|  | /* | 
|  | This is a version (aka dlmalloc) of malloc/free/realloc written by | 
|  | Doug Lea and released to the public domain, as explained at | 
|  | http://creativecommons.org/licenses/publicdomain.  Send questions, | 
|  | comments, complaints, performance data, etc to dl@cs.oswego.edu | 
|  |  | 
|  | * Version pre-2.8.4 Mon Nov 27 11:22:37 2006    (dl at gee) | 
|  |  | 
|  | Note: There may be an updated version of this malloc obtainable at | 
|  | ftp://gee.cs.oswego.edu/pub/misc/malloc.c | 
|  | Check before installing! | 
|  |  | 
|  | * Quickstart | 
|  |  | 
|  | This library is all in one file to simplify the most common usage: | 
|  | ftp it, compile it (-O3), and link it into another program. All of | 
|  | the compile-time options default to reasonable values for use on | 
|  | most platforms.  You might later want to step through various | 
|  | compile-time and dynamic tuning options. | 
|  |  | 
|  | For convenience, an include file for code using this malloc is at: | 
|  | ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h | 
|  | You don't really need this .h file unless you call functions not | 
|  | defined in your system include files.  The .h file contains only the | 
|  | excerpts from this file needed for using this malloc on ANSI C/C++ | 
|  | systems, so long as you haven't changed compile-time options about | 
|  | naming and tuning parameters.  If you do, then you can create your | 
|  | own malloc.h that does include all settings by cutting at the point | 
|  | indicated below. Note that you may already by default be using a C | 
|  | library containing a malloc that is based on some version of this | 
|  | malloc (for example in linux). You might still want to use the one | 
|  | in this file to customize settings or to avoid overheads associated | 
|  | with library versions. | 
|  |  | 
|  | * Vital statistics: | 
|  |  | 
|  | Supported pointer/size_t representation:       4 or 8 bytes | 
|  | size_t MUST be an unsigned type of the same width as | 
|  | pointers. (If you are using an ancient system that declares | 
|  | size_t as a signed type, or need it to be a different width | 
|  | than pointers, you can use a previous release of this malloc | 
|  | (e.g. 2.7.2) supporting these.) | 
|  |  | 
|  | Alignment:                                     8 bytes (default) | 
|  | This suffices for nearly all current machines and C compilers. | 
|  | However, you can define MALLOC_ALIGNMENT to be wider than this | 
|  | if necessary (up to 128bytes), at the expense of using more space. | 
|  |  | 
|  | Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes) | 
|  | 8 or 16 bytes (if 8byte sizes) | 
|  | Each malloced chunk has a hidden word of overhead holding size | 
|  | and status information, and additional cross-check word | 
|  | if FOOTERS is defined. | 
|  |  | 
|  | Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead) | 
|  | 8-byte ptrs:  32 bytes    (including overhead) | 
|  |  | 
|  | Even a request for zero bytes (i.e., malloc(0)) returns a | 
|  | pointer to something of the minimum allocatable size. | 
|  | The maximum overhead wastage (i.e., number of extra bytes | 
|  | allocated than were requested in malloc) is less than or equal | 
|  | to the minimum size, except for requests >= mmap_threshold that | 
|  | are serviced via mmap(), where the worst case wastage is about | 
|  | 32 bytes plus the remainder from a system page (the minimal | 
|  | mmap unit); typically 4096 or 8192 bytes. | 
|  |  | 
|  | Security: static-safe; optionally more or less | 
|  | The "security" of malloc refers to the ability of malicious | 
|  | code to accentuate the effects of errors (for example, freeing | 
|  | space that is not currently malloc'ed or overwriting past the | 
|  | ends of chunks) in code that calls malloc.  This malloc | 
|  | guarantees not to modify any memory locations below the base of | 
|  | heap, i.e., static variables, even in the presence of usage | 
|  | errors.  The routines additionally detect most improper frees | 
|  | and reallocs.  All this holds as long as the static bookkeeping | 
|  | for malloc itself is not corrupted by some other means.  This | 
|  | is only one aspect of security -- these checks do not, and | 
|  | cannot, detect all possible programming errors. | 
|  |  | 
|  | If FOOTERS is defined nonzero, then each allocated chunk | 
|  | carries an additional check word to verify that it was malloced | 
|  | from its space.  These check words are the same within each | 
|  | execution of a program using malloc, but differ across | 
|  | executions, so externally crafted fake chunks cannot be | 
|  | freed. This improves security by rejecting frees/reallocs that | 
|  | could corrupt heap memory, in addition to the checks preventing | 
|  | writes to statics that are always on.  This may further improve | 
|  | security at the expense of time and space overhead.  (Note that | 
|  | FOOTERS may also be worth using with MSPACES.) | 
|  |  | 
|  | By default detected errors cause the program to abort (calling | 
|  | "abort()"). You can override this to instead proceed past | 
|  | errors by defining PROCEED_ON_ERROR.  In this case, a bad free | 
|  | has no effect, and a malloc that encounters a bad address | 
|  | caused by user overwrites will ignore the bad address by | 
|  | dropping pointers and indices to all known memory. This may | 
|  | be appropriate for programs that should continue if at all | 
|  | possible in the face of programming errors, although they may | 
|  | run out of memory because dropped memory is never reclaimed. | 
|  |  | 
|  | If you don't like either of these options, you can define | 
|  | CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything | 
|  | else. And if if you are sure that your program using malloc has | 
|  | no errors or vulnerabilities, you can define INSECURE to 1, | 
|  | which might (or might not) provide a small performance improvement. | 
|  |  | 
|  | Thread-safety: NOT thread-safe unless USE_LOCKS defined | 
|  | When USE_LOCKS is defined, each public call to malloc, free, | 
|  | etc is surrounded with either a pthread mutex or a win32 | 
|  | spinlock (depending on WIN32). This is not especially fast, and | 
|  | can be a major bottleneck.  It is designed only to provide | 
|  | minimal protection in concurrent environments, and to provide a | 
|  | basis for extensions.  If you are using malloc in a concurrent | 
|  | program, consider instead using nedmalloc | 
|  | (http://www.nedprod.com/programs/portable/nedmalloc/) or | 
|  | ptmalloc (See http://www.malloc.de), which are derived | 
|  | from versions of this malloc. | 
|  |  | 
|  | System requirements: Any combination of MORECORE and/or MMAP/MUNMAP | 
|  | This malloc can use unix sbrk or any emulation (invoked using | 
|  | the CALL_MORECORE macro) and/or mmap/munmap or any emulation | 
|  | (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system | 
|  | memory.  On most unix systems, it tends to work best if both | 
|  | MORECORE and MMAP are enabled.  On Win32, it uses emulations | 
|  | based on VirtualAlloc. It also uses common C library functions | 
|  | like memset. | 
|  |  | 
|  | Compliance: I believe it is compliant with the Single Unix Specification | 
|  | (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably | 
|  | others as well. | 
|  |  | 
|  | * Overview of algorithms | 
|  |  | 
|  | This is not the fastest, most space-conserving, most portable, or | 
|  | most tunable malloc ever written. However it is among the fastest | 
|  | while also being among the most space-conserving, portable and | 
|  | tunable.  Consistent balance across these factors results in a good | 
|  | general-purpose allocator for malloc-intensive programs. | 
|  |  | 
|  | In most ways, this malloc is a best-fit allocator. Generally, it | 
|  | chooses the best-fitting existing chunk for a request, with ties | 
|  | broken in approximately least-recently-used order. (This strategy | 
|  | normally maintains low fragmentation.) However, for requests less | 
|  | than 256bytes, it deviates from best-fit when there is not an | 
|  | exactly fitting available chunk by preferring to use space adjacent | 
|  | to that used for the previous small request, as well as by breaking | 
|  | ties in approximately most-recently-used order. (These enhance | 
|  | locality of series of small allocations.)  And for very large requests | 
|  | (>= 256Kb by default), it relies on system memory mapping | 
|  | facilities, if supported.  (This helps avoid carrying around and | 
|  | possibly fragmenting memory used only for large chunks.) | 
|  |  | 
|  | All operations (except malloc_stats and mallinfo) have execution | 
|  | times that are bounded by a constant factor of the number of bits in | 
|  | a size_t, not counting any clearing in calloc or copying in realloc, | 
|  | or actions surrounding MORECORE and MMAP that have times | 
|  | proportional to the number of non-contiguous regions returned by | 
|  | system allocation routines, which is often just 1. In real-time | 
|  | applications, you can optionally suppress segment traversals using | 
