|  | /* | 
|  | *  LibXDiff by Davide Libenzi ( File Differential Library ) | 
|  | *  Copyright (C) 2003	Davide Libenzi | 
|  | * | 
|  | *  This library is free software; you can redistribute it and/or | 
|  | *  modify it under the terms of the GNU Lesser General Public | 
|  | *  License as published by the Free Software Foundation; either | 
|  | *  version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | *  This library is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | *  Lesser General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU Lesser General Public | 
|  | *  License along with this library; if not, write to the Free Software | 
|  | *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | * | 
|  | *  Davide Libenzi <davidel@xmailserver.org> | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "xinclude.h" | 
|  |  | 
|  |  | 
|  |  | 
|  | #define XDL_MAX_COST_MIN 256 | 
|  | #define XDL_HEUR_MIN_COST 256 | 
|  | #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1) | 
|  | #define XDL_SNAKE_CNT 20 | 
|  | #define XDL_K_HEUR 4 | 
|  |  | 
|  |  | 
|  |  | 
|  | typedef struct s_xdpsplit { | 
|  | long i1, i2; | 
|  | int min_lo, min_hi; | 
|  | } xdpsplit_t; | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | static long xdl_split(unsigned long const *ha1, long off1, long lim1, | 
|  | unsigned long const *ha2, long off2, long lim2, | 
|  | long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl, | 
|  | xdalgoenv_t *xenv); | 
|  | static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2); | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers. | 
|  | * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both | 
|  | * the forward diagonal starting from (off1, off2) and the backward diagonal | 
|  | * starting from (lim1, lim2). If the K values on the same diagonal crosses | 
|  | * returns the furthest point of reach. We might end up having to expensive | 
|  | * cases using this algorithm is full, so a little bit of heuristic is needed | 
|  | * to cut the search and to return a suboptimal point. | 
|  | */ | 
|  | static long xdl_split(unsigned long const *ha1, long off1, long lim1, | 
|  | unsigned long const *ha2, long off2, long lim2, | 
|  | long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl, | 
|  | xdalgoenv_t *xenv) { | 
|  | long dmin = off1 - lim2, dmax = lim1 - off2; | 
|  | long fmid = off1 - off2, bmid = lim1 - lim2; | 
|  | long odd = (fmid - bmid) & 1; | 
|  | long fmin = fmid, fmax = fmid; | 
|  | long bmin = bmid, bmax = bmid; | 
|  | long ec, d, i1, i2, prev1, best, dd, v, k; | 
|  |  | 
|  | /* | 
|  | * Set initial diagonal values for both forward and backward path. | 
|  | */ | 
|  | kvdf[fmid] = off1; | 
|  | kvdb[bmid] = lim1; | 
|  |  | 
|  | for (ec = 1;; ec++) { | 
|  | int got_snake = 0; | 
|  |  | 
|  | /* | 
|  | * We need to extent the diagonal "domain" by one. If the next | 
|  | * values exits the box boundaries we need to change it in the | 
|  | * opposite direction because (max - min) must be a power of two. | 
|  | * Also we initialize the external K value to -1 so that we can | 
|  | * avoid extra conditions check inside the core loop. | 
|  | */ | 
|  | if (fmin > dmin) | 
|  | kvdf[--fmin - 1] = -1; | 
|  | else | 
|  | ++fmin; | 
|  | if (fmax < dmax) | 
|  | kvdf[++fmax + 1] = -1; | 
|  | else | 
|  | --fmax; | 
|  |  | 
|  | for (d = fmax; d >= fmin; d -= 2) { | 
|  | if (kvdf[d - 1] >= kvdf[d + 1]) | 
