blob: 56362df0eda5a6b63fbbac5395c97ce05b822596 [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://developers.google.com/open-source/licenses/bsd
*/
#include "table.h"
#include "system.h"
#include "block.h"
#include "blocksource.h"
#include "constants.h"
#include "iter.h"
#include "record.h"
#include "reftable-error.h"
static struct reftable_table_offsets *
table_offsets_for(struct reftable_table *t, uint8_t typ)
{
switch (typ) {
case REFTABLE_BLOCK_TYPE_REF:
return &t->ref_offsets;
case REFTABLE_BLOCK_TYPE_LOG:
return &t->log_offsets;
case REFTABLE_BLOCK_TYPE_OBJ:
return &t->obj_offsets;
}
abort();
}
enum reftable_hash reftable_table_hash_id(struct reftable_table *t)
{
return t->hash_id;
}
const char *reftable_table_name(struct reftable_table *t)
{
return t->name;
}
static int parse_footer(struct reftable_table *t, uint8_t *footer,
uint8_t *header)
{
uint8_t *f = footer;
uint8_t first_block_typ;
int err = 0;
uint32_t computed_crc;
uint32_t file_crc;
if (memcmp(f, "REFT", 4)) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
f += 4;
if (memcmp(footer, header, header_size(t->version))) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
f++;
t->block_size = reftable_get_be24(f);
f += 3;
t->min_update_index = reftable_get_be64(f);
f += 8;
t->max_update_index = reftable_get_be64(f);
f += 8;
if (t->version == 1) {
t->hash_id = REFTABLE_HASH_SHA1;
} else {
switch (reftable_get_be32(f)) {
case REFTABLE_FORMAT_ID_SHA1:
t->hash_id = REFTABLE_HASH_SHA1;
break;
case REFTABLE_FORMAT_ID_SHA256:
t->hash_id = REFTABLE_HASH_SHA256;
break;
default:
err = REFTABLE_FORMAT_ERROR;
goto done;
}
f += 4;
}
t->ref_offsets.index_offset = reftable_get_be64(f);
f += 8;
t->obj_offsets.offset = reftable_get_be64(f);
f += 8;
t->object_id_len = t->obj_offsets.offset & ((1 << 5) - 1);
t->obj_offsets.offset >>= 5;
t->obj_offsets.index_offset = reftable_get_be64(f);
f += 8;
t->log_offsets.offset = reftable_get_be64(f);
f += 8;
t->log_offsets.index_offset = reftable_get_be64(f);
f += 8;
computed_crc = crc32(0, footer, f - footer);
file_crc = reftable_get_be32(f);
f += 4;
if (computed_crc != file_crc) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
first_block_typ = header[header_size(t->version)];
t->ref_offsets.is_present = (first_block_typ == REFTABLE_BLOCK_TYPE_REF);
t->ref_offsets.offset = 0;
t->log_offsets.is_present = (first_block_typ == REFTABLE_BLOCK_TYPE_LOG ||
t->log_offsets.offset > 0);
t->obj_offsets.is_present = t->obj_offsets.offset > 0;
if (t->obj_offsets.is_present && !t->object_id_len) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
err = 0;
done:
return err;
}
struct table_iter {
struct reftable_table *table;
uint8_t typ;
uint64_t block_off;
struct reftable_block block;
struct block_iter bi;
int is_finished;
};
static int table_iter_init(struct table_iter *ti, struct reftable_table *t)
{
struct block_iter bi = BLOCK_ITER_INIT;
memset(ti, 0, sizeof(*ti));
reftable_table_incref(t);
ti->table = t;
ti->bi = bi;
return 0;
}
static int table_iter_next_in_block(struct table_iter *ti,
struct reftable_record *rec)
{
int res = block_iter_next(&ti->bi, rec);
if (res == 0 && reftable_record_type(rec) == REFTABLE_BLOCK_TYPE_REF) {
rec->u.ref.update_index += ti->table->min_update_index;
}
return res;
}
static void table_iter_block_done(struct table_iter *ti)
{
reftable_block_release(&ti->block);
block_iter_reset(&ti->bi);
}
int table_init_block(struct reftable_table *t, struct reftable_block *block,
uint64_t next_off, uint8_t want_typ)
{
uint32_t header_off = next_off ? 0 : header_size(t->version);
