blob: ae416c232d2abd5b8708e52145f9413fcb830223 [file] [log] [blame]
/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#ifndef HEADLESS
#include <jlong.h>
#include <string.h>
#include "sun_java2d_SunGraphics2D.h"
#include "sun_java2d_pipe_BufferedPaints.h"
#include "OGLPaints.h"
#include "OGLContext.h"
#include "OGLRenderQueue.h"
#include "OGLSurfaceData.h"
void
OGLPaints_ResetPaint(OGLContext *oglc)
{
jubyte ea;
J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_ResetPaint");
RETURN_IF_NULL(oglc);
J2dTraceLn1(J2D_TRACE_VERBOSE, " state=%d", oglc->paintState);
RESET_PREVIOUS_OP();
if (oglc->useMask) {
// switch to texture unit 1, where paint state is currently enabled
j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
}
switch (oglc->paintState) {
case sun_java2d_SunGraphics2D_PAINT_GRADIENT:
j2d_glDisable(GL_TEXTURE_1D);
j2d_glDisable(GL_TEXTURE_GEN_S);
break;
case sun_java2d_SunGraphics2D_PAINT_TEXTURE:
// Note: The texture object used in SetTexturePaint() will
// still be bound at this point, so it is safe to call the following.
OGLSD_RESET_TEXTURE_WRAP(GL_TEXTURE_2D);
j2d_glDisable(GL_TEXTURE_2D);
j2d_glDisable(GL_TEXTURE_GEN_S);
j2d_glDisable(GL_TEXTURE_GEN_T);
break;
case sun_java2d_SunGraphics2D_PAINT_LIN_GRADIENT:
case sun_java2d_SunGraphics2D_PAINT_RAD_GRADIENT:
j2d_glUseProgramObjectARB(0);
j2d_glDisable(GL_TEXTURE_1D);
break;
case sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR:
default:
break;
}
if (oglc->useMask) {
// restore control to texture unit 0
j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
}
// set each component of the current color state to the extra alpha
// value, which will effectively apply the extra alpha to each fragment
// in paint/texturing operations
ea = (jubyte)(oglc->extraAlpha * 0xff + 0.5f);
j2d_glColor4ub(ea, ea, ea, ea);
oglc->pixel = (ea << 24) | (ea << 16) | (ea << 8) | (ea << 0);
oglc->r = ea;
oglc->g = ea;
oglc->b = ea;
oglc->a = ea;
oglc->useMask = JNI_FALSE;
oglc->paintState = -1;
}
void
OGLPaints_SetColor(OGLContext *oglc, jint pixel)
{
jubyte r, g, b, a;
J2dTraceLn1(J2D_TRACE_INFO, "OGLPaints_SetColor: pixel=%08x", pixel);
RETURN_IF_NULL(oglc);
// glColor*() is allowed within glBegin()/glEnd() pairs, so
// no need to reset the current op state here unless the paint
// state really needs to be changed
if (oglc->paintState > sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR) {
OGLPaints_ResetPaint(oglc);
}
// store the raw (unmodified) pixel value, which may be used for
// special operations later
oglc->pixel = pixel;
if (oglc->compState != sun_java2d_SunGraphics2D_COMP_XOR) {
r = (jubyte)(pixel >> 16);
g = (jubyte)(pixel >> 8);
b = (jubyte)(pixel >> 0);
a = (jubyte)(pixel >> 24);
J2dTraceLn4(J2D_TRACE_VERBOSE,
" updating color: r=%02x g=%02x b=%02x a=%02x",
r, g, b, a);
} else {
pixel ^= oglc->xorPixel;
r = (jubyte)(pixel >> 16);
g = (jubyte)(pixel >> 8);
b = (jubyte)(pixel >> 0);
a = 0xff;
J2dTraceLn4(J2D_TRACE_VERBOSE,
" updating xor color: r=%02x g=%02x b=%02x xorpixel=%08x",
r, g, b, oglc->xorPixel);
}
j2d_glColor4ub(r, g, b, a);
oglc->r = r;
oglc->g = g;
oglc->b = b;
oglc->a = a;
oglc->useMask = JNI_FALSE;
oglc->paintState = sun_java2d_SunGraphics2D_PAINT_ALPHACOLOR;
