blob: f8165a188589af5b21e3b6394c9cf82b00519fb9 [file] [log] [blame]
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "asm/macroAssembler.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm_linux.h"
#include "memory/allocation.inline.hpp"
#include "mutex_linux.inline.hpp"
#include "nativeInst_sparc.hpp"
#include "os_share_linux.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm.h"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
// Linux/Sparc has rather obscure naming of registers in sigcontext
// different between 32 and 64 bits
#ifdef _LP64
#define SIG_PC(x) ((x)->sigc_regs.tpc)
#define SIG_NPC(x) ((x)->sigc_regs.tnpc)
#define SIG_REGS(x) ((x)->sigc_regs)
#else
#define SIG_PC(x) ((x)->si_regs.pc)
#define SIG_NPC(x) ((x)->si_regs.npc)
#define SIG_REGS(x) ((x)->si_regs)
#endif
// those are to reference registers in sigcontext
enum {
CON_G0 = 0,
CON_G1,
CON_G2,
CON_G3,
CON_G4,
CON_G5,
CON_G6,
CON_G7,
CON_O0,
CON_O1,
CON_O2,
CON_O3,
CON_O4,
CON_O5,
CON_O6,
CON_O7,
};
static inline void set_cont_address(sigcontext* ctx, address addr) {
SIG_PC(ctx) = (intptr_t)addr;
SIG_NPC(ctx) = (intptr_t)(addr+4);
}
// For Forte Analyzer AsyncGetCallTrace profiling support - thread is
// currently interrupted by SIGPROF.
// os::Solaris::fetch_frame_from_ucontext() tries to skip nested
// signal frames. Currently we don't do that on Linux, so it's the
// same as os::fetch_frame_from_context().
ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
ucontext_t* uc,
intptr_t** ret_sp,
intptr_t** ret_fp) {
assert(thread != NULL, "just checking");
assert(ret_sp != NULL, "just checking");
assert(ret_fp != NULL, "just checking");
return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
}
ExtendedPC os::fetch_frame_from_context(void* ucVoid,
intptr_t** ret_sp,
intptr_t** ret_fp) {
ucontext_t* uc = (ucontext_t*) ucVoid;
ExtendedPC epc;
if (uc != NULL) {
epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
if (ret_sp) {
*ret_sp = os::Linux::ucontext_get_sp(uc);
}
if (ret_fp) {
*ret_fp = (intptr_t*)NULL;
}
} else {
// construct empty ExtendedPC for return value checking
epc = ExtendedPC(NULL);
if (ret_sp) {
*ret_sp = (intptr_t*) NULL;
}
if (ret_fp) {
*ret_fp = (intptr_t*) NULL;
}
}
return epc;
}
frame os::fetch_frame_from_context(void* ucVoid) {
intptr_t* sp;
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, NULL);
return frame(sp, frame::unpatchable, epc.pc());
}
frame os::get_sender_for_C_frame(frame* fr) {
return frame(fr->sender_sp(), frame::unpatchable, fr->sender_pc());
}
frame os::current_frame() {
intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
frame myframe(sp, frame::unpatchable,
CAST_FROM_FN_PTR(address, os::current_frame));
if (os::is_first_C_frame(&myframe)) {
// stack is not walkable
return frame(NULL, frame::unpatchable, NULL);
} else {
return os::get_sender_for_C_frame(&myframe);
}
}
address os::current_stack_pointer() {
register void *sp __asm__ ("sp");
return (address)sp;
}
static void current_stack_region(address* bottom, size_t* size) {
if (os::Linux::is_initial_thread()) {
// initial thread needs special handling because pthread_getattr_np()
// may return bogus value.