int err;
if (next_off >= t->size)
return 1;
err = reftable_block_init(block, &t->source, next_off, header_off,
t->block_size, hash_size(t->hash_id), want_typ);
if (err)
reftable_block_release(block);
return err;
}
static void table_iter_close(struct table_iter *ti)
{
table_iter_block_done(ti);
block_iter_close(&ti->bi);
reftable_table_decref(ti->table);
}
static int table_iter_next_block(struct table_iter *ti)
{
uint64_t next_block_off = ti->block_off + ti->block.full_block_size;
int err;
err = table_init_block(ti->table, &ti->block, next_block_off, ti->typ);
if (err > 0)
ti->is_finished = 1;
if (err)
return err;
ti->block_off = next_block_off;
ti->is_finished = 0;
block_iter_init(&ti->bi, &ti->block);
return 0;
}
static int table_iter_next(struct table_iter *ti, struct reftable_record *rec)
{
if (reftable_record_type(rec) != ti->typ)
return REFTABLE_API_ERROR;
while (1) {
int err;
if (ti->is_finished)
return 1;
/*
* Check whether the current block still has more records. If
* so, return it. If the iterator returns positive then the
* current block has been exhausted.
*/
err = table_iter_next_in_block(ti, rec);
if (err <= 0)
return err;
/*
* Otherwise, we need to continue to the next block in the
* table and retry. If there are no more blocks then the
* iterator is drained.
*/
err = table_iter_next_block(ti);
if (err) {
ti->is_finished = 1;
return err;
}
}
}
static int table_iter_seek_to(struct table_iter *ti, uint64_t off, uint8_t typ)
{
int err;
err = table_init_block(ti->table, &ti->block, off, typ);
if (err != 0)
return err;
ti->typ = reftable_block_type(&ti->block);
ti->block_off = off;
block_iter_init(&ti->bi, &ti->block);
ti->is_finished = 0;
return 0;
}
static int table_iter_seek_start(struct table_iter *ti, uint8_t typ, int index)
{
struct reftable_table_offsets *offs = table_offsets_for(ti->table, typ);
uint64_t off = offs->offset;
if (index) {
off = offs->index_offset;
if (off == 0) {
return 1;
}
typ = REFTABLE_BLOCK_TYPE_INDEX;
}
return table_iter_seek_to(ti, off, typ);
}
static int table_iter_seek_linear(struct table_iter *ti,
struct reftable_record *want)
{
struct reftable_buf want_key = REFTABLE_BUF_INIT;
struct reftable_buf got_key = REFTABLE_BUF_INIT;
struct reftable_record rec;
int err;
err = reftable_record_init(&rec, reftable_record_type(want));
if (err < 0)
goto done;
err = reftable_record_key(want, &want_key);
if (err < 0)
goto done;
/*
* First we need to locate the block that must contain our record. To
* do so we scan through blocks linearly until we find the first block
* whose first key is bigger than our wanted key. Once we have found
* that block we know that the key must be contained in the preceding
* block.
*
* This algorithm is somewhat unfortunate because it means that we
* always have to seek one block too far and then back up. But as we
* can only decode the _first_ key of a block but not its _last_ key we
* have no other way to do this.
*/
while (1) {
struct table_iter next = *ti;
/*
* We must be careful to not modify underlying data of `ti`
* because we may find that `next` does not contain our desired
* block, but that `ti` does. In that case, we would discard
* `next` and continue with `ti`.
*
* This also means that we cannot reuse allocated memory for
* `next` here. While it would be great if we could, it should
* in practice not be too bad given that we should only ever
* end up doing linear seeks with at most three blocks. As soon
* as we have more than three blocks we would have an index, so
* we would not do a linear search there anymore.
