // Insert loop into the existing loop tree.  'innermost' is a leaf of the | 
|  | // loop tree, not the root. | 
|  | IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost ); | 
|  |  | 
|  | // Place Data nodes in some loop nest | 
|  | void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); | 
|  | void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); | 
|  | void build_loop_late_post ( Node* n ); | 
|  |  | 
|  | // Array of immediate dominance info for each CFG node indexed by node idx | 
|  | private: | 
|  | uint _idom_size; | 
|  | Node **_idom;                 // Array of immediate dominators | 
|  | uint *_dom_depth;           // Used for fast LCA test | 
|  | GrowableArray<uint>* _dom_stk; // For recomputation of dom depth | 
|  |  | 
|  | Node* idom_no_update(Node* d) const { | 
|  | assert(d->_idx < _idom_size, "oob"); | 
|  | Node* n = _idom[d->_idx]; | 
|  | assert(n != NULL,"Bad immediate dominator info."); | 
|  | while (n->in(0) == NULL) {  // Skip dead CFG nodes | 
|  | //n = n->in(1); | 
|  | n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1); | 
|  | assert(n != NULL,"Bad immediate dominator info."); | 
|  | } | 
|  | return n; | 
|  | } | 
|  | Node *idom(Node* d) const { | 
|  | uint didx = d->_idx; | 
|  | Node *n = idom_no_update(d); | 
|  | _idom[didx] = n;            // Lazily remove dead CFG nodes from table. | 
|  | return n; | 
|  | } | 
|  | uint dom_depth(Node* d) const { | 
|  | guarantee(d != NULL, "Null dominator info."); | 
|  | guarantee(d->_idx < _idom_size, ""); | 
|  | return _dom_depth[d->_idx]; | 
|  | } | 
|  | void set_idom(Node* d, Node* n, uint dom_depth); | 
|  | // Locally compute IDOM using dom_lca call | 
|  | Node *compute_idom( Node *region ) const; | 
|  | // Recompute dom_depth | 
|  | void recompute_dom_depth(); | 
|  |  | 
|  | // Is safept not required by an outer loop? | 
|  | bool is_deleteable_safept(Node* sfpt); | 
|  |  | 
|  | // Replace parallel induction variable (parallel to trip counter) | 
|  | void replace_parallel_iv(IdealLoopTree *loop); | 
|  |  | 
|  | // Perform verification that the graph is valid. | 
|  | PhaseIdealLoop( PhaseIterGVN &igvn) : | 
|  | PhaseTransform(Ideal_Loop), | 
|  | _igvn(igvn), | 
|  | _dom_lca_tags(arena()), // Thread::resource_area | 
|  | _verify_me(NULL), | 
|  | _verify_only(true) { | 
|  | build_and_optimize(false, false); | 
|  | } | 
|  |  | 
|  | // build the loop tree and perform any requested optimizations | 
|  | void build_and_optimize(bool do_split_if, bool skip_loop_opts); | 
|  |  | 
|  | public: | 
|  | // Dominators for the sea of nodes | 
|  | void Dominators(); | 
|  | Node *dom_lca( Node *n1, Node *n2 ) const { | 
|  | return find_non_split_ctrl(dom_lca_internal(n1, n2)); | 
|  | } | 
|  | Node *dom_lca_internal( Node *n1, Node *n2 ) const; | 
|  |  | 
|  | // Compute the Ideal Node to Loop mapping | 
|  | PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) : | 
|  | PhaseTransform(Ideal_Loop), | 
|  | _igvn(igvn), | 
|  | _dom_lca_tags(arena()), // Thread::resource_area | 
|  | _verify_me(NULL), | 
|  | _verify_only(false) { | 
|  | build_and_optimize(do_split_ifs, skip_loop_opts); | 
|  | } | 
|  |  | 
|  | // Verify that verify_me made the same decisions as a fresh run. | 
|  | PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) : | 
|  | PhaseTransform(Ideal_Loop), | 
|  | _igvn(igvn), | 
|  | _dom_lca_tags(arena()), // Thread::resource_area | 
|  | _verify_me(verify_me), | 
|  | _verify_only(false) { | 
|  | build_and_optimize(false, false); | 
|  | } | 
|  |  | 
|  | // Build and verify the loop tree without modifying the graph.  This | 
|  | // is useful to verify that all inputs properly dominate their uses. | 
|  | static void verify(PhaseIterGVN& igvn) { | 
|  | #ifdef ASSERT | 
|  | PhaseIdealLoop v(igvn); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // True if the method has at least 1 irreducible loop | 
|  | bool _has_irreducible_loops; | 
|  |  | 
|  | // Per-Node transform | 
|  | virtual Node *transform( Node *a_node ) { return 0; } | 
|  |  | 
|  | bool is_counted_loop( Node *x, IdealLoopTree *loop ); | 
|  |  | 
|  | Node* exact_limit( IdealLoopTree *loop ); | 
|  |  | 
|  | // Return a post-walked LoopNode | 
|  | IdealLoopTree *get_loop( Node *n ) const { | 
|  | // Dead nodes have no loop, so return the top level loop instead | 
|  | if (!has_node(n))  return _ltree_root; | 
|  | assert(!has_ctrl(n), ""); | 
|  | return (IdealLoopTree*)_nodes[n->_idx]; | 
|  | } | 
|  |  | 
|  | // Is 'n' a (nested) member of 'loop'? | 
|  | int is_member( const IdealLoopTree *loop, Node *n ) const { | 
|  | return loop->is_member(get_loop(n)); } | 
|  |  | 
|  | // This is the basic building block of the loop optimizations.  It clones an | 