|  | NO_SEGMENT_TRAVERSAL, which assures bounded execution even when | 
|  | system allocators return non-contiguous spaces, at the typical | 
|  | expense of carrying around more memory and increased fragmentation. | 
|  |  | 
|  | The implementation is not very modular and seriously overuses | 
|  | macros. Perhaps someday all C compilers will do as good a job | 
|  | inlining modular code as can now be done by brute-force expansion, | 
|  | but now, enough of them seem not to. | 
|  |  | 
|  | Some compilers issue a lot of warnings about code that is | 
|  | dead/unreachable only on some platforms, and also about intentional | 
|  | uses of negation on unsigned types. All known cases of each can be | 
|  | ignored. | 
|  |  | 
|  | For a longer but out of date high-level description, see | 
|  | http://gee.cs.oswego.edu/dl/html/malloc.html | 
|  |  | 
|  | * MSPACES | 
|  | If MSPACES is defined, then in addition to malloc, free, etc., | 
|  | this file also defines mspace_malloc, mspace_free, etc. These | 
|  | are versions of malloc routines that take an "mspace" argument | 
|  | obtained using create_mspace, to control all internal bookkeeping. | 
|  | If ONLY_MSPACES is defined, only these versions are compiled. | 
|  | So if you would like to use this allocator for only some allocations, | 
|  | and your system malloc for others, you can compile with | 
|  | ONLY_MSPACES and then do something like... | 
|  | static mspace mymspace = create_mspace(0,0); // for example | 
|  | #define mymalloc(bytes)  mspace_malloc(mymspace, bytes) | 
|  |  | 
|  | (Note: If you only need one instance of an mspace, you can instead | 
|  | use "USE_DL_PREFIX" to relabel the global malloc.) | 
|  |  | 
|  | You can similarly create thread-local allocators by storing | 
|  | mspaces as thread-locals. For example: | 
|  | static __thread mspace tlms = 0; | 
|  | void*  tlmalloc(size_t bytes) { | 
|  | if (tlms == 0) tlms = create_mspace(0, 0); | 
|  | return mspace_malloc(tlms, bytes); | 
|  | } | 
|  | void  tlfree(void* mem) { mspace_free(tlms, mem); } | 
|  |  | 
|  | Unless FOOTERS is defined, each mspace is completely independent. | 
|  | You cannot allocate from one and free to another (although | 
|  | conformance is only weakly checked, so usage errors are not always | 
|  | caught). If FOOTERS is defined, then each chunk carries around a tag | 
|  | indicating its originating mspace, and frees are directed to their | 
|  | originating spaces. | 
|  |  | 
|  | -------------------------  Compile-time options --------------------------- | 
|  |  | 
|  | Be careful in setting #define values for numerical constants of type | 
|  | size_t. On some systems, literal values are not automatically extended | 
|  | to size_t precision unless they are explicitly casted. You can also | 
|  | use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. | 
|  |  | 
|  | WIN32                    default: defined if _WIN32 defined | 
|  | Defining WIN32 sets up defaults for MS environment and compilers. | 
|  | Otherwise defaults are for unix. Beware that there seem to be some | 
|  | cases where this malloc might not be a pure drop-in replacement for | 
|  | Win32 malloc: Random-looking failures from Win32 GDI API's (eg; | 
|  | SetDIBits()) may be due to bugs in some video driver implementations | 
|  | when pixel buffers are malloc()ed, and the region spans more than | 
|  | one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) | 
|  | default granularity, pixel buffers may straddle virtual allocation | 
|  | regions more often than when using the Microsoft allocator.  You can | 
|  | avoid this by using VirtualAlloc() and VirtualFree() for all pixel | 
|  | buffers rather than using malloc().  If this is not possible, | 
|  | recompile this malloc with a larger DEFAULT_GRANULARITY. | 
|  |  | 
|  | MALLOC_ALIGNMENT         default: (size_t)8 | 
|  | Controls the minimum alignment for malloc'ed chunks.  It must be a | 
|  | power of two and at least 8, even on machines for which smaller | 
|  | alignments would suffice. It may be defined as larger than this | 
|  | though. Note however that code and data structures are optimized for | 
|  | the case of 8-byte alignment. | 
|  |  | 
|  | MSPACES                  default: 0 (false) | 
|  | If true, compile in support for independent allocation spaces. | 
|  | This is only supported if HAVE_MMAP is true. | 
|  |  | 
|  | ONLY_MSPACES             default: 0 (false) | 
|  | If true, only compile in mspace versions, not regular versions. | 
|  |  | 
|  | USE_LOCKS                default: 0 (false) | 
|  | Causes each call to each public routine to be surrounded with | 
|  | pthread or WIN32 mutex lock/unlock. (If set true, this can be | 
|  | overridden on a per-mspace basis for mspace versions.) If set to a | 
|  | non-zero value other than 1, locks are used, but their | 
|  | implementation is left out, so lock functions must be supplied manually. | 
|  |  | 
|  | USE_SPIN_LOCKS           default: 1 iff USE_LOCKS and on x86 using gcc or MSC | 
|  | If true, uses custom spin locks for locking. This is currently | 
|  | supported only for x86 platforms using gcc or recent MS compilers. | 
|  | Otherwise, posix locks or win32 critical sections are used. | 
|  |  | 
|  | FOOTERS                  default: 0 | 
|  | If true, provide extra checking and dispatching by placing | 
|  | information in the footers of allocated chunks. This adds | 
|  | space and time overhead. | 
|  |  | 
|  | INSECURE                 default: 0 | 
|  | If true, omit checks for usage errors and heap space overwrites. | 
|  |  | 
|  | USE_DL_PREFIX            default: NOT defined | 
|  | Causes compiler to prefix all public routines with the string 'dl'. | 
|  | This can be useful when you only want to use this malloc in one part | 
|  | of a program, using your regular system malloc elsewhere. | 
|  |  | 
|  | ABORT                    default: defined as abort() | 
|  | Defines how to abort on failed checks.  On most systems, a failed | 
|  | check cannot die with an "assert" or even print an informative | 
|  | message, because the underlying print routines in turn call malloc, | 
|  | which will fail again.  Generally, the best policy is to simply call | 
|  | abort(). It's not very useful to do more than this because many | 
|  | errors due to overwriting will show up as address faults (null, odd | 
|  | addresses etc) rather than malloc-triggered checks, so will also | 
|  | abort.  Also, most compilers know that abort() does not return, so | 
|  | can better optimize code conditionally calling it. | 
|  |  | 
|  | PROCEED_ON_ERROR           default: defined as 0 (false) | 
|  | Controls whether detected bad addresses cause them to bypassed | 
|  | rather than aborting. If set, detected bad arguments to free and | 
|  | realloc are ignored. And all bookkeeping information is zeroed out | 
|  | upon a detected overwrite of freed heap space, thus losing the | 
|  | ability to ever return it from malloc again, but enabling the | 
|  | application to proceed. If PROCEED_ON_ERROR is defined, the | 
|  | static variable malloc_corruption_error_count is compiled in | 
|  | and can be examined to see if errors have occurred. This option | 
|  | generates slower code than the default abort policy. | 
|  |  | 
|  | DEBUG                    default: NOT defined | 
|  | The DEBUG setting is mainly intended for people trying to modify | 
|  | this code or diagnose problems when porting to new platforms. | 
|  | However, it may also be able to better isolate user errors than just | 
|  | using runtime checks.  The assertions in the check routines spell | 
|  | out in more detail the assumptions and invariants underlying the | 
|  | algorithms.  The checking is fairly extensive, and will slow down | 
|  | execution noticeably. Calling malloc_stats or mallinfo with DEBUG | 
|  | set will attempt to check every non-mmapped allocated and free chunk | 
|  | in the course of computing the summaries. | 
|  |  | 
|  | ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true) | 
|  | Debugging assertion failures can be nearly impossible if your | 
|  | version of the assert macro causes malloc to be called, which will | 
|  | lead to a cascade of further failures, blowing the runtime stack. | 
|  | ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), | 
|  | which will usually make debugging easier. | 
|  |  | 
|  | MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32 | 
|  | The action to take before "return 0" when malloc fails to be able to | 
|  | return memory because there is none available. | 
|  |  | 
|  | HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES | 
|  | True if this system supports sbrk or an emulation of it. | 
|  |  | 
|  | MORECORE                  default: sbrk | 
|  | The name of the sbrk-style system routine to call to obtain more | 
|  | memory.  See below for guidance on writing custom MORECORE | 
|  | functions. The type of the argument to sbrk/MORECORE varies across | 
|  | systems.  It cannot be size_t, because it supports negative | 