*/
memset(&next.block.block_data, 0, sizeof(next.block.block_data));
next.block.zstream = NULL;
next.block.uncompressed_data = NULL;
next.block.uncompressed_cap = 0;
err = table_iter_next_block(&next);
if (err < 0)
goto done;
if (err > 0)
break;
err = reftable_block_first_key(&next.block, &got_key);
if (err < 0)
goto done;
if (reftable_buf_cmp(&got_key, &want_key) > 0) {
table_iter_block_done(&next);
break;
}
table_iter_block_done(ti);
*ti = next;
}
/*
* We have located the block that must contain our record, so we seek
* the wanted key inside of it. If the block does not contain our key
* we know that the corresponding record does not exist.
*/
block_iter_init(&ti->bi, &ti->block);
err = block_iter_seek_key(&ti->bi, &want_key);
if (err < 0)
goto done;
err = 0;
done:
reftable_record_release(&rec);
reftable_buf_release(&want_key);
reftable_buf_release(&got_key);
return err;
}
static int table_iter_seek_indexed(struct table_iter *ti,
struct reftable_record *rec)
{
struct reftable_record want_index = {
.type = REFTABLE_BLOCK_TYPE_INDEX, .u.idx = { .last_key = REFTABLE_BUF_INIT }
};
struct reftable_record index_result = {
.type = REFTABLE_BLOCK_TYPE_INDEX,
.u.idx = { .last_key = REFTABLE_BUF_INIT },
};
int err;
err = reftable_record_key(rec, &want_index.u.idx.last_key);
if (err < 0)
goto done;
/*
* The index may consist of multiple levels, where each level may have
* multiple index blocks. We start by doing a linear search in the
* highest layer that identifies the relevant index block as well as
* the record inside that block that corresponds to our wanted key.
*/
err = table_iter_seek_linear(ti, &want_index);
if (err < 0)
goto done;
/*
* Traverse down the levels until we find a non-index entry.
*/
while (1) {
/*
* In case we seek a record that does not exist the index iter
* will tell us that the iterator is over. This works because
* the last index entry of the current level will contain the
* last key it knows about. So in case our seeked key is larger
* than the last indexed key we know that it won't exist.
*
* There is one subtlety in the layout of the index section
* that makes this work as expected: the highest-level index is
* at end of the section and will point backwards and thus we
* start reading from the end of the index section, not the
* beginning.
*
* If that wasn't the case and the order was reversed then the
* linear seek would seek into the lower levels and traverse
* all levels of the index only to find out that the key does
* not exist.
*/
err = table_iter_next(ti, &index_result);
if (err != 0)
goto done;
err = table_iter_seek_to(ti, index_result.u.idx.offset, 0);
if (err != 0)
goto done;
block_iter_init(&ti->bi, &ti->block);
err = block_iter_seek_key(&ti->bi, &want_index.u.idx.last_key);
if (err < 0)
goto done;
if (ti->typ == reftable_record_type(rec)) {
err = 0;
break;
}
if (ti->typ != REFTABLE_BLOCK_TYPE_INDEX) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
}
done:
reftable_record_release(&want_index);
reftable_record_release(&index_result);
return err;
}
static int table_iter_seek(struct table_iter *ti,
struct reftable_record *want)
{
uint8_t typ = reftable_record_type(want);
struct reftable_table_offsets *offs = table_offsets_for(ti->table, typ);
int err;
err = table_iter_seek_start(ti, reftable_record_type(want),
!!offs->index_offset);
if (err < 0)