}
/************************* GradientPaint support ****************************/
static GLuint gradientTexID = 0;
static void
OGLPaints_InitGradientTexture()
{
GLclampf priority = 1.0f;
J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_InitGradientTexture");
j2d_glGenTextures(1, &gradientTexID);
j2d_glBindTexture(GL_TEXTURE_1D, gradientTexID);
j2d_glPrioritizeTextures(1, &gradientTexID, &priority);
j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
j2d_glTexImage1D(GL_TEXTURE_1D, 0,
GL_RGBA8, 2, 0,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, NULL);
}
void
OGLPaints_SetGradientPaint(OGLContext *oglc,
jboolean useMask, jboolean cyclic,
jdouble p0, jdouble p1, jdouble p3,
jint pixel1, jint pixel2)
{
GLdouble texParams[4];
GLuint pixels[2];
J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_SetGradientPaint");
RETURN_IF_NULL(oglc);
OGLPaints_ResetPaint(oglc);
texParams[0] = p0;
texParams[1] = p1;
texParams[2] = 0.0;
texParams[3] = p3;
pixels[0] = pixel1;
pixels[1] = pixel2;
if (useMask) {
// set up the paint on texture unit 1 (instead of the usual unit 0)
j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
j2d_glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
} else {
// texture unit 0 is already active; we can use the helper macro here
OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE);
}
if (gradientTexID == 0) {
OGLPaints_InitGradientTexture();
}
j2d_glEnable(GL_TEXTURE_1D);
j2d_glEnable(GL_TEXTURE_GEN_S);
j2d_glBindTexture(GL_TEXTURE_1D, gradientTexID);
j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S,
cyclic ? GL_REPEAT : GL_CLAMP_TO_EDGE);
j2d_glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
j2d_glTexGendv(GL_S, GL_OBJECT_PLANE, texParams);
j2d_glTexSubImage1D(GL_TEXTURE_1D, 0,
0, 2, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, pixels);
if (useMask) {
// restore control to texture unit 0
j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
}
// oglc->pixel has been set appropriately in OGLPaints_ResetPaint()
oglc->useMask = useMask;
oglc->paintState = sun_java2d_SunGraphics2D_PAINT_GRADIENT;
}
/************************** TexturePaint support ****************************/
void
OGLPaints_SetTexturePaint(OGLContext *oglc,
jboolean useMask,
jlong pSrcOps, jboolean filter,
jdouble xp0, jdouble xp1, jdouble xp3,
jdouble yp0, jdouble yp1, jdouble yp3)
{
OGLSDOps *srcOps = (OGLSDOps *)jlong_to_ptr(pSrcOps);
GLdouble xParams[4];
GLdouble yParams[4];
GLint hint = (filter ? GL_LINEAR : GL_NEAREST);
J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_SetTexturePaint");
RETURN_IF_NULL(srcOps);
RETURN_IF_NULL(oglc);
OGLPaints_ResetPaint(oglc);
xParams[0] = xp0;
xParams[1] = xp1;
xParams[2] = 0.0;
xParams[3] = xp3;
yParams[0] = yp0;
yParams[1] = yp1;
yParams[2] = 0.0;
yParams[3] = yp3;
/*
* Note that we explicitly use GL_TEXTURE_2D below rather than using
* srcOps->textureTarget. This is because the texture wrap mode employed
* here (GL_REPEAT) is not available for GL_TEXTURE_RECTANGLE_ARB targets.
* The setup code in OGLPaints.Texture.isPaintValid() and in
* OGLSurfaceData.initTexture() ensures that we only get here for
* GL_TEXTURE_2D targets.