*bottom = os::Linux::initial_thread_stack_bottom();
*size = os::Linux::initial_thread_stack_size();
} else {
pthread_attr_t attr;
int rslt = pthread_getattr_np(pthread_self(), &attr);
// JVM needs to know exact stack location, abort if it fails
if (rslt != 0) {
if (rslt == ENOMEM) {
vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
} else {
fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
}
}
if (pthread_attr_getstack(&attr, (void**)bottom, size) != 0) {
fatal("Can not locate current stack attributes!");
}
pthread_attr_destroy(&attr);
}
assert(os::current_stack_pointer() >= *bottom &&
os::current_stack_pointer() < *bottom + *size, "just checking");
}
address os::current_stack_base() {
address bottom;
size_t size;
current_stack_region(&bottom, &size);
return bottom + size;
}
size_t os::current_stack_size() {
// stack size includes normal stack and HotSpot guard pages
address bottom;
size_t size;
current_stack_region(&bottom, &size);
return size;
}
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
// On SPARC, 0 != %hi(any real address), because there is no
// allocation in the first 1Kb of the virtual address space.
return (char*) 0;
}
void os::initialize_thread(Thread* thr) {}
void os::print_context(outputStream *st, void *context) {
if (context == NULL) return;
ucontext_t* uc = (ucontext_t*)context;
sigcontext* sc = (sigcontext*)context;
st->print_cr("Registers:");
st->print_cr(" G1=" INTPTR_FORMAT " G2=" INTPTR_FORMAT
" G3=" INTPTR_FORMAT " G4=" INTPTR_FORMAT,
SIG_REGS(sc).u_regs[CON_G1],
SIG_REGS(sc).u_regs[CON_G2],
SIG_REGS(sc).u_regs[CON_G3],
SIG_REGS(sc).u_regs[CON_G4]);
st->print_cr(" G5=" INTPTR_FORMAT " G6=" INTPTR_FORMAT
" G7=" INTPTR_FORMAT " Y=" INTPTR_FORMAT,
SIG_REGS(sc).u_regs[CON_G5],
SIG_REGS(sc).u_regs[CON_G6],
SIG_REGS(sc).u_regs[CON_G7],
SIG_REGS(sc).y);
st->print_cr(" O0=" INTPTR_FORMAT " O1=" INTPTR_FORMAT
" O2=" INTPTR_FORMAT " O3=" INTPTR_FORMAT,
SIG_REGS(sc).u_regs[CON_O0],
SIG_REGS(sc).u_regs[CON_O1],
SIG_REGS(sc).u_regs[CON_O2],
SIG_REGS(sc).u_regs[CON_O3]);
st->print_cr(" O4=" INTPTR_FORMAT " O5=" INTPTR_FORMAT
" O6=" INTPTR_FORMAT " O7=" INTPTR_FORMAT,
SIG_REGS(sc).u_regs[CON_O4],
SIG_REGS(sc).u_regs[CON_O5],
SIG_REGS(sc).u_regs[CON_O6],
SIG_REGS(sc).u_regs[CON_O7]);
intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
st->print_cr(" L0=" INTPTR_FORMAT " L1=" INTPTR_FORMAT
" L2=" INTPTR_FORMAT " L3=" INTPTR_FORMAT,
sp[L0->sp_offset_in_saved_window()],
sp[L1->sp_offset_in_saved_window()],
sp[L2->sp_offset_in_saved_window()],
sp[L3->sp_offset_in_saved_window()]);
st->print_cr(" L4=" INTPTR_FORMAT " L5=" INTPTR_FORMAT
" L6=" INTPTR_FORMAT " L7=" INTPTR_FORMAT,
sp[L4->sp_offset_in_saved_window()],
sp[L5->sp_offset_in_saved_window()],
sp[L6->sp_offset_in_saved_window()],
sp[L7->sp_offset_in_saved_window()]);
st->print_cr(" I0=" INTPTR_FORMAT " I1=" INTPTR_FORMAT
" I2=" INTPTR_FORMAT " I3=" INTPTR_FORMAT,
sp[I0->sp_offset_in_saved_window()],
sp[I1->sp_offset_in_saved_window()],
sp[I2->sp_offset_in_saved_window()],
sp[I3->sp_offset_in_saved_window()]);
st->print_cr(" I4=" INTPTR_FORMAT " I5=" INTPTR_FORMAT
" I6=" INTPTR_FORMAT " I7=" INTPTR_FORMAT,
sp[I4->sp_offset_in_saved_window()],
sp[I5->sp_offset_in_saved_window()],
sp[I6->sp_offset_in_saved_window()],
sp[I7->sp_offset_in_saved_window()]);
st->print_cr(" PC=" INTPTR_FORMAT " nPC=" INTPTR_FORMAT,
SIG_PC(sc),
SIG_NPC(sc));
st->cr();
st->cr();
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
print_hex_dump(st, (address)sp, (address)(sp + 32), sizeof(intptr_t));
st->cr();
// Note: it may be unsafe to inspect memory near pc. For example, pc may
// point to garbage if entry point in an nmethod is corrupted. Leave
// this at the end, and hope for the best.