goto out;
if (offs->index_offset)
err = table_iter_seek_indexed(ti, want);
else
err = table_iter_seek_linear(ti, want);
if (err)
goto out;
out:
return err;
}
static int table_iter_seek_void(void *ti, struct reftable_record *want)
{
return table_iter_seek(ti, want);
}
static int table_iter_next_void(void *ti, struct reftable_record *rec)
{
return table_iter_next(ti, rec);
}
static void table_iter_close_void(void *ti)
{
table_iter_close(ti);
}
static struct reftable_iterator_vtable table_iter_vtable = {
.seek = &table_iter_seek_void,
.next = &table_iter_next_void,
.close = &table_iter_close_void,
};
static void iterator_from_table_iter(struct reftable_iterator *it,
struct table_iter *ti)
{
assert(!it->ops);
it->iter_arg = ti;
it->ops = &table_iter_vtable;
}
int table_init_iter(struct reftable_table *t,
struct reftable_iterator *it,
uint8_t typ)
{
struct reftable_table_offsets *offs = table_offsets_for(t, typ);
if (offs->is_present) {
struct table_iter *ti;
REFTABLE_ALLOC_ARRAY(ti, 1);
if (!ti)
return REFTABLE_OUT_OF_MEMORY_ERROR;
table_iter_init(ti, t);
iterator_from_table_iter(it, ti);
} else {
iterator_set_empty(it);
}
return 0;
}
int reftable_table_init_ref_iterator(struct reftable_table *t,
struct reftable_iterator *it)
{
return table_init_iter(t, it, REFTABLE_BLOCK_TYPE_REF);
}
int reftable_table_init_log_iterator(struct reftable_table *t,
struct reftable_iterator *it)
{
return table_init_iter(t, it, REFTABLE_BLOCK_TYPE_LOG);
}
int reftable_table_new(struct reftable_table **out,
struct reftable_block_source *source, char const *name)
{
struct reftable_block_data footer = { 0 };
struct reftable_block_data header = { 0 };
struct reftable_table *t;
uint64_t file_size = block_source_size(source);
uint32_t read_size;
ssize_t bytes_read;
int err;
REFTABLE_CALLOC_ARRAY(t, 1);
if (!t) {
err = REFTABLE_OUT_OF_MEMORY_ERROR;
goto done;
}
/*
* We need one extra byte to read the type of first block. We also
* pretend to always be reading v2 of the format because it is larger.
*/
read_size = header_size(2) + 1;
if (read_size > file_size) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
bytes_read = block_source_read_data(source, &header, 0, read_size);
if (bytes_read < 0 || (size_t)bytes_read != read_size) {
err = REFTABLE_IO_ERROR;
goto done;
}
if (memcmp(header.data, "REFT", 4)) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
t->version = header.data[4];
if (t->version != 1 && t->version != 2) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
t->size = file_size - footer_size(t->version);
t->source = *source;
t->name = reftable_strdup(name);
if (!t->name) {
err = REFTABLE_OUT_OF_MEMORY_ERROR;
goto done;
}
t->hash_id = 0;
t->refcount = 1;
bytes_read = block_source_read_data(source, &footer, t->size,
footer_size(t->version));
if (bytes_read < 0 || (size_t)bytes_read != footer_size(t->version)) {
err = REFTABLE_IO_ERROR;
goto done;
}
err = parse_footer(t, footer.data, header.data);
if (err)
goto done;
*out = t;
done:
block_source_release_data(&footer);
block_source_release_data(&header);
if (err) {
if (t)
reftable_free(t->name);
reftable_free(t);
block_source_close(source);
}
return err;
}
void reftable_table_incref(struct reftable_table *t)
{
t->refcount++;
}
void reftable_table_decref(struct reftable_table *t)
{
if (!t)
return;
if (--t->refcount)
return;