*/
if (useMask) {
// set up the paint on texture unit 1 (instead of the usual unit 0)
j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
j2d_glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
} else {
// texture unit 0 is already active; we can use the helper macro here
OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE);
}
j2d_glEnable(GL_TEXTURE_2D);
j2d_glEnable(GL_TEXTURE_GEN_S);
j2d_glEnable(GL_TEXTURE_GEN_T);
j2d_glBindTexture(GL_TEXTURE_2D, srcOps->textureID);
OGLSD_UPDATE_TEXTURE_FILTER(srcOps, hint);
OGLSD_UPDATE_TEXTURE_WRAP(GL_TEXTURE_2D, GL_REPEAT);
j2d_glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
j2d_glTexGendv(GL_S, GL_OBJECT_PLANE, xParams);
j2d_glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
j2d_glTexGendv(GL_T, GL_OBJECT_PLANE, yParams);
if (useMask) {
// restore control to texture unit 0
j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
}
// oglc->pixel has been set appropriately in OGLPaints_ResetPaint()
oglc->useMask = useMask;
oglc->paintState = sun_java2d_SunGraphics2D_PAINT_TEXTURE;
}
/****************** Shared MultipleGradientPaint support ********************/
/**
* These constants are identical to those defined in the
* MultipleGradientPaint.CycleMethod enum; they are copied here for
* convenience (ideally we would pull them directly from the Java level,
* but that entails more hassle than it is worth).
*/
#define CYCLE_NONE 0
#define CYCLE_REFLECT 1
#define CYCLE_REPEAT 2
/**
* The following constants are flags that can be bitwise-or'ed together
* to control how the MultipleGradientPaint shader source code is generated:
*
* MULTI_CYCLE_METHOD
* Placeholder for the CycleMethod enum constant.
*
* MULTI_LARGE
* If set, use the (slower) shader that supports a larger number of
* gradient colors; otherwise, use the optimized codepath. See
* the MAX_FRACTIONS_SMALL/LARGE constants below for more details.
*
* MULTI_USE_MASK
* If set, apply the alpha mask value from texture unit 0 to the
* final color result (only used in the MaskFill case).
*
* MULTI_LINEAR_RGB
* If set, convert the linear RGB result back into the sRGB color space.
*/
#define MULTI_CYCLE_METHOD (3 << 0)
#define MULTI_LARGE (1 << 2)
#define MULTI_USE_MASK (1 << 3)
#define MULTI_LINEAR_RGB (1 << 4)
/**
* This value determines the size of the array of programs for each
* MultipleGradientPaint type. This value reflects the maximum value that
* can be represented by performing a bitwise-or of all the MULTI_*
* constants defined above.
*/
#define MAX_PROGRAMS 32
/** Evaluates to true if the given bit is set on the local flags variable. */
#define IS_SET(flagbit) \
(((flags) & (flagbit)) != 0)
/** Composes the given parameters as flags into the given flags variable.*/
#define COMPOSE_FLAGS(flags, cycleMethod, large, useMask, linear) \
do { \
flags |= ((cycleMethod) & MULTI_CYCLE_METHOD); \
if (large) flags |= MULTI_LARGE; \
if (useMask) flags |= MULTI_USE_MASK; \
if (linear) flags |= MULTI_LINEAR_RGB; \
} while (0)
/** Extracts the CycleMethod enum value from the given flags variable. */
#define EXTRACT_CYCLE_METHOD(flags) \
((flags) & MULTI_CYCLE_METHOD)
/**
* The maximum number of gradient "stops" supported by the fragment shader
* and related code. When the MULTI_LARGE flag is set, we will use
* MAX_FRACTIONS_LARGE; otherwise, we use MAX_FRACTIONS_SMALL. By having
* two separate values, we can have one highly optimized shader (SMALL) that
* supports only a few fractions/colors, and then another, less optimal
* shader that supports more stops.
*/
#define MAX_FRACTIONS sun_java2d_pipe_BufferedPaints_MULTI_MAX_FRACTIONS
#define MAX_FRACTIONS_LARGE MAX_FRACTIONS
#define MAX_FRACTIONS_SMALL 4
/**
* The maximum number of gradient colors supported by all of the gradient
* fragment shaders. Note that this value must be a power of two, as it
* determines the size of the 1D texture created below. It also must be
* greater than or equal to MAX_FRACTIONS (there is no strict requirement
* that the two values be equal).