|  | // entire loop body.  It makes an old_new loop body mapping; with this | 
|  | // mapping you can find the new-loop equivalent to an old-loop node.  All | 
|  | // new-loop nodes are exactly equal to their old-loop counterparts, all | 
|  | // edges are the same.  All exits from the old-loop now have a RegionNode | 
|  | // that merges the equivalent new-loop path.  This is true even for the | 
|  | // normal "loop-exit" condition.  All uses of loop-invariant old-loop values | 
|  | // now come from (one or more) Phis that merge their new-loop equivalents. | 
|  | // Parameter side_by_side_idom: | 
|  | //   When side_by_size_idom is NULL, the dominator tree is constructed for | 
|  | //      the clone loop to dominate the original.  Used in construction of | 
|  | //      pre-main-post loop sequence. | 
|  | //   When nonnull, the clone and original are side-by-side, both are | 
|  | //      dominated by the passed in side_by_side_idom node.  Used in | 
|  | //      construction of unswitched loops. | 
|  | void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth, | 
|  | Node* side_by_side_idom = NULL); | 
|  |  | 
|  | // If we got the effect of peeling, either by actually peeling or by | 
|  | // making a pre-loop which must execute at least once, we can remove | 
|  | // all loop-invariant dominated tests in the main body. | 
|  | void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ); | 
|  |  | 
|  | // Generate code to do a loop peel for the given loop (and body). | 
|  | // old_new is a temp array. | 
|  | void do_peeling( IdealLoopTree *loop, Node_List &old_new ); | 
|  |  | 
|  | // Add pre and post loops around the given loop.  These loops are used | 
|  | // during RCE, unrolling and aligning loops. | 
|  | void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ); | 
|  | // If Node n lives in the back_ctrl block, we clone a private version of n | 
|  | // in preheader_ctrl block and return that, otherwise return n. | 
|  | Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ); | 
|  |  | 
|  | // Take steps to maximally unroll the loop.  Peel any odd iterations, then | 
|  | // unroll to do double iterations.  The next round of major loop transforms | 
|  | // will repeat till the doubled loop body does all remaining iterations in 1 | 
|  | // pass. | 
|  | void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ); | 
|  |  | 
|  | // Unroll the loop body one step - make each trip do 2 iterations. | 
|  | void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ); | 
|  |  | 
|  | // Return true if exp is a constant times an induction var | 
|  | bool is_scaled_iv(Node* exp, Node* iv, int* p_scale); | 
|  |  | 
|  | // Return true if exp is a scaled induction var plus (or minus) constant | 
|  | bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0); | 
|  |  | 
|  | // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted | 
|  | ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry, | 
|  | Deoptimization::DeoptReason reason); | 
|  | void register_control(Node* n, IdealLoopTree *loop, Node* pred); | 
|  |  | 
|  | // Clone loop predicates to cloned loops (peeled, unswitched) | 
|  | static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry, | 
|  | Deoptimization::DeoptReason reason, | 
|  | PhaseIdealLoop* loop_phase, | 
|  | PhaseIterGVN* igvn); | 
|  |  | 
|  | static Node* clone_loop_predicates(Node* old_entry, Node* new_entry, | 
|  | bool clone_limit_check, | 
|  | PhaseIdealLoop* loop_phase, | 
|  | PhaseIterGVN* igvn); | 
|  | Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check); | 
|  |  | 
|  | static Node* skip_loop_predicates(Node* entry); | 
|  |  | 
|  | // Find a good location to insert a predicate | 
|  | static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason); | 
|  | // Find a predicate | 
|  | static Node* find_predicate(Node* entry); | 
|  | // Construct a range check for a predicate if | 
|  | BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl, | 
|  | int scale, Node* offset, | 
|  | Node* init, Node* limit, Node* stride, | 
|  | Node* range, bool upper); | 
|  |  | 
|  | // Implementation of the loop predication to promote checks outside the loop | 
|  | bool loop_predication_impl(IdealLoopTree *loop); | 
|  |  | 
|  | // Helper function to collect predicate for eliminating the useless ones | 
|  | void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1); | 
|  | void eliminate_useless_predicates(); | 
|  |  | 
|  | // Change the control input of expensive nodes to allow commoning by | 
|  | // IGVN when it is guaranteed to not result in a more frequent | 
|  | // execution of the expensive node. Return true if progress. | 
|  | bool process_expensive_nodes(); | 
|  |  | 
|  | // Check whether node has become unreachable | 