|  | arguments, so it is normally the signed type of the same width as | 
|  | size_t (sometimes declared as "intptr_t").  It doesn't much matter | 
|  | though. Internally, we only call it with arguments less than half | 
|  | the max value of a size_t, which should work across all reasonable | 
|  | possibilities, although sometimes generating compiler warnings. | 
|  |  | 
|  | MORECORE_CONTIGUOUS       default: 1 (true) if HAVE_MORECORE | 
|  | If true, take advantage of fact that consecutive calls to MORECORE | 
|  | with positive arguments always return contiguous increasing | 
|  | addresses.  This is true of unix sbrk. It does not hurt too much to | 
|  | set it true anyway, since malloc copes with non-contiguities. | 
|  | Setting it false when definitely non-contiguous saves time | 
|  | and possibly wasted space it would take to discover this though. | 
|  |  | 
|  | MORECORE_CANNOT_TRIM      default: NOT defined | 
|  | True if MORECORE cannot release space back to the system when given | 
|  | negative arguments. This is generally necessary only if you are | 
|  | using a hand-crafted MORECORE function that cannot handle negative | 
|  | arguments. | 
|  |  | 
|  | NO_SEGMENT_TRAVERSAL       default: 0 | 
|  | If non-zero, suppresses traversals of memory segments | 
|  | returned by either MORECORE or CALL_MMAP. This disables | 
|  | merging of segments that are contiguous, and selectively | 
|  | releasing them to the OS if unused, but bounds execution times. | 
|  |  | 
|  | HAVE_MMAP                 default: 1 (true) | 
|  | True if this system supports mmap or an emulation of it.  If so, and | 
|  | HAVE_MORECORE is not true, MMAP is used for all system | 
|  | allocation. If set and HAVE_MORECORE is true as well, MMAP is | 
|  | primarily used to directly allocate very large blocks. It is also | 
|  | used as a backup strategy in cases where MORECORE fails to provide | 
|  | space from system. Note: A single call to MUNMAP is assumed to be | 
|  | able to unmap memory that may have be allocated using multiple calls | 
|  | to MMAP, so long as they are adjacent. | 
|  |  | 
|  | HAVE_MREMAP               default: 1 on linux, else 0 | 
|  | If true realloc() uses mremap() to re-allocate large blocks and | 
|  | extend or shrink allocation spaces. | 
|  |  | 
|  | MMAP_CLEARS               default: 1 except on WINCE. | 
|  | True if mmap clears memory so calloc doesn't need to. This is true | 
|  | for standard unix mmap using /dev/zero and on WIN32 except for WINCE. | 
|  |  | 
|  | USE_BUILTIN_FFS            default: 0 (i.e., not used) | 
|  | Causes malloc to use the builtin ffs() function to compute indices. | 
|  | Some compilers may recognize and intrinsify ffs to be faster than the | 
|  | supplied C version. Also, the case of x86 using gcc is special-cased | 
|  | to an asm instruction, so is already as fast as it can be, and so | 
|  | this setting has no effect. Similarly for Win32 under recent MS compilers. | 
|  | (On most x86s, the asm version is only slightly faster than the C version.) | 
|  |  | 
|  | malloc_getpagesize         default: derive from system includes, or 4096. | 
|  | The system page size. To the extent possible, this malloc manages | 
|  | memory from the system in page-size units.  This may be (and | 
|  | usually is) a function rather than a constant. This is ignored | 
|  | if WIN32, where page size is determined using getSystemInfo during | 
|  | initialization. | 
|  |  | 
|  | USE_DEV_RANDOM             default: 0 (i.e., not used) | 
|  | Causes malloc to use /dev/random to initialize secure magic seed for | 
|  | stamping footers. Otherwise, the current time is used. | 
|  |  | 
|  | NO_MALLINFO                default: 0 | 
|  | If defined, don't compile "mallinfo". This can be a simple way | 
|  | of dealing with mismatches between system declarations and | 
|  | those in this file. | 
|  |  | 
|  | MALLINFO_FIELD_TYPE        default: size_t | 
|  | The type of the fields in the mallinfo struct. This was originally | 
|  | defined as "int" in SVID etc, but is more usefully defined as | 
|  | size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set | 
|  |  | 
|  | REALLOC_ZERO_BYTES_FREES    default: not defined | 
|  | This should be set if a call to realloc with zero bytes should | 
|  | be the same as a call to free. Some people think it should. Otherwise, | 
|  | since this malloc returns a unique pointer for malloc(0), so does | 
|  | realloc(p, 0). | 
|  |  | 
|  | LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H | 
|  | LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H | 
|  | LACKS_STDLIB_H                default: NOT defined unless on WIN32 | 
|  | Define these if your system does not have these header files. | 
|  | You might need to manually insert some of the declarations they provide. | 
|  |  | 
|  | DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS, | 
|  | system_info.dwAllocationGranularity in WIN32, | 
|  | otherwise 64K. | 
|  | Also settable using mallopt(M_GRANULARITY, x) | 
|  | The unit for allocating and deallocating memory from the system.  On | 
|  | most systems with contiguous MORECORE, there is no reason to | 
|  | make this more than a page. However, systems with MMAP tend to | 
|  | either require or encourage larger granularities.  You can increase | 
|  | this value to prevent system allocation functions to be called so | 
|  | often, especially if they are slow.  The value must be at least one | 
|  | page and must be a power of two.  Setting to 0 causes initialization | 
|  | to either page size or win32 region size.  (Note: In previous | 
|  | versions of malloc, the equivalent of this option was called | 
|  | "TOP_PAD") | 
|  |  | 
|  | DEFAULT_TRIM_THRESHOLD    default: 2MB | 
|  | Also settable using mallopt(M_TRIM_THRESHOLD, x) | 
|  | The maximum amount of unused top-most memory to keep before | 
|  | releasing via malloc_trim in free().  Automatic trimming is mainly | 
|  | useful in long-lived programs using contiguous MORECORE.  Because | 
|  | trimming via sbrk can be slow on some systems, and can sometimes be | 
|  | wasteful (in cases where programs immediately afterward allocate | 
|  | more large chunks) the value should be high enough so that your | 
|  | overall system performance would improve by releasing this much | 
|  | memory.  As a rough guide, you might set to a value close to the | 
|  | average size of a process (program) running on your system. | 
|  | Releasing this much memory would allow such a process to run in | 
|  | memory.  Generally, it is worth tuning trim thresholds when a | 
|  | program undergoes phases where several large chunks are allocated | 
|  | and released in ways that can reuse each other's storage, perhaps | 
|  | mixed with phases where there are no such chunks at all. The trim | 
|  | value must be greater than page size to have any useful effect.  To | 
|  | disable trimming completely, you can set to MAX_SIZE_T. Note that the trick | 
|  | some people use of mallocing a huge space and then freeing it at | 
|  | program startup, in an attempt to reserve system memory, doesn't | 
|  | have the intended effect under automatic trimming, since that memory | 
|  | will immediately be returned to the system. | 
|  |  | 
|  | DEFAULT_MMAP_THRESHOLD       default: 256K | 
|  | Also settable using mallopt(M_MMAP_THRESHOLD, x) | 
|  | The request size threshold for using MMAP to directly service a | 
|  | request. Requests of at least this size that cannot be allocated | 
|  | using already-existing space will be serviced via mmap.  (If enough | 
|  | normal freed space already exists it is used instead.)  Using mmap | 
|  | segregates relatively large chunks of memory so that they can be | 
|  | individually obtained and released from the host system. A request | 
|  | serviced through mmap is never reused by any other request (at least | 
|  | not directly; the system may just so happen to remap successive | 
|  | requests to the same locations).  Segregating space in this way has | 
|  | the benefits that: Mmapped space can always be individually released | 
|  | back to the system, which helps keep the system level memory demands | 
|  | of a long-lived program low.  Also, mapped memory doesn't become | 
|  | `locked' between other chunks, as can happen with normally allocated | 
|  | chunks, which means that even trimming via malloc_trim would not | 
|  | release them.  However, it has the disadvantage that the space | 
|  | cannot be reclaimed, consolidated, and then used to service later | 
|  | requests, as happens with normal chunks.  The advantages of mmap | 
|  | nearly always outweigh disadvantages for "large" chunks, but the | 
|  | value of "large" may vary across systems.  The default is an | 
|  | empirically derived value that works well in most systems. You can | 
|  | disable mmap by setting to MAX_SIZE_T. | 
|  |  | 
|  | MAX_RELEASE_CHECK_RATE   default: 4095 unless not HAVE_MMAP | 
|  | The number of consolidated frees between checks to release | 
|  | unused segments when freeing. When using non-contiguous segments, | 