|  | i1 = kvdf[d - 1] + 1; | 
|  | else | 
|  | i1 = kvdf[d + 1]; | 
|  | prev1 = i1; | 
|  | i2 = i1 - d; | 
|  | for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++); | 
|  | if (i1 - prev1 > xenv->snake_cnt) | 
|  | got_snake = 1; | 
|  | kvdf[d] = i1; | 
|  | if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) { | 
|  | spl->i1 = i1; | 
|  | spl->i2 = i2; | 
|  | spl->min_lo = spl->min_hi = 1; | 
|  | return ec; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to extent the diagonal "domain" by one. If the next | 
|  | * values exits the box boundaries we need to change it in the | 
|  | * opposite direction because (max - min) must be a power of two. | 
|  | * Also we initialize the external K value to -1 so that we can | 
|  | * avoid extra conditions check inside the core loop. | 
|  | */ | 
|  | if (bmin > dmin) | 
|  | kvdb[--bmin - 1] = XDL_LINE_MAX; | 
|  | else | 
|  | ++bmin; | 
|  | if (bmax < dmax) | 
|  | kvdb[++bmax + 1] = XDL_LINE_MAX; | 
|  | else | 
|  | --bmax; | 
|  |  | 
|  | for (d = bmax; d >= bmin; d -= 2) { | 
|  | if (kvdb[d - 1] < kvdb[d + 1]) | 
|  | i1 = kvdb[d - 1]; | 
|  | else | 
|  | i1 = kvdb[d + 1] - 1; | 
|  | prev1 = i1; | 
|  | i2 = i1 - d; | 
|  | for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--); | 
|  | if (prev1 - i1 > xenv->snake_cnt) | 
|  | got_snake = 1; | 
|  | kvdb[d] = i1; | 
|  | if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) { | 
|  | spl->i1 = i1; | 
|  | spl->i2 = i2; | 
|  | spl->min_lo = spl->min_hi = 1; | 
|  | return ec; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (need_min) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If the edit cost is above the heuristic trigger and if | 
|  | * we got a good snake, we sample current diagonals to see | 
|  | * if some of the, have reached an "interesting" path. Our | 
|  | * measure is a function of the distance from the diagonal | 
|  | * corner (i1 + i2) penalized with the distance from the | 
|  | * mid diagonal itself. If this value is above the current | 
|  | * edit cost times a magic factor (XDL_K_HEUR) we consider | 
|  | * it interesting. | 
|  | */ | 
|  | if (got_snake && ec > xenv->heur_min) { | 
|  | for (best = 0, d = fmax; d >= fmin; d -= 2) { | 
|  | dd = d > fmid ? d - fmid: fmid - d; | 
|  | i1 = kvdf[d]; | 
|  | i2 = i1 - d; | 
|  | v = (i1 - off1) + (i2 - off2) - dd; | 
|  |  | 
|  | if (v > XDL_K_HEUR * ec && v > best && | 
|  | off1 + xenv->snake_cnt <= i1 && i1 < lim1 && | 
|  | off2 + xenv->snake_cnt <= i2 && i2 < lim2) { | 
|  | for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++) | 
|  | if (k == xenv->snake_cnt) { | 
|  | best = v; | 
|  | spl->i1 = i1; | 
|  | spl->i2 = i2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (best > 0) { | 
|  | spl->min_lo = 1; | 
|  | spl->min_hi = 0; | 
|  | return ec; | 
|  | } | 
|  |  | 
|  | for (best = 0, d = bmax; d >= bmin; d -= 2) { | 
|  | dd = d > bmid ? d - bmid: bmid - d; | 
|  | i1 = kvdb[d]; | 
|  | i2 = i1 - d; | 
|  | v = (lim1 - i1) + (lim2 - i2) - dd; | 
|  |  | 
|  | if (v > XDL_K_HEUR * ec && v > best && | 
|  | off1 < i1 && i1 <= lim1 - xenv->snake_cnt && | 
|  | off2 < i2 && i2 <= lim2 - xenv->snake_cnt) { | 
|  | for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++) | 
|  | if (k == xenv->snake_cnt - 1) { | 
|  | best = v; | 
|  | spl->i1 = i1; | 
|  | spl->i2 = i2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (best > 0) { | 
|  | spl->min_lo = 0; | 