address pc = os::Linux::ucontext_get_pc(uc);
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
}
void os::print_register_info(outputStream *st, void *context) {
if (context == NULL) return;
ucontext_t *uc = (ucontext_t*)context;
sigcontext* sc = (sigcontext*)context;
intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
st->print_cr("Register to memory mapping:");
st->cr();
// this is only for the "general purpose" registers
st->print("G1="); print_location(st, SIG_REGS(sc).u_regs[CON_G1]);
st->print("G2="); print_location(st, SIG_REGS(sc).u_regs[CON_G2]);
st->print("G3="); print_location(st, SIG_REGS(sc).u_regs[CON_G3]);
st->print("G4="); print_location(st, SIG_REGS(sc).u_regs[CON_G4]);
st->print("G5="); print_location(st, SIG_REGS(sc).u_regs[CON_G5]);
st->print("G6="); print_location(st, SIG_REGS(sc).u_regs[CON_G6]);
st->print("G7="); print_location(st, SIG_REGS(sc).u_regs[CON_G7]);
st->cr();
st->print("O0="); print_location(st, SIG_REGS(sc).u_regs[CON_O0]);
st->print("O1="); print_location(st, SIG_REGS(sc).u_regs[CON_O1]);
st->print("O2="); print_location(st, SIG_REGS(sc).u_regs[CON_O2]);
st->print("O3="); print_location(st, SIG_REGS(sc).u_regs[CON_O3]);
st->print("O4="); print_location(st, SIG_REGS(sc).u_regs[CON_O4]);
st->print("O5="); print_location(st, SIG_REGS(sc).u_regs[CON_O5]);
st->print("O6="); print_location(st, SIG_REGS(sc).u_regs[CON_O6]);
st->print("O7="); print_location(st, SIG_REGS(sc).u_regs[CON_O7]);
st->cr();
st->print("L0="); print_location(st, sp[L0->sp_offset_in_saved_window()]);
st->print("L1="); print_location(st, sp[L1->sp_offset_in_saved_window()]);
st->print("L2="); print_location(st, sp[L2->sp_offset_in_saved_window()]);
st->print("L3="); print_location(st, sp[L3->sp_offset_in_saved_window()]);
st->print("L4="); print_location(st, sp[L4->sp_offset_in_saved_window()]);
st->print("L5="); print_location(st, sp[L5->sp_offset_in_saved_window()]);
st->print("L6="); print_location(st, sp[L6->sp_offset_in_saved_window()]);
st->print("L7="); print_location(st, sp[L7->sp_offset_in_saved_window()]);
st->cr();
st->print("I0="); print_location(st, sp[I0->sp_offset_in_saved_window()]);
st->print("I1="); print_location(st, sp[I1->sp_offset_in_saved_window()]);
st->print("I2="); print_location(st, sp[I2->sp_offset_in_saved_window()]);
st->print("I3="); print_location(st, sp[I3->sp_offset_in_saved_window()]);
st->print("I4="); print_location(st, sp[I4->sp_offset_in_saved_window()]);
st->print("I5="); print_location(st, sp[I5->sp_offset_in_saved_window()]);
st->print("I6="); print_location(st, sp[I6->sp_offset_in_saved_window()]);
st->print("I7="); print_location(st, sp[I7->sp_offset_in_saved_window()]);
st->cr();
}