|  | especially with multiple mspaces, checking only for topmost space | 
|  | doesn't always suffice to trigger trimming. To compensate for this, | 
|  | free() will, with a period of MAX_RELEASE_CHECK_RATE (or the | 
|  | current number of segments, if greater) try to release unused | 
|  | segments to the OS when freeing chunks that result in | 
|  | consolidation. The best value for this parameter is a compromise | 
|  | between slowing down frees with relatively costly checks that | 
|  | rarely trigger versus holding on to unused memory. To effectively | 
|  | disable, set to MAX_SIZE_T. This may lead to a very slight speed | 
|  | improvement at the expense of carrying around more memory. | 
|  | */ | 
|  |  | 
|  | /* Version identifier to allow people to support multiple versions */ | 
|  | #ifndef DLMALLOC_VERSION | 
|  | #define DLMALLOC_VERSION 20804 | 
|  | #endif /* DLMALLOC_VERSION */ | 
|  |  | 
|  | #ifndef WIN32 | 
|  | #ifdef _WIN32 | 
|  | #define WIN32 1 | 
|  | #endif  /* _WIN32 */ | 
|  | #ifdef _WIN32_WCE | 
|  | #define LACKS_FCNTL_H | 
|  | #define WIN32 1 | 
|  | #endif /* _WIN32_WCE */ | 
|  | #endif  /* WIN32 */ | 
|  | #ifdef WIN32 | 
|  | #define WIN32_LEAN_AND_MEAN | 
|  | #define _WIN32_WINNT 0x403 | 
|  | #include <windows.h> | 
|  | #define HAVE_MMAP 1 | 
|  | #define HAVE_MORECORE 0 | 
|  | #define LACKS_UNISTD_H | 
|  | #define LACKS_SYS_PARAM_H | 
|  | #define LACKS_SYS_MMAN_H | 
|  | #define LACKS_STRING_H | 
|  | #define LACKS_STRINGS_H | 
|  | #define LACKS_SYS_TYPES_H | 
|  | #define LACKS_ERRNO_H | 
|  | #ifndef MALLOC_FAILURE_ACTION | 
|  | #define MALLOC_FAILURE_ACTION | 
|  | #endif /* MALLOC_FAILURE_ACTION */ | 
|  | #ifdef _WIN32_WCE /* WINCE reportedly does not clear */ | 
|  | #define MMAP_CLEARS 0 | 
|  | #else | 
|  | #define MMAP_CLEARS 1 | 
|  | #endif /* _WIN32_WCE */ | 
|  | #endif  /* WIN32 */ | 
|  |  | 
|  | #if defined(DARWIN) || defined(_DARWIN) | 
|  | /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ | 
|  | #ifndef HAVE_MORECORE | 
|  | #define HAVE_MORECORE 0 | 
|  | #define HAVE_MMAP 1 | 
|  | /* OSX allocators provide 16 byte alignment */ | 
|  | #ifndef MALLOC_ALIGNMENT | 
|  | #define MALLOC_ALIGNMENT ((size_t)16U) | 
|  | #endif | 
|  | #endif  /* HAVE_MORECORE */ | 
|  | #endif  /* DARWIN */ | 
|  |  | 
|  | #ifndef LACKS_SYS_TYPES_H | 
|  | #include <sys/types.h>  /* For size_t */ | 
|  | #endif  /* LACKS_SYS_TYPES_H */ | 
|  |  | 
|  | /* The maximum possible size_t value has all bits set */ | 
|  | #define MAX_SIZE_T           (~(size_t)0) | 
|  |  | 
|  | #ifndef ONLY_MSPACES | 
|  | #define ONLY_MSPACES 0     /* define to a value */ | 
|  | #else | 
|  | #define ONLY_MSPACES 1 | 
|  | #endif  /* ONLY_MSPACES */ | 
|  | #ifndef MSPACES | 
|  | #if ONLY_MSPACES | 
|  | #define MSPACES 1 | 
|  | #else   /* ONLY_MSPACES */ | 
|  | #define MSPACES 0 | 
|  | #endif  /* ONLY_MSPACES */ | 
|  | #endif  /* MSPACES */ | 
|  | #ifndef MALLOC_ALIGNMENT | 
|  | #define MALLOC_ALIGNMENT ((size_t)8U) | 
|  | #endif  /* MALLOC_ALIGNMENT */ | 
|  | #ifndef FOOTERS | 
|  | #define FOOTERS 0 | 
|  | #endif  /* FOOTERS */ | 
|  | #ifndef ABORT | 
|  | #define ABORT  abort() | 
|  | #endif  /* ABORT */ | 
|  | #ifndef ABORT_ON_ASSERT_FAILURE | 
|  | #define ABORT_ON_ASSERT_FAILURE 1 | 
|  | #endif  /* ABORT_ON_ASSERT_FAILURE */ | 
|  | #ifndef PROCEED_ON_ERROR | 
|  | #define PROCEED_ON_ERROR 0 | 
|  | #endif  /* PROCEED_ON_ERROR */ | 
|  | #ifndef USE_LOCKS | 
|  | #define USE_LOCKS 0 | 
|  | #endif  /* USE_LOCKS */ | 
|  | #ifndef USE_SPIN_LOCKS | 
|  | #if USE_LOCKS && (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310) | 
|  | #define USE_SPIN_LOCKS 1 | 
|  | #else | 
|  | #define USE_SPIN_LOCKS 0 | 
|  | #endif /* USE_LOCKS && ... */ | 
|  | #endif /* USE_SPIN_LOCKS */ | 
|  | #ifndef INSECURE | 
|  | #define INSECURE 0 | 
|  | #endif  /* INSECURE */ | 
|  | #ifndef HAVE_MMAP | 
|  | #define HAVE_MMAP 1 | 
|  | #endif  /* HAVE_MMAP */ | 
|  | #ifndef MMAP_CLEARS | 
|  | #define MMAP_CLEARS 1 | 
|  | #endif  /* MMAP_CLEARS */ | 
|  | #ifndef HAVE_MREMAP | 
|  | #ifdef linux | 
|  | #define HAVE_MREMAP 1 | 
|  | #else   /* linux */ | 
|  | #define HAVE_MREMAP 0 | 
|  | #endif  /* linux */ | 
|  | #endif  /* HAVE_MREMAP */ | 
|  | #ifndef MALLOC_FAILURE_ACTION | 
|  | #define MALLOC_FAILURE_ACTION  errno = ENOMEM; | 
|  | #endif  /* MALLOC_FAILURE_ACTION */ | 
|  | #ifndef HAVE_MORECORE | 
|  | #if ONLY_MSPACES | 
|  | #define HAVE_MORECORE 0 | 
|  | #else   /* ONLY_MSPACES */ | 
|  | #define HAVE_MORECORE 1 | 
|  | #endif  /* ONLY_MSPACES */ | 
|  | #endif  /* HAVE_MORECORE */ | 
|  | #if !HAVE_MORECORE | 
|  | #define MORECORE_CONTIGUOUS 0 | 
|  | #else   /* !HAVE_MORECORE */ | 
|  | #define MORECORE_DEFAULT sbrk | 
|  | #ifndef MORECORE_CONTIGUOUS | 
|  | #define MORECORE_CONTIGUOUS 1 | 
|  | #endif  /* MORECORE_CONTIGUOUS */ | 
|  | #endif  /* HAVE_MORECORE */ | 
|  | #ifndef DEFAULT_GRANULARITY | 
|  | #if (MORECORE_CONTIGUOUS || defined(WIN32)) | 
|  | #define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */ | 
|  | #else   /* MORECORE_CONTIGUOUS */ | 
|  | #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) | 
|  | #endif  /* MORECORE_CONTIGUOUS */ | 
|  | #endif  /* DEFAULT_GRANULARITY */ | 
|  | #ifndef DEFAULT_TRIM_THRESHOLD | 
|  | #ifndef MORECORE_CANNOT_TRIM | 
|  | #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) | 
|  | #else   /* MORECORE_CANNOT_TRIM */ | 
|  | #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T | 
|  | #endif  /* MORECORE_CANNOT_TRIM */ | 
|  | #endif  /* DEFAULT_TRIM_THRESHOLD */ | 
|  | #ifndef DEFAULT_MMAP_THRESHOLD | 
|  | #if HAVE_MMAP | 
|  | #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) | 
|  | #else   /* HAVE_MMAP */ | 
|  | #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T | 
|  | #endif  /* HAVE_MMAP */ | 
|  | #endif  /* DEFAULT_MMAP_THRESHOLD */ | 
|  | #ifndef MAX_RELEASE_CHECK_RATE | 
|  | #if HAVE_MMAP | 
|  | #define MAX_RELEASE_CHECK_RATE 4095 | 
|  | #else | 
|  | #define MAX_RELEASE_CHECK_RATE MAX_SIZE_T | 
|  | #endif /* HAVE_MMAP */ | 
|  | #endif /* MAX_RELEASE_CHECK_RATE */ | 
|  | #ifndef USE_BUILTIN_FFS | 
|  | #define USE_BUILTIN_FFS 0 | 
|  | #endif  /* USE_BUILTIN_FFS */ | 
|  | #ifndef USE_DEV_RANDOM | 
|  | #define USE_DEV_RANDOM 0 | 
|  | #endif  /* USE_DEV_RANDOM */ | 
|  | #ifndef NO_MALLINFO | 
|  | #define NO_MALLINFO 0 | 
|  | #endif  /* NO_MALLINFO */ | 
|  | #ifndef MALLINFO_FIELD_TYPE | 
|  | #define MALLINFO_FIELD_TYPE size_t | 
|  | #endif  /* MALLINFO_FIELD_TYPE */ | 
|  | #ifndef NO_SEGMENT_TRAVERSAL | 
|  | #define NO_SEGMENT_TRAVERSAL 0 | 
|  | #endif /* NO_SEGMENT_TRAVERSAL */ | 
|  |  | 
|  | /* | 
|  | mallopt tuning options.  SVID/XPG defines four standard parameter | 
|  | numbers for mallopt, normally defined in malloc.h.  None of these | 
|  | are used in this malloc, so setting them has no effect. But this | 
|  | malloc does support the following options. | 
|  | */ | 
|  |  | 
|  | #define M_TRIM_THRESHOLD     (-1) | 
|  | #define M_GRANULARITY        (-2) | 
|  | #define M_MMAP_THRESHOLD     (-3) | 
|  |  | 
|  | /* ------------------------ Mallinfo declarations ------------------------ */ | 
|  |  | 
|  | #if !NO_MALLINFO | 
|  | /* | 
|  | This version of malloc supports the standard SVID/XPG mallinfo | 
|  | routine that returns a struct containing usage properties and | 
|  | statistics. It should work on any system that has a | 
|  | /usr/include/malloc.h defining struct mallinfo.  The main | 
|  | declaration needed is the mallinfo struct that is returned (by-copy) | 
|  | by mallinfo().  The malloinfo struct contains a bunch of fields that | 
|  | are not even meaningful in this version of malloc.  These fields are | 
|  | are instead filled by mallinfo() with other numbers that might be of | 
|  | interest. | 
|  |  | 
|  | HAVE_USR_INCLUDE_MALLOC_H should be set if you have a | 
|  | /usr/include/malloc.h file that includes a declaration of struct | 
|  | mallinfo.  If so, it is included; else a compliant version is | 
|  | declared below.  These must be precisely the same for mallinfo() to | 
|  | work.  The original SVID version of this struct, defined on most | 
|  | systems with mallinfo, declares all fields as ints. But some others | 
|  | define as unsigned long. If your system defines the fields using a | 
|  | type of different width than listed here, you MUST #include your | 
|  | system version and #define HAVE_USR_INCLUDE_MALLOC_H. | 
|  | */ | 
|  |  | 
|  | /* #define HAVE_USR_INCLUDE_MALLOC_H */ | 
|  |  | 
|  | #ifdef HAVE_USR_INCLUDE_MALLOC_H | 
|  | #include "/usr/include/malloc.h" | 
|  | #else /* HAVE_USR_INCLUDE_MALLOC_H */ | 
|  | #ifndef STRUCT_MALLINFO_DECLARED | 
|  | #define STRUCT_MALLINFO_DECLARED 1 | 
|  | struct mallinfo { | 
|  | MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */ | 
|  | MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */ | 
|  | MALLINFO_FIELD_TYPE smblks;   /* always 0 */ | 
|  | MALLINFO_FIELD_TYPE hblks;    /* always 0 */ | 
|  | MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */ | 
|  | MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */ | 