*/
#define MAX_COLORS 16
/**
* The handle to the gradient color table texture object used by the shaders.
*/
static GLuint multiGradientTexID = 0;
/**
* This is essentially a template of the shader source code that can be used
* for either LinearGradientPaint or RadialGradientPaint. It includes the
* structure and some variables that are common to each; the remaining
* code snippets (for CycleMethod, ColorSpaceType, and mask modulation)
* are filled in prior to compiling the shader at runtime depending on the
* paint parameters. See OGLPaints_CreateMultiGradProgram() for more details.
*/
static const char *multiGradientShaderSource =
// gradient texture size (in texels)
"const int TEXTURE_SIZE = %d;"
// maximum number of fractions/colors supported by this shader
"const int MAX_FRACTIONS = %d;"
// size of a single texel
"const float FULL_TEXEL = (1.0 / float(TEXTURE_SIZE));"
// size of half of a single texel
"const float HALF_TEXEL = (FULL_TEXEL / 2.0);"
// texture containing the gradient colors
"uniform sampler1D colors;"
// array of gradient stops/fractions
"uniform float fractions[MAX_FRACTIONS];"
// array of scale factors (one for each interval)
"uniform float scaleFactors[MAX_FRACTIONS-1];"
// (placeholder for mask variable)
"%s"
// (placeholder for Linear/RadialGP-specific variables)
"%s"
""
"void main(void)"
"{"
" float dist;"
// (placeholder for Linear/RadialGradientPaint-specific code)
" %s"
""
" float tc;"
// (placeholder for CycleMethod-specific code)
" %s"
""
// calculate interpolated color
" vec4 result = texture1D(colors, tc);"
""
// (placeholder for ColorSpace conversion code)
" %s"
""
// (placeholder for mask modulation code)
" %s"
""
// modulate with gl_Color in order to apply extra alpha
" gl_FragColor = result * gl_Color;"
"}";
/**
* This code takes a "dist" value as input (as calculated earlier by the
* LGP/RGP-specific code) in the range [0,1] and produces a texture
* coordinate value "tc" that represents the position of the chosen color
* in the one-dimensional gradient texture (also in the range [0,1]).
*
* One naive way to implement this would be to iterate through the fractions
* to figure out in which interval "dist" falls, and then compute the
* relative distance between the two nearest stops. This approach would
* require an "if" check on every iteration, and it is best to avoid
* conditionals in fragment shaders for performance reasons. Also, one might
* be tempted to use a break statement to jump out of the loop once the
* interval was found, but break statements (and non-constant loop bounds)
* are not natively available on most graphics hardware today, so that is
* a non-starter.
*
* The more optimal approach used here avoids these issues entirely by using
* an accumulation function that is equivalent to the process described above.
* The scaleFactors array is pre-initialized at enable time as follows:
* scaleFactors[i] = 1.0 / (fractions[i+1] - fractions[i]);
*
* For each iteration, we subtract fractions[i] from dist and then multiply
* that value by scaleFactors[i]. If we are within the target interval,
* this value will be a fraction in the range [0,1] indicating the relative
* distance between fraction[i] and fraction[i+1]. If we are below the
* target interval, this value will be negative, so we clamp it to zero
* to avoid accumulating any value. If we are above the target interval,
* the value will be greater than one, so we clamp it to one. Upon exiting
* the loop, we will have accumulated zero or more 1.0's and a single
* fractional value. This accumulated value tells us the position of the
* fragment color in the one-dimensional gradient texture, i.e., the
* texcoord called "tc".