|  | bool is_node_unreachable(Node *n) const { | 
|  | return !has_node(n) || n->is_unreachable(_igvn); | 
|  | } | 
|  |  | 
|  | // Eliminate range-checks and other trip-counter vs loop-invariant tests. | 
|  | void do_range_check( IdealLoopTree *loop, Node_List &old_new ); | 
|  |  | 
|  | // Create a slow version of the loop by cloning the loop | 
|  | // and inserting an if to select fast-slow versions. | 
|  | ProjNode* create_slow_version_of_loop(IdealLoopTree *loop, | 
|  | Node_List &old_new); | 
|  |  | 
|  | // Clone loop with an invariant test (that does not exit) and | 
|  | // insert a clone of the test that selects which version to | 
|  | // execute. | 
|  | void do_unswitching (IdealLoopTree *loop, Node_List &old_new); | 
|  |  | 
|  | // Find candidate "if" for unswitching | 
|  | IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const; | 
|  |  | 
|  | // Range Check Elimination uses this function! | 
|  | // Constrain the main loop iterations so the affine function: | 
|  | //    low_limit <= scale_con * I + offset  <  upper_limit | 
|  | // always holds true.  That is, either increase the number of iterations in | 
|  | // the pre-loop or the post-loop until the condition holds true in the main | 
|  | // loop.  Scale_con, offset and limit are all loop invariant. | 
|  | void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ); | 
|  | // Helper function for add_constraint(). | 
|  | Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl ); | 
|  |  | 
|  | // Partially peel loop up through last_peel node. | 
|  | bool partial_peel( IdealLoopTree *loop, Node_List &old_new ); | 
|  |  | 
|  | // Create a scheduled list of nodes control dependent on ctrl set. | 
|  | void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched ); | 
|  | // Has a use in the vector set | 
|  | bool has_use_in_set( Node* n, VectorSet& vset ); | 
|  | // Has use internal to the vector set (ie. not in a phi at the loop head) | 
|  | bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ); | 
|  | // clone "n" for uses that are outside of loop | 
|  | int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ); | 
|  | // clone "n" for special uses that are in the not_peeled region | 
|  | void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n, | 
|  | VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ); | 
|  | // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist | 
|  | void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ); | 
|  | #ifdef ASSERT | 
|  | // Validate the loop partition sets: peel and not_peel | 
|  | bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel ); | 
|  | // Ensure that uses outside of loop are of the right form | 
|  | bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list, | 
|  | uint orig_exit_idx, uint clone_exit_idx); | 
|  | bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx); | 
|  | #endif | 
|  |  | 
|  | // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.) | 
|  | int stride_of_possible_iv( Node* iff ); | 
|  | bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; } | 
|  | // Return the (unique) control output node that's in the loop (if it exists.) | 
|  | Node* stay_in_loop( Node* n, IdealLoopTree *loop); | 
|  | // Insert a signed compare loop exit cloned from an unsigned compare. | 
|  | IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop); | 
|  | void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop); | 
|  | // Utility to register node "n" with PhaseIdealLoop | 
|  | void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth); | 
|  | // Utility to create an if-projection | 
|  | ProjNode* proj_clone(ProjNode* p, IfNode* iff); | 
|  | // Force the iff control output to be the live_proj | 
|  | Node* short_circuit_if(IfNode* iff, ProjNode* live_proj); | 
|  | // Insert a region before an if projection | 
|  | RegionNode* insert_region_before_proj(ProjNode* proj); | 
|  | // Insert a new if before an if projection | 
|  | ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj); | 
|  |  | 
|  | // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. | 
|  | // "Nearly" because all Nodes have been cloned from the original in the loop, | 
|  | // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs | 
|  | // through the Phi recursively, and return a Bool. | 
|  | BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop ); | 
|  | CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop ); | 
|  |  | 
|  |  | 
|  | // Rework addressing expressions to get the most loop-invariant stuff | 
|  | // moved out.  We'd like to do all associative operators, but it's especially | 
|  | // important (common) to do address expressions. | 
|  | Node *remix_address_expressions( Node *n ); | 
|  |  | 