|  | MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */ | 
|  | MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ | 
|  | MALLINFO_FIELD_TYPE fordblks; /* total free space */ | 
|  | MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ | 
|  | }; | 
|  | #endif /* STRUCT_MALLINFO_DECLARED */ | 
|  | #endif /* HAVE_USR_INCLUDE_MALLOC_H */ | 
|  | #endif /* NO_MALLINFO */ | 
|  |  | 
|  | /* | 
|  | Try to persuade compilers to inline. The most critical functions for | 
|  | inlining are defined as macros, so these aren't used for them. | 
|  | */ | 
|  |  | 
|  | #ifndef FORCEINLINE | 
|  | #if defined(__GNUC__) | 
|  | #define FORCEINLINE __inline __attribute__ ((always_inline)) | 
|  | #elif defined(_MSC_VER) | 
|  | #define FORCEINLINE __forceinline | 
|  | #endif | 
|  | #endif | 
|  | #ifndef NOINLINE | 
|  | #if defined(__GNUC__) | 
|  | #define NOINLINE __attribute__ ((noinline)) | 
|  | #elif defined(_MSC_VER) | 
|  | #define NOINLINE __declspec(noinline) | 
|  | #else | 
|  | #define NOINLINE | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #ifndef FORCEINLINE | 
|  | #define FORCEINLINE inline | 
|  | #endif | 
|  | #endif /* __cplusplus */ | 
|  | #ifndef FORCEINLINE | 
|  | #define FORCEINLINE | 
|  | #endif | 
|  |  | 
|  | #if !ONLY_MSPACES | 
|  |  | 
|  | /* ------------------- Declarations of public routines ------------------- */ | 
|  |  | 
|  | #ifndef USE_DL_PREFIX | 
|  | #define dlcalloc               calloc | 
|  | #define dlfree                 free | 
|  | #define dlmalloc               malloc | 
|  | #define dlmemalign             memalign | 
|  | #define dlrealloc              realloc | 
|  | #define dlvalloc               valloc | 
|  | #define dlpvalloc              pvalloc | 
|  | #define dlmallinfo             mallinfo | 
|  | #define dlmallopt              mallopt | 
|  | #define dlmalloc_trim          malloc_trim | 
|  | #define dlmalloc_stats         malloc_stats | 
|  | #define dlmalloc_usable_size   malloc_usable_size | 
|  | #define dlmalloc_footprint     malloc_footprint | 
|  | #define dlmalloc_max_footprint malloc_max_footprint | 
|  | #define dlindependent_calloc   independent_calloc | 
|  | #define dlindependent_comalloc independent_comalloc | 
|  | #endif /* USE_DL_PREFIX */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | malloc(size_t n) | 
|  | Returns a pointer to a newly allocated chunk of at least n bytes, or | 
|  | null if no space is available, in which case errno is set to ENOMEM | 
|  | on ANSI C systems. | 
|  |  | 
|  | If n is zero, malloc returns a minimum-sized chunk. (The minimum | 
|  | size is 16 bytes on most 32bit systems, and 32 bytes on 64bit | 
|  | systems.)  Note that size_t is an unsigned type, so calls with | 
|  | arguments that would be negative if signed are interpreted as | 
|  | requests for huge amounts of space, which will often fail. The | 
|  | maximum supported value of n differs across systems, but is in all | 
|  | cases less than the maximum representable value of a size_t. | 
|  | */ | 
|  | void* dlmalloc(size_t); | 
|  |  | 
|  | /* | 
|  | free(void* p) | 
|  | Releases the chunk of memory pointed to by p, that had been previously | 
|  | allocated using malloc or a related routine such as realloc. | 
|  | It has no effect if p is null. If p was not malloced or already | 
|  | freed, free(p) will by default cause the current program to abort. | 
|  | */ | 
|  | void  dlfree(void*); | 
|  |  | 
|  | /* | 
|  | calloc(size_t n_elements, size_t element_size); | 
|  | Returns a pointer to n_elements * element_size bytes, with all locations | 
|  | set to zero. | 
|  | */ | 
|  | void* dlcalloc(size_t, size_t); | 
|  |  | 
|  | /* | 
|  | realloc(void* p, size_t n) | 
|  | Returns a pointer to a chunk of size n that contains the same data | 
|  | as does chunk p up to the minimum of (n, p's size) bytes, or null | 
|  | if no space is available. | 
|  |  | 
|  | The returned pointer may or may not be the same as p. The algorithm | 
|  | prefers extending p in most cases when possible, otherwise it | 
|  | employs the equivalent of a malloc-copy-free sequence. | 
|  |  | 
|  | If p is null, realloc is equivalent to malloc. | 
|  |  | 
|  | If space is not available, realloc returns null, errno is set (if on | 
|  | ANSI) and p is NOT freed. | 
|  |  | 
|  | if n is for fewer bytes than already held by p, the newly unused | 
|  | space is lopped off and freed if possible.  realloc with a size | 
|  | argument of zero (re)allocates a minimum-sized chunk. | 
|  |  | 
|  | The old unix realloc convention of allowing the last-free'd chunk | 
|  | to be used as an argument to realloc is not supported. | 
|  | */ | 
|  |  | 
|  | void* dlrealloc(void*, size_t); | 
|  |  | 
|  | /* | 
|  | memalign(size_t alignment, size_t n); | 
|  | Returns a pointer to a newly allocated chunk of n bytes, aligned | 
|  | in accord with the alignment argument. | 
|  |  | 
|  | The alignment argument should be a power of two. If the argument is | 
|  | not a power of two, the nearest greater power is used. | 
|  | 8-byte alignment is guaranteed by normal malloc calls, so don't | 
|  | bother calling memalign with an argument of 8 or less. | 
|  |  | 
|  | Overreliance on memalign is a sure way to fragment space. | 
|  | */ | 
|  | void* dlmemalign(size_t, size_t); | 
|  |  | 
|  | /* | 
|  | valloc(size_t n); | 
|  | Equivalent to memalign(pagesize, n), where pagesize is the page | 
|  | size of the system. If the pagesize is unknown, 4096 is used. | 
|  | */ | 
|  | void* dlvalloc(size_t); | 
|  |  | 
|  | /* | 
|  | mallopt(int parameter_number, int parameter_value) | 
|  | Sets tunable parameters The format is to provide a | 
|  | (parameter-number, parameter-value) pair.  mallopt then sets the | 
|  | corresponding parameter to the argument value if it can (i.e., so | 
|  | long as the value is meaningful), and returns 1 if successful else | 
|  | 0.  To workaround the fact that mallopt is specified to use int, | 
|  | not size_t parameters, the value -1 is specially treated as the | 
|  | maximum unsigned size_t value. | 
|  |  | 
|  | SVID/XPG/ANSI defines four standard param numbers for mallopt, | 
|  | normally defined in malloc.h.  None of these are use in this malloc, | 
|  | so setting them has no effect. But this malloc also supports other | 
|  | options in mallopt. See below for details.  Briefly, supported | 
|  | parameters are as follows (listed defaults are for "typical" | 
|  | configurations). | 
|  |  | 
|  | Symbol            param #  default    allowed param values | 
|  | M_TRIM_THRESHOLD     -1   2*1024*1024   any   (-1 disables) | 
|  | M_GRANULARITY        -2     page size   any power of 2 >= page size | 
|  | M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support) | 
|  | */ | 
|  | int dlmallopt(int, int); | 
|  |  | 
|  | /* | 
|  | malloc_footprint(); | 
|  | Returns the number of bytes obtained from the system.  The total | 
|  | number of bytes allocated by malloc, realloc etc., is less than this | 
|  | value. Unlike mallinfo, this function returns only a precomputed | 
|  | result, so can be called frequently to monitor memory consumption. | 
|  | Even if locks are otherwise defined, this function does not use them, | 
|  | so results might not be up to date. | 
|  | */ | 
|  | size_t dlmalloc_footprint(void); | 
|  |  | 
|  | /* | 
|  | malloc_max_footprint(); | 
|  | Returns the maximum number of bytes obtained from the system. This | 
|  | value will be greater than current footprint if deallocated space | 
|  | has been reclaimed by the system. The peak number of bytes allocated | 
|  | by malloc, realloc etc., is less than this value. Unlike mallinfo, | 
|  | this function returns only a precomputed result, so can be called | 
|  | frequently to monitor memory consumption.  Even if locks are | 
|  | otherwise defined, this function does not use them, so results might | 
|  | not be up to date. | 
|  | */ | 
|  | size_t dlmalloc_max_footprint(void); | 
|  |  | 
|  | #if !NO_MALLINFO | 
|  | /* | 
|  | mallinfo() | 
|  | Returns (by copy) a struct containing various summary statistics: | 
|  |  | 
|  | arena:     current total non-mmapped bytes allocated from system | 
|  | ordblks:   the number of free chunks | 
|  | smblks:    always zero. | 
|  | hblks:     current number of mmapped regions | 
|  | hblkhd:    total bytes held in mmapped regions | 
|  | usmblks:   the maximum total allocated space. This will be greater | 
|  | than current total if trimming has occurred. | 
|  | fsmblks:   always zero | 
|  | uordblks:  current total allocated space (normal or mmapped) | 
|  | fordblks:  total free space | 
|  | keepcost:  the maximum number of bytes that could ideally be released | 
|  | back to system via malloc_trim. ("ideally" means that | 
|  | it ignores page restrictions etc.) | 
|  |  | 
|  | Because these fields are ints, but internal bookkeeping may | 
|  | be kept as longs, the reported values may wrap around zero and | 
|  | thus be inaccurate. | 
|  | */ | 
|  | struct mallinfo dlmallinfo(void); | 
|  | #endif /* NO_MALLINFO */ | 
|  |  | 
|  | /* | 