*/
static const char *texCoordCalcCode =
"int i;"
"float relFraction = 0.0;"
"for (i = 0; i < MAX_FRACTIONS-1; i++) {"
" relFraction +="
" clamp((dist - fractions[i]) * scaleFactors[i], 0.0, 1.0);"
"}"
// we offset by half a texel so that we find the linearly interpolated
// color between the two texel centers of interest
"tc = HALF_TEXEL + (FULL_TEXEL * relFraction);";
/** Code for NO_CYCLE that gets plugged into the CycleMethod placeholder. */
static const char *noCycleCode =
"if (dist <= 0.0) {"
" tc = 0.0;"
"} else if (dist >= 1.0) {"
" tc = 1.0;"
"} else {"
// (placeholder for texcoord calculation)
" %s"
"}";
/** Code for REFLECT that gets plugged into the CycleMethod placeholder. */
static const char *reflectCode =
"dist = 1.0 - (abs(fract(dist * 0.5) - 0.5) * 2.0);"
// (placeholder for texcoord calculation)
"%s";
/** Code for REPEAT that gets plugged into the CycleMethod placeholder. */
static const char *repeatCode =
"dist = fract(dist);"
// (placeholder for texcoord calculation)
"%s";
static void
OGLPaints_InitMultiGradientTexture()
{
GLclampf priority = 1.0f;
J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_InitMultiGradientTexture");
j2d_glGenTextures(1, &multiGradientTexID);
j2d_glBindTexture(GL_TEXTURE_1D, multiGradientTexID);
j2d_glPrioritizeTextures(1, &multiGradientTexID, &priority);
j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
j2d_glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
j2d_glTexImage1D(GL_TEXTURE_1D, 0,
GL_RGBA8, MAX_COLORS, 0,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, NULL);
}
/**
* Compiles and links the MultipleGradientPaint shader program. If
* successful, this function returns a handle to the newly created
* shader program; otherwise returns 0.
*/
static GLhandleARB
OGLPaints_CreateMultiGradProgram(jint flags,
char *paintVars, char *distCode)
{
GLhandleARB multiGradProgram;
GLint loc;
char *maskVars = "";
char *maskCode = "";
char *colorSpaceCode = "";
char cycleCode[1500];
char finalSource[3000];
jint cycleMethod = EXTRACT_CYCLE_METHOD(flags);
jint maxFractions = IS_SET(MULTI_LARGE) ?
MAX_FRACTIONS_LARGE : MAX_FRACTIONS_SMALL;
J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_CreateMultiGradProgram");
if (IS_SET(MULTI_USE_MASK)) {
/*
* This code modulates the calculated result color with the
* corresponding alpha value from the alpha mask texture active
* on texture unit 0. Only needed when useMask is true (i.e., only
* for MaskFill operations).
*/
maskVars = "uniform sampler2D mask;";
maskCode = "result *= texture2D(mask, gl_TexCoord[0].st);";
} else {
/*
* REMIND: This is really wacky, but the gradient shaders will
* produce completely incorrect results on ATI hardware (at least
* on first-gen (R300-based) boards) if the shader program does not
* try to access texture coordinates by using a gl_TexCoord[*]
* variable. This problem really should be addressed by ATI, but
* in the meantime it seems we can workaround the issue by inserting
* a benign operation that accesses gl_TexCoord[0]. Note that we
* only need to do this for ATI boards and only in the !useMask case,
* because the useMask case already does access gl_TexCoord[1] and
* is therefore not affected by this driver bug.
*/
const char *vendor = (const char *)j2d_glGetString(GL_VENDOR);
if (vendor != NULL && strncmp(vendor, "ATI", 3) == 0) {
maskCode = "dist = gl_TexCoord[0].s;";
}
}
if (IS_SET(MULTI_LINEAR_RGB)) {
/*
* This code converts a single pixel in linear RGB space back
* into sRGB (note: this code was adapted from the
* MultipleGradientPaintContext.convertLinearRGBtoSRGB() method).