|  | spl->min_hi = 1; | 
|  | return ec; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enough is enough. We spent too much time here and now we collect | 
|  | * the furthest reaching path using the (i1 + i2) measure. | 
|  | */ | 
|  | if (ec >= xenv->mxcost) { | 
|  | long fbest, fbest1, bbest, bbest1; | 
|  |  | 
|  | fbest = fbest1 = -1; | 
|  | for (d = fmax; d >= fmin; d -= 2) { | 
|  | i1 = XDL_MIN(kvdf[d], lim1); | 
|  | i2 = i1 - d; | 
|  | if (lim2 < i2) | 
|  | i1 = lim2 + d, i2 = lim2; | 
|  | if (fbest < i1 + i2) { | 
|  | fbest = i1 + i2; | 
|  | fbest1 = i1; | 
|  | } | 
|  | } | 
|  |  | 
|  | bbest = bbest1 = XDL_LINE_MAX; | 
|  | for (d = bmax; d >= bmin; d -= 2) { | 
|  | i1 = XDL_MAX(off1, kvdb[d]); | 
|  | i2 = i1 - d; | 
|  | if (i2 < off2) | 
|  | i1 = off2 + d, i2 = off2; | 
|  | if (i1 + i2 < bbest) { | 
|  | bbest = i1 + i2; | 
|  | bbest1 = i1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) { | 
|  | spl->i1 = fbest1; | 
|  | spl->i2 = fbest - fbest1; | 
|  | spl->min_lo = 1; | 
|  | spl->min_hi = 0; | 
|  | } else { | 
|  | spl->i1 = bbest1; | 
|  | spl->i2 = bbest - bbest1; | 
|  | spl->min_lo = 0; | 
|  | spl->min_hi = 1; | 
|  | } | 
|  | return ec; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling | 
|  | * the box splitting function. Note that the real job (marking changed lines) | 
|  | * is done in the two boundary reaching checks. | 
|  | */ | 
|  | int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1, | 
|  | diffdata_t *dd2, long off2, long lim2, | 
|  | long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) { | 
|  | unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha; | 
|  |  | 
|  | /* | 
|  | * Shrink the box by walking through each diagonal snake (SW and NE). | 
|  | */ | 
|  | for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++); | 
|  | for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--); | 
|  |  | 
|  | /* | 
|  | * If one dimension is empty, then all records on the other one must | 
|  | * be obviously changed. | 
|  | */ | 
|  | if (off1 == lim1) { | 
|  | char *rchg2 = dd2->rchg; | 
|  | long *rindex2 = dd2->rindex; | 
|  |  | 
|  | for (; off2 < lim2; off2++) | 
|  | rchg2[rindex2[off2]] = 1; | 
|  | } else if (off2 == lim2) { | 
|  | char *rchg1 = dd1->rchg; | 
|  | long *rindex1 = dd1->rindex; | 
|  |  | 
|  | for (; off1 < lim1; off1++) | 
|  | rchg1[rindex1[off1]] = 1; | 
|  | } else { | 
|  | xdpsplit_t spl; | 
|  | spl.i1 = spl.i2 = 0; | 
|  |  | 
|  | /* | 
|  | * Divide ... | 
|  | */ | 
|  | if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb, | 
|  | need_min, &spl, xenv) < 0) { | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ... et Impera. | 
|  | */ | 
|  | if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2, | 
|  | kvdf, kvdb, spl.min_lo, xenv) < 0 || | 
|  | xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2, | 
|  | kvdf, kvdb, spl.min_hi, xenv) < 0) { | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, | 
|  | xdfenv_t *xe) { | 
|  | long ndiags; | 
|  | long *kvd, *kvdf, *kvdb; | 
|  | xdalgoenv_t xenv; | 
|  | diffdata_t dd1, dd2; | 
|  |  | 
|  | if (xpp->flags & XDF_PATIENCE_DIFF) | 
|  | return xdl_do_patience_diff(mf1, mf2, xpp, xe); | 
|  |  | 
|  | if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) { | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and setup K vectors to be used by the differential algorithm. | 