|  | independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); | 
|  |  | 
|  | independent_calloc is similar to calloc, but instead of returning a | 
|  | single cleared space, it returns an array of pointers to n_elements | 
|  | independent elements that can hold contents of size elem_size, each | 
|  | of which starts out cleared, and can be independently freed, | 
|  | realloc'ed etc. The elements are guaranteed to be adjacently | 
|  | allocated (this is not guaranteed to occur with multiple callocs or | 
|  | mallocs), which may also improve cache locality in some | 
|  | applications. | 
|  |  | 
|  | The "chunks" argument is optional (i.e., may be null, which is | 
|  | probably the most typical usage). If it is null, the returned array | 
|  | is itself dynamically allocated and should also be freed when it is | 
|  | no longer needed. Otherwise, the chunks array must be of at least | 
|  | n_elements in length. It is filled in with the pointers to the | 
|  | chunks. | 
|  |  | 
|  | In either case, independent_calloc returns this pointer array, or | 
|  | null if the allocation failed.  If n_elements is zero and "chunks" | 
|  | is null, it returns a chunk representing an array with zero elements | 
|  | (which should be freed if not wanted). | 
|  |  | 
|  | Each element must be individually freed when it is no longer | 
|  | needed. If you'd like to instead be able to free all at once, you | 
|  | should instead use regular calloc and assign pointers into this | 
|  | space to represent elements.  (In this case though, you cannot | 
|  | independently free elements.) | 
|  |  | 
|  | independent_calloc simplifies and speeds up implementations of many | 
|  | kinds of pools.  It may also be useful when constructing large data | 
|  | structures that initially have a fixed number of fixed-sized nodes, | 
|  | but the number is not known at compile time, and some of the nodes | 
|  | may later need to be freed. For example: | 
|  |  | 
|  | struct Node { int item; struct Node* next; }; | 
|  |  | 
|  | struct Node* build_list() { | 
|  | struct Node** pool; | 
|  | int n = read_number_of_nodes_needed(); | 
|  | if (n <= 0) return 0; | 
|  | pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); | 
|  | if (pool == 0) die(); | 
|  | // organize into a linked list... | 
|  | struct Node* first = pool[0]; | 
|  | for (i = 0; i < n-1; ++i) | 
|  | pool[i]->next = pool[i+1]; | 
|  | free(pool);     // Can now free the array (or not, if it is needed later) | 
|  | return first; | 
|  | } | 
|  | */ | 
|  | void** dlindependent_calloc(size_t, size_t, void**); | 
|  |  | 
|  | /* | 
|  | independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); | 
|  |  | 
|  | independent_comalloc allocates, all at once, a set of n_elements | 
|  | chunks with sizes indicated in the "sizes" array.    It returns | 
|  | an array of pointers to these elements, each of which can be | 
|  | independently freed, realloc'ed etc. The elements are guaranteed to | 
|  | be adjacently allocated (this is not guaranteed to occur with | 
|  | multiple callocs or mallocs), which may also improve cache locality | 
|  | in some applications. | 
|  |  | 
|  | The "chunks" argument is optional (i.e., may be null). If it is null | 
|  | the returned array is itself dynamically allocated and should also | 
|  | be freed when it is no longer needed. Otherwise, the chunks array | 
|  | must be of at least n_elements in length. It is filled in with the | 
|  | pointers to the chunks. | 
|  |  | 
|  | In either case, independent_comalloc returns this pointer array, or | 
|  | null if the allocation failed.  If n_elements is zero and chunks is | 
|  | null, it returns a chunk representing an array with zero elements | 
|  | (which should be freed if not wanted). | 
|  |  | 
|  | Each element must be individually freed when it is no longer | 
|  | needed. If you'd like to instead be able to free all at once, you | 
|  | should instead use a single regular malloc, and assign pointers at | 
|  | particular offsets in the aggregate space. (In this case though, you | 
|  | cannot independently free elements.) | 
|  |  | 
|  | independent_comallac differs from independent_calloc in that each | 
|  | element may have a different size, and also that it does not | 
|  | automatically clear elements. | 
|  |  | 
|  | independent_comalloc can be used to speed up allocation in cases | 
|  | where several structs or objects must always be allocated at the | 
|  | same time.  For example: | 
|  |  | 
|  | struct Head { ... } | 
|  | struct Foot { ... } | 
|  |  | 
|  | void send_message(char* msg) { | 
|  | int msglen = strlen(msg); | 
|  | size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; | 
|  | void* chunks[3]; | 
|  | if (independent_comalloc(3, sizes, chunks) == 0) | 
|  | die(); | 
|  | struct Head* head = (struct Head*)(chunks[0]); | 
|  | char*        body = (char*)(chunks[1]); | 
|  | struct Foot* foot = (struct Foot*)(chunks[2]); | 
|  | // ... | 
|  | } | 
|  |  | 
|  | In general though, independent_comalloc is worth using only for | 
|  | larger values of n_elements. For small values, you probably won't | 
|  | detect enough difference from series of malloc calls to bother. | 
|  |  | 
|  | Overuse of independent_comalloc can increase overall memory usage, | 
|  | since it cannot reuse existing noncontiguous small chunks that | 
|  | might be available for some of the elements. | 
|  | */ | 
|  | void** dlindependent_comalloc(size_t, size_t*, void**); | 
|  |  | 
|  |  | 
|  | /* | 
|  | pvalloc(size_t n); | 
|  | Equivalent to valloc(minimum-page-that-holds(n)), that is, | 
|  | round up n to nearest pagesize. | 
|  | */ | 
|  | void*  dlpvalloc(size_t); | 
|  |  | 
|  | /* | 
|  | malloc_trim(size_t pad); | 
|  |  | 
|  | If possible, gives memory back to the system (via negative arguments | 
|  | to sbrk) if there is unused memory at the `high' end of the malloc | 
|  | pool or in unused MMAP segments. You can call this after freeing | 
|  | large blocks of memory to potentially reduce the system-level memory | 
|  | requirements of a program. However, it cannot guarantee to reduce | 
|  | memory. Under some allocation patterns, some large free blocks of | 
|  | memory will be locked between two used chunks, so they cannot be | 
|  | given back to the system. | 
|  |  | 
|  | The `pad' argument to malloc_trim represents the amount of free | 
|  | trailing space to leave untrimmed. If this argument is zero, only | 
|  | the minimum amount of memory to maintain internal data structures | 
|  | will be left. Non-zero arguments can be supplied to maintain enough | 
|  | trailing space to service future expected allocations without having | 
|  | to re-obtain memory from the system. | 
|  |  | 
|  | Malloc_trim returns 1 if it actually released any memory, else 0. | 
|  | */ | 
|  | int  dlmalloc_trim(size_t); | 
|  |  | 
|  | /* | 
|  | malloc_stats(); | 
|  | Prints on stderr the amount of space obtained from the system (both | 
|  | via sbrk and mmap), the maximum amount (which may be more than | 
|  | current if malloc_trim and/or munmap got called), and the current | 
|  | number of bytes allocated via malloc (or realloc, etc) but not yet | 
|  | freed. Note that this is the number of bytes allocated, not the | 
|  | number requested. It will be larger than the number requested | 
|  | because of alignment and bookkeeping overhead. Because it includes | 
|  | alignment wastage as being in use, this figure may be greater than | 
|  | zero even when no user-level chunks are allocated. | 
|  |  | 
|  | The reported current and maximum system memory can be inaccurate if | 
|  | a program makes other calls to system memory allocation functions | 
|  | (normally sbrk) outside of malloc. | 
|  |  | 
|  | malloc_stats prints only the most commonly interesting statistics. | 
|  | More information can be obtained by calling mallinfo. | 
|  | */ | 
|  | void  dlmalloc_stats(void); | 
|  |  | 
|  | #endif /* ONLY_MSPACES */ | 
|  |  | 
|  | /* | 
|  | malloc_usable_size(void* p); | 
|  |  | 
|  | Returns the number of bytes you can actually use in | 
|  | an allocated chunk, which may be more than you requested (although | 
|  | often not) due to alignment and minimum size constraints. | 
|  | You can use this many bytes without worrying about | 
|  | overwriting other allocated objects. This is not a particularly great | 
|  | programming practice. malloc_usable_size can be more useful in | 
|  | debugging and assertions, for example: | 
|  |  | 
|  | p = malloc(n); | 
|  | assert(malloc_usable_size(p) >= 256); | 
|  | */ | 
|  | size_t dlmalloc_usable_size(void*); | 
|  |  | 
|  |  | 
|  | #if MSPACES | 
|  |  | 
|  | /* | 
|  | mspace is an opaque type representing an independent | 
|  | region of space that supports mspace_malloc, etc. | 
|  | */ | 
|  | typedef void* mspace; | 
|  |  | 
|  | /* | 
|  | create_mspace creates and returns a new independent space with the | 
|  | given initial capacity, or, if 0, the default granularity size.  It | 
|  | returns null if there is no system memory available to create the | 