*/
colorSpaceCode =
"result.rgb = 1.055 * pow(result.rgb, vec3(0.416667)) - 0.055;";
}
if (cycleMethod == CYCLE_NONE) {
sprintf(cycleCode, noCycleCode, texCoordCalcCode);
} else if (cycleMethod == CYCLE_REFLECT) {
sprintf(cycleCode, reflectCode, texCoordCalcCode);
} else { // (cycleMethod == CYCLE_REPEAT)
sprintf(cycleCode, repeatCode, texCoordCalcCode);
}
// compose the final source code string from the various pieces
sprintf(finalSource, multiGradientShaderSource,
MAX_COLORS, maxFractions,
maskVars, paintVars, distCode,
cycleCode, colorSpaceCode, maskCode);
multiGradProgram = OGLContext_CreateFragmentProgram(finalSource);
if (multiGradProgram == 0) {
J2dRlsTraceLn(J2D_TRACE_ERROR,
"OGLPaints_CreateMultiGradProgram: error creating program");
return 0;
}
// "use" the program object temporarily so that we can set the uniforms
j2d_glUseProgramObjectARB(multiGradProgram);
// set the "uniform" texture unit bindings
if (IS_SET(MULTI_USE_MASK)) {
loc = j2d_glGetUniformLocationARB(multiGradProgram, "mask");
j2d_glUniform1iARB(loc, 0); // texture unit 0
loc = j2d_glGetUniformLocationARB(multiGradProgram, "colors");
j2d_glUniform1iARB(loc, 1); // texture unit 1
} else {
loc = j2d_glGetUniformLocationARB(multiGradProgram, "colors");
j2d_glUniform1iARB(loc, 0); // texture unit 0
}
// "unuse" the program object; it will be re-bound later as needed
j2d_glUseProgramObjectARB(0);
if (multiGradientTexID == 0) {
OGLPaints_InitMultiGradientTexture();
}
return multiGradProgram;
}
/**
* Called from the OGLPaints_SetLinear/RadialGradientPaint() methods
* in order to setup the fraction/color values that are common to both.
*/
static void
OGLPaints_SetMultiGradientPaint(GLhandleARB multiGradProgram,
jint numStops,
void *pFractions, void *pPixels)
{
jint maxFractions = (numStops > MAX_FRACTIONS_SMALL) ?
MAX_FRACTIONS_LARGE : MAX_FRACTIONS_SMALL;
GLfloat scaleFactors[MAX_FRACTIONS-1];
GLfloat *fractions = (GLfloat *)pFractions;
GLint *pixels = (GLint *)pPixels;
GLint loc;
int i;
// enable the MultipleGradientPaint shader
j2d_glUseProgramObjectARB(multiGradProgram);
// update the "uniform" fraction values
loc = j2d_glGetUniformLocationARB(multiGradProgram, "fractions");
if (numStops < maxFractions) {
// fill the remainder of the fractions array with all zeros to
// prevent using garbage values from previous paints
GLfloat allZeros[MAX_FRACTIONS];
memset(allZeros, 0, sizeof(GLfloat)*MAX_FRACTIONS);
j2d_glUniform1fvARB(loc, maxFractions, allZeros);
}
j2d_glUniform1fvARB(loc, numStops, fractions);
// update the "uniform" scale values
loc = j2d_glGetUniformLocationARB(multiGradProgram, "scaleFactors");
for (i = 0; i < numStops-1; i++) {
// calculate a scale factor for each interval
scaleFactors[i] = 1.0f / (fractions[i+1] - fractions[i]);
}
for (; i < maxFractions-1; i++) {
// fill remaining scale factors with zero
scaleFactors[i] = 0.0f;
}
j2d_glUniform1fvARB(loc, maxFractions-1, scaleFactors);
// update the texture containing the gradient colors
j2d_glEnable(GL_TEXTURE_1D);
j2d_glBindTexture(GL_TEXTURE_1D, multiGradientTexID);
j2d_glTexSubImage1D(GL_TEXTURE_1D, 0,
0, numStops,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV,
pixels);
if (numStops < MAX_COLORS) {
// when we don't have enough colors to fill the entire color gradient,
// we have to replicate the last color in the right-most texel for
// the NO_CYCLE case where the texcoord is sometimes forced to 1.0
j2d_glTexSubImage1D(GL_TEXTURE_1D, 0,
MAX_COLORS-1, 1,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV,
pixels+(numStops-1));
}
}
/********************** LinearGradientPaint support *************************/
/**
* The handles to the LinearGradientPaint fragment program objects. The
* index to the array should be a bitwise-or'ing of the MULTI_* flags defined
* above. Note that most applications will likely need to initialize one
* or two of these elements, so the array is usually sparsely populated.