|  | * One is to store the forward path and one to store the backward path. | 
|  | */ | 
|  | ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3; | 
|  | if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) { | 
|  |  | 
|  | xdl_free_env(xe); | 
|  | return -1; | 
|  | } | 
|  | kvdf = kvd; | 
|  | kvdb = kvdf + ndiags; | 
|  | kvdf += xe->xdf2.nreff + 1; | 
|  | kvdb += xe->xdf2.nreff + 1; | 
|  |  | 
|  | xenv.mxcost = xdl_bogosqrt(ndiags); | 
|  | if (xenv.mxcost < XDL_MAX_COST_MIN) | 
|  | xenv.mxcost = XDL_MAX_COST_MIN; | 
|  | xenv.snake_cnt = XDL_SNAKE_CNT; | 
|  | xenv.heur_min = XDL_HEUR_MIN_COST; | 
|  |  | 
|  | dd1.nrec = xe->xdf1.nreff; | 
|  | dd1.ha = xe->xdf1.ha; | 
|  | dd1.rchg = xe->xdf1.rchg; | 
|  | dd1.rindex = xe->xdf1.rindex; | 
|  | dd2.nrec = xe->xdf2.nreff; | 
|  | dd2.ha = xe->xdf2.ha; | 
|  | dd2.rchg = xe->xdf2.rchg; | 
|  | dd2.rindex = xe->xdf2.rindex; | 
|  |  | 
|  | if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec, | 
|  | kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) { | 
|  |  | 
|  | xdl_free(kvd); | 
|  | xdl_free_env(xe); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | xdl_free(kvd); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) { | 
|  | xdchange_t *xch; | 
|  |  | 
|  | if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t)))) | 
|  | return NULL; | 
|  |  | 
|  | xch->next = xscr; | 
|  | xch->i1 = i1; | 
|  | xch->i2 = i2; | 
|  | xch->chg1 = chg1; | 
|  | xch->chg2 = chg2; | 
|  |  | 
|  | return xch; | 
|  | } | 
|  |  | 
|  |  | 
|  | int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) { | 
|  | long ix, ixo, ixs, ixref, grpsiz, nrec = xdf->nrec; | 
|  | char *rchg = xdf->rchg, *rchgo = xdfo->rchg; | 
|  | xrecord_t **recs = xdf->recs; | 
|  |  | 
|  | /* | 
|  | * This is the same of what GNU diff does. Move back and forward | 
|  | * change groups for a consistent and pretty diff output. This also | 
|  | * helps in finding joinable change groups and reduce the diff size. | 
|  | */ | 
|  | for (ix = ixo = 0;;) { | 
|  | /* | 
|  | * Find the first changed line in the to-be-compacted file. | 
|  | * We need to keep track of both indexes, so if we find a | 
|  | * changed lines group on the other file, while scanning the | 
|  | * to-be-compacted file, we need to skip it properly. Note | 
|  | * that loops that are testing for changed lines on rchg* do | 
|  | * not need index bounding since the array is prepared with | 
|  | * a zero at position -1 and N. | 
|  | */ | 
|  | for (; ix < nrec && !rchg[ix]; ix++) | 
|  | while (rchgo[ixo++]); | 
|  | if (ix == nrec) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Record the start of a changed-group in the to-be-compacted file | 
|  | * and find the end of it, on both to-be-compacted and other file | 
|  | * indexes (ix and ixo). | 
|  | */ | 
|  | ixs = ix; | 
|  | for (ix++; rchg[ix]; ix++); | 
|  | for (; rchgo[ixo]; ixo++); | 
|  |  | 
|  | do { | 
|  | grpsiz = ix - ixs; | 
|  |  | 
|  | /* | 
|  | * If the line before the current change group, is equal to | 
|  | * the last line of the current change group, shift backward | 
|  | * the group. | 
|  | */ | 
|  | while (ixs > 0 && recs[ixs - 1]->ha == recs[ix - 1]->ha && | 
|  | xdl_recmatch(recs[ixs - 1]->ptr, recs[ixs - 1]->size, recs[ix - 1]->ptr, recs[ix - 1]->size, flags)) { | 
|  | rchg[--ixs] = 1; | 
|  | rchg[--ix] = 0; | 
|  |  | 
|  | /* | 
|  | * This change might have joined two change groups, | 