|  | space.  If argument locked is non-zero, the space uses a separate | 
|  | lock to control access. The capacity of the space will grow | 
|  | dynamically as needed to service mspace_malloc requests.  You can | 
|  | control the sizes of incremental increases of this space by | 
|  | compiling with a different DEFAULT_GRANULARITY or dynamically | 
|  | setting with mallopt(M_GRANULARITY, value). | 
|  | */ | 
|  | mspace create_mspace(size_t capacity, int locked); | 
|  |  | 
|  | /* | 
|  | destroy_mspace destroys the given space, and attempts to return all | 
|  | of its memory back to the system, returning the total number of | 
|  | bytes freed. After destruction, the results of access to all memory | 
|  | used by the space become undefined. | 
|  | */ | 
|  | size_t destroy_mspace(mspace msp); | 
|  |  | 
|  | /* | 
|  | create_mspace_with_base uses the memory supplied as the initial base | 
|  | of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this | 
|  | space is used for bookkeeping, so the capacity must be at least this | 
|  | large. (Otherwise 0 is returned.) When this initial space is | 
|  | exhausted, additional memory will be obtained from the system. | 
|  | Destroying this space will deallocate all additionally allocated | 
|  | space (if possible) but not the initial base. | 
|  | */ | 
|  | mspace create_mspace_with_base(void* base, size_t capacity, int locked); | 
|  |  | 
|  | /* | 
|  | mspace_mmap_large_chunks controls whether requests for large chunks | 
|  | are allocated in their own mmapped regions, separate from others in | 
|  | this mspace. By default this is enabled, which reduces | 
|  | fragmentation. However, such chunks are not necessarily released to | 
|  | the system upon destroy_mspace.  Disabling by setting to false may | 
|  | increase fragmentation, but avoids leakage when relying on | 
|  | destroy_mspace to release all memory allocated using this space. | 
|  | */ | 
|  | int mspace_mmap_large_chunks(mspace msp, int enable); | 
|  |  | 
|  |  | 
|  | /* | 
|  | mspace_malloc behaves as malloc, but operates within | 
|  | the given space. | 
|  | */ | 
|  | void* mspace_malloc(mspace msp, size_t bytes); | 
|  |  | 
|  | /* | 
|  | mspace_free behaves as free, but operates within | 
|  | the given space. | 
|  |  | 
|  | If compiled with FOOTERS==1, mspace_free is not actually needed. | 
|  | free may be called instead of mspace_free because freed chunks from | 
|  | any space are handled by their originating spaces. | 
|  | */ | 
|  | void mspace_free(mspace msp, void* mem); | 
|  |  | 
|  | /* | 
|  | mspace_realloc behaves as realloc, but operates within | 
|  | the given space. | 
|  |  | 
|  | If compiled with FOOTERS==1, mspace_realloc is not actually | 
|  | needed.  realloc may be called instead of mspace_realloc because | 
|  | realloced chunks from any space are handled by their originating | 
|  | spaces. | 
|  | */ | 
|  | void* mspace_realloc(mspace msp, void* mem, size_t newsize); | 
|  |  | 
|  | /* | 
|  | mspace_calloc behaves as calloc, but operates within | 
|  | the given space. | 
|  | */ | 
|  | void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); | 
|  |  | 
|  | /* | 
|  | mspace_memalign behaves as memalign, but operates within | 
|  | the given space. | 
|  | */ | 
|  | void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); | 
|  |  | 
|  | /* | 
|  | mspace_independent_calloc behaves as independent_calloc, but | 
|  | operates within the given space. | 
|  | */ | 
|  | void** mspace_independent_calloc(mspace msp, size_t n_elements, | 
|  | size_t elem_size, void* chunks[]); | 
|  |  | 
|  | /* | 
|  | mspace_independent_comalloc behaves as independent_comalloc, but | 
|  | operates within the given space. | 
|  | */ | 
|  | void** mspace_independent_comalloc(mspace msp, size_t n_elements, | 
|  | size_t sizes[], void* chunks[]); | 
|  |  | 
|  | /* | 
|  | mspace_footprint() returns the number of bytes obtained from the | 
|  | system for this space. | 
|  | */ | 
|  | size_t mspace_footprint(mspace msp); | 
|  |  | 
|  | /* | 
|  | mspace_max_footprint() returns the peak number of bytes obtained from the | 
|  | system for this space. | 
|  | */ | 
|  | size_t mspace_max_footprint(mspace msp); | 
|  |  | 
|  |  | 
|  | #if !NO_MALLINFO | 
|  | /* | 
|  | mspace_mallinfo behaves as mallinfo, but reports properties of | 
|  | the given space. | 
|  | */ | 
|  | struct mallinfo mspace_mallinfo(mspace msp); | 
|  | #endif /* NO_MALLINFO */ | 
|  |  | 
|  | /* | 
|  | malloc_usable_size(void* p) behaves the same as malloc_usable_size; | 
|  | */ | 
|  | size_t mspace_usable_size(void* mem); | 
|  |  | 
|  | /* | 
|  | mspace_malloc_stats behaves as malloc_stats, but reports | 
|  | properties of the given space. | 
|  | */ | 
|  | void mspace_malloc_stats(mspace msp); | 
|  |  | 
|  | /* | 
|  | mspace_trim behaves as malloc_trim, but | 
|  | operates within the given space. | 
|  | */ | 
|  | int mspace_trim(mspace msp, size_t pad); | 
|  |  | 
|  | /* | 
|  | An alias for mallopt. | 
|  | */ | 
|  | int mspace_mallopt(int, int); | 
|  |  | 
|  | #endif /* MSPACES */ | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | };  /* end of extern "C" */ | 
|  | #endif /* __cplusplus */ | 
|  |  | 
|  | /* | 
|  | ======================================================================== | 
|  | To make a fully customizable malloc.h header file, cut everything | 
|  | above this line, put into file malloc.h, edit to suit, and #include it | 
|  | on the next line, as well as in programs that use this malloc. | 
|  | ======================================================================== | 
|  | */ | 
|  |  | 
|  | /* #include "malloc.h" */ | 
|  |  | 
|  | /*------------------------------ internal #includes ---------------------- */ | 
|  |  | 
|  | #ifdef WIN32 | 
|  | #ifndef __GNUC__ | 
|  | #pragma warning( disable : 4146 ) /* no "unsigned" warnings */ | 
|  | #endif | 
|  | #endif /* WIN32 */ | 
|  |  | 
|  | #include <stdio.h>       /* for printing in malloc_stats */ | 
|  |  | 
|  | #ifndef LACKS_ERRNO_H | 
|  | #include <errno.h>       /* for MALLOC_FAILURE_ACTION */ | 
|  | #endif /* LACKS_ERRNO_H */ | 
|  | #if FOOTERS | 
|  | #include <time.h>        /* for magic initialization */ | 
|  | #endif /* FOOTERS */ | 
|  | #ifndef LACKS_STDLIB_H | 
|  | #include <stdlib.h>      /* for abort() */ | 
|  | #endif /* LACKS_STDLIB_H */ | 
|  | #ifdef DEBUG | 
|  | #if ABORT_ON_ASSERT_FAILURE | 
|  | #define assert(x) if(!(x)) ABORT | 
|  | #else /* ABORT_ON_ASSERT_FAILURE */ | 
|  | #include <assert.h> | 
|  | #endif /* ABORT_ON_ASSERT_FAILURE */ | 
|  | #else  /* DEBUG */ | 
|  | #ifndef assert | 
|  | #define assert(x) | 
|  | #endif | 
|  | #define DEBUG 0 | 
|  | #endif /* DEBUG */ | 
|  | #ifndef LACKS_STRING_H | 
|  | #include <string.h>      /* for memset etc */ | 
|  | #endif  /* LACKS_STRING_H */ | 
|  | #if USE_BUILTIN_FFS | 
|  | #ifndef LACKS_STRINGS_H | 
|  | #include <strings.h>     /* for ffs */ | 
|  | #endif /* LACKS_STRINGS_H */ | 
|  | #endif /* USE_BUILTIN_FFS */ | 
|  | #if HAVE_MMAP | 
|  | #ifndef LACKS_SYS_MMAN_H | 
|  | #include <sys/mman.h>    /* for mmap */ | 
|  | #endif /* LACKS_SYS_MMAN_H */ | 
|  | #ifndef LACKS_FCNTL_H | 
|  | #include <fcntl.h> | 
|  | #endif /* LACKS_FCNTL_H */ | 
|  | #endif /* HAVE_MMAP */ | 
|  | #ifndef LACKS_UNISTD_H | 
|  | #include <unistd.h>     /* for sbrk, sysconf */ | 
|  | #else /* LACKS_UNISTD_H */ | 
|  | #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) | 
|  | extern void*     sbrk(ptrdiff_t); | 
|  | #endif /* FreeBSD etc */ | 
|  | #endif /* LACKS_UNISTD_H */ | 
|  |  | 
|  | /* Declarations for locking */ | 
|  | #if USE_LOCKS | 
|  | #ifndef WIN32 | 
|  | #include <pthread.h> | 
|  | #if defined (__SVR4) && defined (__sun)  /* solaris */ | 
|  | #include <thread.h> | 
|  | #endif /* solaris */ | 
|  | #else | 
|  | #ifndef _M_AMD64 | 
|  | /* These are already defined on AMD64 builds */ | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #endif /* __cplusplus */ | 
|  | #ifndef __MINGW32__ | 
|  | LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); | 
|  | LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); | 
|  | #endif | 
|  | #ifdef __cplusplus | 
|  | } | 
|  | #endif /* __cplusplus */ | 
|  | #endif /* _M_AMD64 */ | 
|  | #ifndef __MINGW32__ | 
|  | #pragma intrinsic (_InterlockedCompareExchange) | 
|  | #pragma intrinsic (_InterlockedExchange) | 
|  | #else | 
|  | /* --[ start GCC compatibility ]---------------------------------------------- | 
|  | * Compatibility <intrin_x86.h> header for GCC -- GCC equivalents of intrinsic | 
|  | * Microsoft Visual C++ functions. Originally developed for the ReactOS | 
|  | * (<http://www.reactos.org/>) and TinyKrnl (<http://www.tinykrnl.org/>) | 
|  | * projects. | 
|  | * | 
|  | * Copyright (c) 2006 KJK::Hyperion <hackbunny@reactos.com> | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a | 
|  | * copy of this software and associated documentation files (the "Software"), | 
|  | * to deal in the Software without restriction, including without limitation | 