*/
static GLhandleARB linearGradPrograms[MAX_PROGRAMS];
/**
* Compiles and links the LinearGradientPaint shader program. If successful,
* this function returns a handle to the newly created shader program;
* otherwise returns 0.
*/
static GLhandleARB
OGLPaints_CreateLinearGradProgram(jint flags)
{
char *paintVars;
char *distCode;
J2dTraceLn1(J2D_TRACE_INFO,
"OGLPaints_CreateLinearGradProgram",
flags);
/*
* To simplify the code and to make it easier to upload a number of
* uniform values at once, we pack a bunch of scalar (float) values
* into vec3 values below. Here's how the values are related:
*
* params.x = p0
* params.y = p1
* params.z = p3
*
* yoff = dstOps->yOffset + dstOps->height
*/
paintVars =
"uniform vec3 params;"
"uniform float yoff;";
distCode =
// note that gl_FragCoord is in window space relative to the
// lower-left corner, so we have to flip the y-coordinate here
"vec3 fragCoord = vec3(gl_FragCoord.x, yoff-gl_FragCoord.y, 1.0);"
"dist = dot(params, fragCoord);";
return OGLPaints_CreateMultiGradProgram(flags, paintVars, distCode);
}
void
OGLPaints_SetLinearGradientPaint(OGLContext *oglc, OGLSDOps *dstOps,
jboolean useMask, jboolean linear,
jint cycleMethod, jint numStops,
jfloat p0, jfloat p1, jfloat p3,
void *fractions, void *pixels)
{
GLhandleARB linearGradProgram;
GLint loc;
jboolean large = (numStops > MAX_FRACTIONS_SMALL);
jint flags = 0;
J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_SetLinearGradientPaint");
RETURN_IF_NULL(oglc);
RETURN_IF_NULL(dstOps);
OGLPaints_ResetPaint(oglc);
COMPOSE_FLAGS(flags, cycleMethod, large, useMask, linear);
if (useMask) {
// set up the paint on texture unit 1 (instead of the usual unit 0)
j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
}
// no need to set GL_MODULATE here (it is ignored when shader is enabled)
// locate/initialize the shader program for the given flags
if (linearGradPrograms[flags] == 0) {
linearGradPrograms[flags] = OGLPaints_CreateLinearGradProgram(flags);
if (linearGradPrograms[flags] == 0) {
// shouldn't happen, but just in case...
return;
}
}
linearGradProgram = linearGradPrograms[flags];
// update the common "uniform" values (fractions and colors)
OGLPaints_SetMultiGradientPaint(linearGradProgram,
numStops, fractions, pixels);
// update the other "uniform" values
loc = j2d_glGetUniformLocationARB(linearGradProgram, "params");
j2d_glUniform3fARB(loc, p0, p1, p3);
loc = j2d_glGetUniformLocationARB(linearGradProgram, "yoff");
j2d_glUniform1fARB(loc, (GLfloat)(dstOps->yOffset + dstOps->height));
if (useMask) {
// restore control to texture unit 0
j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
}
// oglc->pixel has been set appropriately in OGLPaints_ResetPaint()
oglc->useMask = useMask;
oglc->paintState = sun_java2d_SunGraphics2D_PAINT_LIN_GRADIENT;
}
/********************** RadialGradientPaint support *************************/
/**
* The handles to the RadialGradientPaint fragment program objects. The
* index to the array should be a bitwise-or'ing of the MULTI_* flags defined
* above. Note that most applications will likely need to initialize one
* or two of these elements, so the array is usually sparsely populated.
*/
static GLhandleARB radialGradPrograms[MAX_PROGRAMS];
/**
* Compiles and links the RadialGradientPaint shader program. If successful,
* this function returns a handle to the newly created shader program;
* otherwise returns 0.