|  | * so we try to take this scenario in account by moving | 
|  | * the start index accordingly (and so the other-file | 
|  | * end-of-group index). | 
|  | */ | 
|  | for (; rchg[ixs - 1]; ixs--); | 
|  | while (rchgo[--ixo]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record the end-of-group position in case we are matched | 
|  | * with a group of changes in the other file (that is, the | 
|  | * change record before the end-of-group index in the other | 
|  | * file is set). | 
|  | */ | 
|  | ixref = rchgo[ixo - 1] ? ix: nrec; | 
|  |  | 
|  | /* | 
|  | * If the first line of the current change group, is equal to | 
|  | * the line next of the current change group, shift forward | 
|  | * the group. | 
|  | */ | 
|  | while (ix < nrec && recs[ixs]->ha == recs[ix]->ha && | 
|  | xdl_recmatch(recs[ixs]->ptr, recs[ixs]->size, recs[ix]->ptr, recs[ix]->size, flags)) { | 
|  | rchg[ixs++] = 0; | 
|  | rchg[ix++] = 1; | 
|  |  | 
|  | /* | 
|  | * This change might have joined two change groups, | 
|  | * so we try to take this scenario in account by moving | 
|  | * the start index accordingly (and so the other-file | 
|  | * end-of-group index). Keep tracking the reference | 
|  | * index in case we are shifting together with a | 
|  | * corresponding group of changes in the other file. | 
|  | */ | 
|  | for (; rchg[ix]; ix++); | 
|  | while (rchgo[++ixo]) | 
|  | ixref = ix; | 
|  | } | 
|  | } while (grpsiz != ix - ixs); | 
|  |  | 
|  | /* | 
|  | * Try to move back the possibly merged group of changes, to match | 
|  | * the recorded postion in the other file. | 
|  | */ | 
|  | while (ixref < ix) { | 
|  | rchg[--ixs] = 1; | 
|  | rchg[--ix] = 0; | 
|  | while (rchgo[--ixo]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) { | 
|  | xdchange_t *cscr = NULL, *xch; | 
|  | char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg; | 
|  | long i1, i2, l1, l2; | 
|  |  | 
|  | /* | 
|  | * Trivial. Collects "groups" of changes and creates an edit script. | 
|  | */ | 
|  | for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--) | 
|  | if (rchg1[i1 - 1] || rchg2[i2 - 1]) { | 
|  | for (l1 = i1; rchg1[i1 - 1]; i1--); | 
|  | for (l2 = i2; rchg2[i2 - 1]; i2--); | 
|  |  | 
|  | if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) { | 
|  | xdl_free_script(cscr); | 
|  | return -1; | 
|  | } | 
|  | cscr = xch; | 
|  | } | 
|  |  | 
|  | *xscr = cscr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | void xdl_free_script(xdchange_t *xscr) { | 
|  | xdchange_t *xch; | 
|  |  | 
|  | while ((xch = xscr) != NULL) { | 
|  | xscr = xscr->next; | 
|  | xdl_free(xch); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, | 
|  | xdemitconf_t const *xecfg, xdemitcb_t *ecb) { | 
|  | xdchange_t *xscr; | 
|  | xdfenv_t xe; | 
|  | emit_func_t ef = xecfg->emit_func ? | 
|  | (emit_func_t)xecfg->emit_func : xdl_emit_diff; | 
|  |  | 
|  | if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) { | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 || | 
|  | xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 || | 
|  | xdl_build_script(&xe, &xscr) < 0) { | 
|  |  | 
|  | xdl_free_env(&xe); | 
|  | return -1; | 
|  | } | 
|  | if (xscr) { | 
|  | if (ef(&xe, xscr, ecb, xecfg) < 0) { | 
|  |  | 
|  | xdl_free_script(xscr); | 
|  | xdl_free_env(&xe); | 
|  | return -1; | 
|  | } | 
|  | xdl_free_script(xscr); | 
|  | } | 
|  | xdl_free_env(&xe); | 
|  |  | 
|  | return 0; | 
|  | } |