address os::Linux::ucontext_get_pc(ucontext_t* uc) {
return (address) SIG_PC((sigcontext*)uc);
}
intptr_t* os::Linux::ucontext_get_sp(ucontext_t *uc) {
return (intptr_t*)
((intptr_t)SIG_REGS((sigcontext*)uc).u_regs[CON_O6] + STACK_BIAS);
}
// not used on Sparc
intptr_t* os::Linux::ucontext_get_fp(ucontext_t *uc) {
ShouldNotReachHere();
return NULL;
}
// Utility functions
inline static bool checkPrefetch(sigcontext* uc, address pc) {
if (StubRoutines::is_safefetch_fault(pc)) {
set_cont_address(uc, address(StubRoutines::continuation_for_safefetch_fault(pc)));
return true;
}
return false;
}
inline static bool checkOverflow(sigcontext* uc,
address pc,
address addr,
JavaThread* thread,
address* stub) {
// check if fault address is within thread stack
if (addr < thread->stack_base() &&
addr >= thread->stack_base() - thread->stack_size()) {
// stack overflow
if (thread->in_stack_yellow_zone(addr)) {
thread->disable_stack_yellow_zone();
if (thread->thread_state() == _thread_in_Java) {
// Throw a stack overflow exception. Guard pages will be reenabled
// while unwinding the stack.
*stub =
SharedRuntime::continuation_for_implicit_exception(thread,
pc,
SharedRuntime::STACK_OVERFLOW);
} else {
// Thread was in the vm or native code. Return and try to finish.
return true;
}
} else if (thread->in_stack_red_zone(addr)) {
// Fatal red zone violation. Disable the guard pages and fall through
// to handle_unexpected_exception way down below.
thread->disable_stack_red_zone();
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
// This is a likely cause, but hard to verify. Let's just print
// it as a hint.
tty->print_raw_cr("Please check if any of your loaded .so files has "
"enabled executable stack (see man page execstack(8))");
} else {
// Accessing stack address below sp may cause SEGV if current
// thread has MAP_GROWSDOWN stack. This should only happen when
// current thread was created by user code with MAP_GROWSDOWN flag
// and then attached to VM. See notes in os_linux.cpp.
if (thread->osthread()->expanding_stack() == 0) {
thread->osthread()->set_expanding_stack();
if (os::Linux::manually_expand_stack(thread, addr)) {
thread->osthread()->clear_expanding_stack();
return true;
}
thread->osthread()->clear_expanding_stack();
} else {
fatal("recursive segv. expanding stack.");
}
}
}
return false;
}
inline static bool checkPollingPage(address pc, address fault, address* stub) {
if (fault == os::get_polling_page()) {
*stub = SharedRuntime::get_poll_stub(pc);
return true;
}
return false;
}
inline static bool checkByteBuffer(address pc, address* stub) {
// BugId 4454115: A read from a MappedByteBuffer can fault
// here if the underlying file has been truncated.
// Do not crash the VM in such a case.