block_source_close(&t->source);
REFTABLE_FREE_AND_NULL(t->name);
reftable_free(t);
}
static int reftable_table_refs_for_indexed(struct reftable_table *t,
struct reftable_iterator *it,
uint8_t *oid)
{
struct reftable_record want = {
.type = REFTABLE_BLOCK_TYPE_OBJ,
.u.obj = {
.hash_prefix = oid,
.hash_prefix_len = t->object_id_len,
},
};
struct reftable_iterator oit = { NULL };
struct reftable_record got = {
.type = REFTABLE_BLOCK_TYPE_OBJ,
.u.obj = { 0 },
};
int err = 0;
struct indexed_table_ref_iter *itr = NULL;
/* Look through the reverse index. */
err = table_init_iter(t, &oit, REFTABLE_BLOCK_TYPE_OBJ);
if (err < 0)
goto done;
err = iterator_seek(&oit, &want);
if (err != 0)
goto done;
/* read out the reftable_obj_record */
err = iterator_next(&oit, &got);
if (err < 0)
goto done;
if (err > 0 || memcmp(want.u.obj.hash_prefix, got.u.obj.hash_prefix,
t->object_id_len)) {
/* didn't find it; return empty iterator */
iterator_set_empty(it);
err = 0;
goto done;
}
err = indexed_table_ref_iter_new(&itr, t, oid, hash_size(t->hash_id),
got.u.obj.offsets,
got.u.obj.offset_len);
if (err < 0)
goto done;
got.u.obj.offsets = NULL;
iterator_from_indexed_table_ref_iter(it, itr);
done:
reftable_iterator_destroy(&oit);
reftable_record_release(&got);
return err;
}
static int reftable_table_refs_for_unindexed(struct reftable_table *t,
struct reftable_iterator *it,
uint8_t *oid)
{
struct table_iter *ti;
struct filtering_ref_iterator *filter = NULL;
struct filtering_ref_iterator empty = FILTERING_REF_ITERATOR_INIT;
uint32_t oid_len = hash_size(t->hash_id);
int err;
REFTABLE_ALLOC_ARRAY(ti, 1);
if (!ti) {
err = REFTABLE_OUT_OF_MEMORY_ERROR;
goto out;
}
table_iter_init(ti, t);
err = table_iter_seek_start(ti, REFTABLE_BLOCK_TYPE_REF, 0);
if (err < 0)
goto out;
filter = reftable_malloc(sizeof(*filter));
if (!filter) {
err = REFTABLE_OUT_OF_MEMORY_ERROR;
goto out;
}
*filter = empty;
err = reftable_buf_add(&filter->oid, oid, oid_len);
if (err < 0)
goto out;
iterator_from_table_iter(&filter->it, ti);
iterator_from_filtering_ref_iterator(it, filter);
err = 0;
out:
if (err < 0) {
if (ti)
table_iter_close(ti);
reftable_free(ti);
}
return err;
}
int reftable_table_refs_for(struct reftable_table *t,
struct reftable_iterator *it, uint8_t *oid)
{
if (t->obj_offsets.is_present)
return reftable_table_refs_for_indexed(t, it, oid);
return reftable_table_refs_for_unindexed(t, it, oid);
}
uint64_t reftable_table_max_update_index(struct reftable_table *t)
{
return t->max_update_index;
}
uint64_t reftable_table_min_update_index(struct reftable_table *t)
{
return t->min_update_index;
}
int reftable_table_iterator_init(struct reftable_table_iterator *it,
struct reftable_table *t)
{
struct table_iter *ti;
int err;
REFTABLE_ALLOC_ARRAY(ti, 1);
if (!ti)
return REFTABLE_OUT_OF_MEMORY_ERROR;
err = table_iter_init(ti, t);
if (err < 0)
goto out;
it->iter_arg = ti;
err = 0;
out:
if (err < 0)
reftable_free(ti);
return err;
}
void reftable_table_iterator_release(struct reftable_table_iterator *it)
{
if (!it->iter_arg)
return;
table_iter_close(it->iter_arg);
reftable_free(it->iter_arg);
it->iter_arg = NULL;
}
int reftable_table_iterator_next(struct reftable_table_iterator *it,
const struct reftable_block **out)
{
struct table_iter *ti = it->iter_arg;
int err;
err = table_iter_next_block(ti);
if (err)
return err;
*out = &ti->block;
return 0;
}