*/
static GLhandleARB
OGLPaints_CreateRadialGradProgram(jint flags)
{
char *paintVars;
char *distCode;
J2dTraceLn1(J2D_TRACE_INFO,
"OGLPaints_CreateRadialGradProgram",
flags);
/*
* To simplify the code and to make it easier to upload a number of
* uniform values at once, we pack a bunch of scalar (float) values
* into vec3 and vec4 values below. Here's how the values are related:
*
* m0.x = m00
* m0.y = m01
* m0.z = m02
*
* m1.x = m10
* m1.y = m11
* m1.z = m12
*
* precalc.x = focusX
* precalc.y = yoff = dstOps->yOffset + dstOps->height
* precalc.z = 1.0 - (focusX * focusX)
* precalc.w = 1.0 / precalc.z
*/
paintVars =
"uniform vec3 m0;"
"uniform vec3 m1;"
"uniform vec4 precalc;";
/*
* The following code is derived from Daniel Rice's whitepaper on
* radial gradient performance (attached to the bug report for 6521533).
* Refer to that document as well as the setup code in the Java-level
* BufferedPaints.setRadialGradientPaint() method for more details.
*/
distCode =
// note that gl_FragCoord is in window space relative to the
// lower-left corner, so we have to flip the y-coordinate here
"vec3 fragCoord ="
" vec3(gl_FragCoord.x, precalc.y - gl_FragCoord.y, 1.0);"
"float x = dot(fragCoord, m0);"
"float y = dot(fragCoord, m1);"
"float xfx = x - precalc.x;"
"dist = (precalc.x*xfx + sqrt(xfx*xfx + y*y*precalc.z))*precalc.w;";
return OGLPaints_CreateMultiGradProgram(flags, paintVars, distCode);
}
void
OGLPaints_SetRadialGradientPaint(OGLContext *oglc, OGLSDOps *dstOps,
jboolean useMask, jboolean linear,
jint cycleMethod, jint numStops,
jfloat m00, jfloat m01, jfloat m02,
jfloat m10, jfloat m11, jfloat m12,
jfloat focusX,
void *fractions, void *pixels)
{
GLhandleARB radialGradProgram;
GLint loc;
GLfloat yoff, denom, inv_denom;
jboolean large = (numStops > MAX_FRACTIONS_SMALL);
jint flags = 0;
J2dTraceLn(J2D_TRACE_INFO, "OGLPaints_SetRadialGradientPaint");
RETURN_IF_NULL(oglc);
RETURN_IF_NULL(dstOps);
OGLPaints_ResetPaint(oglc);
COMPOSE_FLAGS(flags, cycleMethod, large, useMask, linear);
if (useMask) {
// set up the paint on texture unit 1 (instead of the usual unit 0)
j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
}
// no need to set GL_MODULATE here (it is ignored when shader is enabled)
// locate/initialize the shader program for the given flags
if (radialGradPrograms[flags] == 0) {
radialGradPrograms[flags] = OGLPaints_CreateRadialGradProgram(flags);
if (radialGradPrograms[flags] == 0) {
// shouldn't happen, but just in case...
return;
}
}
radialGradProgram = radialGradPrograms[flags];
// update the common "uniform" values (fractions and colors)
OGLPaints_SetMultiGradientPaint(radialGradProgram,
numStops, fractions, pixels);
// update the other "uniform" values
loc = j2d_glGetUniformLocationARB(radialGradProgram, "m0");
j2d_glUniform3fARB(loc, m00, m01, m02);
loc = j2d_glGetUniformLocationARB(radialGradProgram, "m1");
j2d_glUniform3fARB(loc, m10, m11, m12);
// pack a few unrelated, precalculated values into a single vec4
yoff = (GLfloat)(dstOps->yOffset + dstOps->height);
denom = 1.0f - (focusX * focusX);
inv_denom = 1.0f / denom;
loc = j2d_glGetUniformLocationARB(radialGradProgram, "precalc");
j2d_glUniform4fARB(loc, focusX, yoff, denom, inv_denom);
if (useMask) {
// restore control to texture unit 0
j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
}
// oglc->pixel has been set appropriately in OGLPaints_ResetPaint()
oglc->useMask = useMask;
oglc->paintState = sun_java2d_SunGraphics2D_PAINT_RAD_GRADIENT;
}
#endif /* !HEADLESS */