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
if (nm != NULL && nm->has_unsafe_access()) {
*stub = StubRoutines::handler_for_unsafe_access();
return true;
}
return false;
}
inline static bool checkVerifyOops(address pc, address fault, address* stub) {
if (pc >= MacroAssembler::_verify_oop_implicit_branch[0]
&& pc < MacroAssembler::_verify_oop_implicit_branch[1] ) {
*stub = MacroAssembler::_verify_oop_implicit_branch[2];
warning("fixed up memory fault in +VerifyOops at address "
INTPTR_FORMAT, fault);
return true;
}
return false;
}
inline static bool checkFPFault(address pc, int code,
JavaThread* thread, address* stub) {
if (code == FPE_INTDIV || code == FPE_FLTDIV) {
*stub =
SharedRuntime::
continuation_for_implicit_exception(thread,
pc,
SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
return true;
}
return false;
}
inline static bool checkNullPointer(address pc, intptr_t fault,
JavaThread* thread, address* stub) {
if (!MacroAssembler::needs_explicit_null_check(fault)) {
// Determination of interpreter/vtable stub/compiled code null
// exception
*stub =
SharedRuntime::
continuation_for_implicit_exception(thread, pc,
SharedRuntime::IMPLICIT_NULL);
return true;
}
return false;
}
inline static bool checkFastJNIAccess(address pc, address* stub) {
address addr = JNI_FastGetField::find_slowcase_pc(pc);
if (addr != (address)-1) {
*stub = addr;
return true;
}
return false;
}
inline static bool checkSerializePage(JavaThread* thread, address addr) {
return os::is_memory_serialize_page(thread, addr);
}
inline static bool checkZombie(sigcontext* uc, address* pc, address* stub) {
if (nativeInstruction_at(*pc)->is_zombie()) {
// zombie method (ld [%g0],%o7 instruction)
*stub = SharedRuntime::get_handle_wrong_method_stub();
// At the stub it needs to look like a call from the caller of this
// method (not a call from the segv site).
*pc = (address)SIG_REGS(uc).u_regs[CON_O7];
return true;
}
return false;
}
inline static bool checkICMiss(sigcontext* uc, address* pc, address* stub) {
#ifdef COMPILER2
if (nativeInstruction_at(*pc)->is_ic_miss_trap()) {
#ifdef ASSERT
#ifdef TIERED
CodeBlob* cb = CodeCache::find_blob_unsafe(*pc);
assert(cb->is_compiled_by_c2(), "Wrong compiler");
#endif // TIERED
#endif // ASSERT
// Inline cache missed and user trap "Tne G0+ST_RESERVED_FOR_USER_0+2" taken.
*stub = SharedRuntime::get_ic_miss_stub();
// At the stub it needs to look like a call from the caller of this
// method (not a call from the segv site).
*pc = (address)SIG_REGS(uc).u_regs[CON_O7];
return true;
}
#endif // COMPILER2
return false;
}
extern "C" JNIEXPORT int
JVM_handle_linux_signal(int sig,
siginfo_t* info,
void* ucVoid,
int abort_if_unrecognized) {
// in fact this isn't ucontext_t* at all, but struct sigcontext*
// but Linux porting layer uses ucontext_t, so to minimize code change
// we cast as needed
ucontext_t* ucFake = (ucontext_t*) ucVoid;
sigcontext* uc = (sigcontext*)ucVoid;
Thread* t = ThreadLocalStorage::get_thread_slow();
// Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
// (no destructors can be run)
os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
SignalHandlerMark shm(t);
// Note: it's not uncommon that JNI code uses signal/sigset to install
// then restore certain signal handler (e.g. to temporarily block SIGPIPE,
// or have a SIGILL handler when detecting CPU type). When that happens,
// JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
// avoid unnecessary crash when libjsig is not preloaded, try handle signals
// that do not require siginfo/ucontext first.
if (sig == SIGPIPE || sig == SIGXFSZ) {
// allow chained handler to go first
if (os::Linux::chained_handler(sig, info, ucVoid)) {
return true;
} else {
if (PrintMiscellaneous && (WizardMode || Verbose)) {
char buf[64];
warning("Ignoring %s - see bugs 4229104 or 646499219",
os::exception_name(sig, buf, sizeof(buf)));
}
return true;
}
}
JavaThread* thread = NULL;
VMThread* vmthread = NULL;
if (os::Linux::signal_handlers_are_installed) {
if (t != NULL ){
if(t->is_Java_thread()) {
thread = (JavaThread*)t;
}
else if(t->is_VM_thread()){
vmthread = (VMThread *)t;
}
}
}
// decide if this trap can be handled by a stub
address stub = NULL;
address pc = NULL;
address npc = NULL;
//%note os_trap_1
if (info != NULL && uc != NULL && thread != NULL) {
pc = address(SIG_PC(uc));
npc = address(SIG_NPC(uc));
// Check to see if we caught the safepoint code in the
// process of write protecting the memory serialization page.