|  | // Attempt to use a conditional move instead of a phi/branch | 
|  | Node *conditional_move( Node *n ); | 
|  |  | 
|  | // Reorganize offset computations to lower register pressure. | 
|  | // Mostly prevent loop-fallout uses of the pre-incremented trip counter | 
|  | // (which are then alive with the post-incremented trip counter | 
|  | // forcing an extra register move) | 
|  | void reorg_offsets( IdealLoopTree *loop ); | 
|  |  | 
|  | // Check for aggressive application of 'split-if' optimization, | 
|  | // using basic block level info. | 
|  | void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack ); | 
|  | Node *split_if_with_blocks_pre ( Node *n ); | 
|  | void  split_if_with_blocks_post( Node *n ); | 
|  | Node *has_local_phi_input( Node *n ); | 
|  | // Mark an IfNode as being dominated by a prior test, | 
|  | // without actually altering the CFG (and hence IDOM info). | 
|  | void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false ); | 
|  |  | 
|  | // Split Node 'n' through merge point | 
|  | Node *split_thru_region( Node *n, Node *region ); | 
|  | // Split Node 'n' through merge point if there is enough win. | 
|  | Node *split_thru_phi( Node *n, Node *region, int policy ); | 
|  | // Found an If getting its condition-code input from a Phi in the | 
|  | // same block.  Split thru the Region. | 
|  | void do_split_if( Node *iff ); | 
|  |  | 
|  | // Conversion of fill/copy patterns into intrisic versions | 
|  | bool do_intrinsify_fill(); | 
|  | bool intrinsify_fill(IdealLoopTree* lpt); | 
|  | bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value, | 
|  | Node*& shift, Node*& offset); | 
|  |  | 
|  | private: | 
|  | // Return a type based on condition control flow | 
|  | const TypeInt* filtered_type( Node *n, Node* n_ctrl); | 
|  | const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); } | 
|  | // Helpers for filtered type | 
|  | const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl); | 
|  |  | 
|  | // Helper functions | 
|  | Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache ); | 
|  | Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true ); | 
|  | void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true ); | 
|  | bool split_up( Node *n, Node *blk1, Node *blk2 ); | 
|  | void sink_use( Node *use, Node *post_loop ); | 
|  | Node *place_near_use( Node *useblock ) const; | 
|  |  | 
|  | bool _created_loop_node; | 
|  | public: | 
|  | void set_created_loop_node() { _created_loop_node = true; } | 
|  | bool created_loop_node()     { return _created_loop_node; } | 
|  | void register_new_node( Node *n, Node *blk ); | 
|  |  | 
|  | #ifdef ASSERT | 
|  | void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA); | 
|  | #endif | 
|  |  | 
|  | #ifndef PRODUCT | 
|  | void dump( ) const; | 
|  | void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const; | 
|  | void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const; | 
|  | void verify() const;          // Major slow  :-) | 
|  | void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const; | 
|  | IdealLoopTree *get_loop_idx(Node* n) const { | 
|  | // Dead nodes have no loop, so return the top level loop instead | 
|  | return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root; | 
|  | } | 
|  | // Print some stats | 
|  | static void print_statistics(); | 
|  | static int _loop_invokes;     // Count of PhaseIdealLoop invokes | 
|  | static int _loop_work;        // Sum of PhaseIdealLoop x _unique | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | inline Node* IdealLoopTree::tail() { | 
|  | // Handle lazy update of _tail field | 
|  | Node *n = _tail; | 
|  | //while( !n->in(0) )  // Skip dead CFG nodes | 
|  | //n = n->in(1); | 
|  | if (n->in(0) == NULL) | 
|  | n = _phase->get_ctrl(n); | 
|  | _tail = n; | 
|  | return n; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Iterate over the loop tree using a preorder, left-to-right traversal. | 
|  | // | 
|  | // Example that visits all counted loops from within PhaseIdealLoop | 
|  | // | 
|  | //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { | 
|  | //   IdealLoopTree* lpt = iter.current(); | 
|  | //   if (!lpt->is_counted()) continue; | 
|  | //   ... | 
|  | class LoopTreeIterator : public StackObj { | 
|  | private: | 
|  | IdealLoopTree* _root; | 
|  | IdealLoopTree* _curnt; | 
|  |  | 
|  | public: | 
|  | LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {} | 
|  |  | 
|  | bool done() { return _curnt == NULL; }       // Finished iterating? | 
|  |  | 
|  | void next();                                 // Advance to next loop tree | 
|  |  | 
|  | IdealLoopTree* current() { return _curnt; }  // Return current value of iterator. | 
|  | }; | 
|  |  | 
|  | #endif // SHARE_VM_OPTO_LOOPNODE_HPP |