// It write enables the page immediately after protecting it
// so we can just return to retry the write.
if ((sig == SIGSEGV) && checkSerializePage(thread, (address)info->si_addr)) {
// Block current thread until the memory serialize page permission restored.
os::block_on_serialize_page_trap();
return 1;
}
if (checkPrefetch(uc, pc)) {
return 1;
}
// Handle ALL stack overflow variations here
if (sig == SIGSEGV) {
if (checkOverflow(uc, pc, (address)info->si_addr, thread, &stub)) {
return 1;
}
}
if (sig == SIGBUS &&
thread->thread_state() == _thread_in_vm &&
thread->doing_unsafe_access()) {
stub = StubRoutines::handler_for_unsafe_access();
}
if (thread->thread_state() == _thread_in_Java) {
do {
// Java thread running in Java code => find exception handler if any
// a fault inside compiled code, the interpreter, or a stub
if ((sig == SIGSEGV) && checkPollingPage(pc, (address)info->si_addr, &stub)) {
break;
}
if ((sig == SIGBUS) && checkByteBuffer(pc, &stub)) {
break;
}
if ((sig == SIGSEGV || sig == SIGBUS) &&
checkVerifyOops(pc, (address)info->si_addr, &stub)) {
break;
}
if ((sig == SIGSEGV) && checkZombie(uc, &pc, &stub)) {
break;
}
if ((sig == SIGILL) && checkICMiss(uc, &pc, &stub)) {
break;
}
if ((sig == SIGFPE) && checkFPFault(pc, info->si_code, thread, &stub)) {
break;
}
if ((sig == SIGSEGV) &&
checkNullPointer(pc, (intptr_t)info->si_addr, thread, &stub)) {
break;
}
} while (0);
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
// and the heap gets shrunk before the field access.
if ((sig == SIGSEGV) || (sig == SIGBUS)) {
checkFastJNIAccess(pc, &stub);
}
}
if (stub != NULL) {
// save all thread context in case we need to restore it
thread->set_saved_exception_pc(pc);
thread->set_saved_exception_npc(npc);
set_cont_address(uc, stub);
return true;
}
}
// signal-chaining
if (os::Linux::chained_handler(sig, info, ucVoid)) {
return true;
}
if (!abort_if_unrecognized) {
// caller wants another chance, so give it to him
return false;
}
if (pc == NULL && uc != NULL) {
pc = os::Linux::ucontext_get_pc((ucontext_t*)uc);
}
// unmask current signal
sigset_t newset;
sigemptyset(&newset);
sigaddset(&newset, sig);
sigprocmask(SIG_UNBLOCK, &newset, NULL);
VMError err(t, sig, pc, info, ucVoid);
err.report_and_die();
ShouldNotReachHere();
}
void os::Linux::init_thread_fpu_state(void) {
// Nothing to do
}
int os::Linux::get_fpu_control_word() {
return 0;
}
void os::Linux::set_fpu_control_word(int fpu) {
// nothing
}
bool os::is_allocatable(size_t bytes) {
#ifdef _LP64
return true;
#else
if (bytes < 2 * G) {
return true;
}
char* addr = reserve_memory(bytes, NULL);
if (addr != NULL) {
release_memory(addr, bytes);
}
return addr != NULL;
#endif // _LP64
}
///////////////////////////////////////////////////////////////////////////////
// thread stack
size_t os::Linux::min_stack_allowed = 128 * K;
// pthread on Ubuntu is always in floating stack mode
bool os::Linux::supports_variable_stack_size() { return true; }
// return default stack size for thr_type
size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
// default stack size (compiler thread needs larger stack)
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
return s;
}
size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
// Creating guard page is very expensive. Java thread has HotSpot
// guard page, only enable glibc guard page for non-Java threads.
return (thr_type == java_thread ? 0 : page_size());
}
#ifndef PRODUCT
void os::verify_stack_alignment() {
}
#endif