|  | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | * and/or sell copies of the Software, and to permit persons to whom the | 
|  | * Software is furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|  | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | 
|  | * DEALINGS IN THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | /*** Atomic operations ***/ | 
|  | #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) > 40100 | 
|  | #define _ReadWriteBarrier() __sync_synchronize() | 
|  | #else | 
|  | static __inline__ __attribute__((always_inline)) long __sync_lock_test_and_set(volatile long * const Target, const long Value) | 
|  | { | 
|  | long res; | 
|  | __asm__ __volatile__("xchg%z0 %2, %0" : "=g" (*(Target)), "=r" (res) : "1" (Value)); | 
|  | return res; | 
|  | } | 
|  | static void __inline__ __attribute__((always_inline)) _MemoryBarrier(void) | 
|  | { | 
|  | __asm__ __volatile__("" : : : "memory"); | 
|  | } | 
|  | #define _ReadWriteBarrier() _MemoryBarrier() | 
|  | #endif | 
|  | /* BUGBUG: GCC only supports full barriers */ | 
|  | static __inline__ __attribute__((always_inline)) long _InterlockedExchange(volatile long * const Target, const long Value) | 
|  | { | 
|  | /* NOTE: __sync_lock_test_and_set would be an acquire barrier, so we force a full barrier */ | 
|  | _ReadWriteBarrier(); | 
|  | return __sync_lock_test_and_set(Target, Value); | 
|  | } | 
|  | /* --[ end GCC compatibility ]---------------------------------------------- */ | 
|  | #endif | 
|  | #define interlockedcompareexchange _InterlockedCompareExchange | 
|  | #define interlockedexchange _InterlockedExchange | 
|  | #endif /* Win32 */ | 
|  | #endif /* USE_LOCKS */ | 
|  |  | 
|  | /* Declarations for bit scanning on win32 */ | 
|  | #if defined(_MSC_VER) && _MSC_VER>=1300 | 
|  | #ifndef BitScanForward	/* Try to avoid pulling in WinNT.h */ | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #endif /* __cplusplus */ | 
|  | unsigned char _BitScanForward(unsigned long *index, unsigned long mask); | 
|  | unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); | 
|  | #ifdef __cplusplus | 
|  | } | 
|  | #endif /* __cplusplus */ | 
|  |  | 
|  | #define BitScanForward _BitScanForward | 
|  | #define BitScanReverse _BitScanReverse | 
|  | #pragma intrinsic(_BitScanForward) | 
|  | #pragma intrinsic(_BitScanReverse) | 
|  | #endif /* BitScanForward */ | 
|  | #endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ | 
|  |  | 
|  | #ifndef WIN32 | 
|  | #ifndef malloc_getpagesize | 
|  | #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */ | 
|  | #    ifndef _SC_PAGE_SIZE | 
|  | #      define _SC_PAGE_SIZE _SC_PAGESIZE | 
|  | #    endif | 
|  | #  endif | 
|  | #  ifdef _SC_PAGE_SIZE | 
|  | #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE) | 
|  | #  else | 
|  | #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) | 
|  | extern size_t getpagesize(); | 
|  | #      define malloc_getpagesize getpagesize() | 
|  | #    else | 
|  | #      ifdef WIN32 /* use supplied emulation of getpagesize */ | 
|  | #        define malloc_getpagesize getpagesize() | 
|  | #      else | 
|  | #        ifndef LACKS_SYS_PARAM_H | 
|  | #          include <sys/param.h> | 
|  | #        endif | 
|  | #        ifdef EXEC_PAGESIZE | 
|  | #          define malloc_getpagesize EXEC_PAGESIZE | 
|  | #        else | 
|  | #          ifdef NBPG | 
|  | #            ifndef CLSIZE | 
|  | #              define malloc_getpagesize NBPG | 
|  | #            else | 
|  | #              define malloc_getpagesize (NBPG * CLSIZE) | 
|  | #            endif | 
|  | #          else | 
|  | #            ifdef NBPC | 
|  | #              define malloc_getpagesize NBPC | 
|  | #            else | 
|  | #              ifdef PAGESIZE | 
|  | #                define malloc_getpagesize PAGESIZE | 
|  | #              else /* just guess */ | 
|  | #                define malloc_getpagesize ((size_t)4096U) | 
|  | #              endif | 
|  | #            endif | 
|  | #          endif | 
|  | #        endif | 
|  | #      endif | 
|  | #    endif | 
|  | #  endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  |  | 
|  |  | 
|  | /* ------------------- size_t and alignment properties -------------------- */ | 
|  |  | 
|  | /* The byte and bit size of a size_t */ | 
|  | #define SIZE_T_SIZE         (sizeof(size_t)) | 
|  | #define SIZE_T_BITSIZE      (sizeof(size_t) << 3) | 
|  |  | 
|  | /* Some constants coerced to size_t */ | 
|  | /* Annoying but necessary to avoid errors on some platforms */ | 
|  | #define SIZE_T_ZERO         ((size_t)0) | 
|  | #define SIZE_T_ONE          ((size_t)1) | 
|  | #define SIZE_T_TWO          ((size_t)2) | 
|  | #define SIZE_T_FOUR         ((size_t)4) | 
|  | #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1) | 
|  | #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2) | 
|  | #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) | 
|  | #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U) | 
|  |  | 
|  | /* The bit mask value corresponding to MALLOC_ALIGNMENT */ | 
|  | #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE) | 
|  |  | 
|  | /* True if address a has acceptable alignment */ | 
|  | #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) | 
|  |  | 
|  | /* the number of bytes to offset an address to align it */ | 
|  | #define align_offset(A)\ | 
|  | ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ | 
|  | ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) | 
|  |  | 
|  | /* -------------------------- MMAP preliminaries ------------------------- */ | 
|  |  | 
|  | /* | 
|  | If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and | 
|  | checks to fail so compiler optimizer can delete code rather than | 
|  | using so many "#if"s. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* MORECORE and MMAP must return MFAIL on failure */ | 
|  | #define MFAIL                ((void*)(MAX_SIZE_T)) | 
|  | #define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */ | 
|  |  | 
|  | #if HAVE_MMAP | 
|  |  | 
|  | #ifndef WIN32 | 
|  | #define MUNMAP_DEFAULT(a, s)  munmap((a), (s)) | 
|  | #define MMAP_PROT            (PROT_READ|PROT_WRITE) | 
|  | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) | 
|  | #define MAP_ANONYMOUS        MAP_ANON | 
|  | #endif /* MAP_ANON */ | 
|  | #ifdef MAP_ANONYMOUS | 
|  | #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS) | 
|  | #define MMAP_DEFAULT(s)       mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) | 
|  | #else /* MAP_ANONYMOUS */ | 
|  | /* | 
|  | Nearly all versions of mmap support MAP_ANONYMOUS, so the following | 
|  | is unlikely to be needed, but is supplied just in case. | 
|  | */ | 
|  | #define MMAP_FLAGS           (MAP_PRIVATE) | 
|  | static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ | 
|  | #define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ | 
|  | (dev_zero_fd = open("/dev/zero", O_RDWR), \ | 
|  | mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ | 
|  | mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) | 
|  | #endif /* MAP_ANONYMOUS */ | 
|  |  | 
|  | #define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) | 
|  |  | 
|  | #else /* WIN32 */ | 
|  |  | 
|  | /* Win32 MMAP via VirtualAlloc */ | 
|  | static FORCEINLINE void* win32mmap(size_t size) { | 
|  | void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); | 
|  | return (ptr != 0)? ptr: MFAIL; | 
|  | } | 
|  |  | 
|  | /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ | 
|  | static FORCEINLINE void* win32direct_mmap(size_t size) { | 
|  | void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, | 
|  | PAGE_READWRITE); | 
|  | return (ptr != 0)? ptr: MFAIL; | 
|  | } | 
|  |  | 
|  | /* This function supports releasing coalesed segments */ | 
|  | static FORCEINLINE int win32munmap(void* ptr, size_t size) { | 
|  | MEMORY_BASIC_INFORMATION minfo; | 
|  | char* cptr = (char*)ptr; | 
|  | while (size) { | 
|  | if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) | 
|  | return -1; | 
|  | if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || | 
|  | minfo.State != MEM_COMMIT || minfo.RegionSize > size) | 
|  | return -1; | 
|  | if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) | 
|  | return -1; | 
|  | cptr += minfo.RegionSize; | 
|  | size -= minfo.RegionSize; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MMAP_DEFAULT(s)             win32mmap(s) | 
|  | #define MUNMAP_DEFAULT(a, s)        win32munmap((a), (s)) | 
|  | #define DIRECT_MMAP_DEFAULT(s)      win32direct_mmap(s) | 
|  | #endif /* WIN32 */ | 
|  | #endif /* HAVE_MMAP */ | 
|  |  | 
|  | #if HAVE_MREMAP | 
|  | #ifndef WIN32 | 
|  | #define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) | 
|  | #endif /* WIN32 */ | 
|  | #endif /* HAVE_MREMAP */ | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Define CALL_MORECORE | 
|  | */ | 
|  | #if HAVE_MORECORE | 
|  | #ifdef MORECORE | 
|  | #define CALL_MORECORE(S)    MORECORE(S) | 
|  | #else  /* MORECORE */ | 
|  | #define CALL_MORECORE(S)    MORECORE_DEFAULT(S) | 
|  | #endif /* MORECORE */ | 
|  | #else  /* HAVE_MORECORE */ | 
|  | #define CALL_MORECORE(S)        MFAIL | 
|  | #endif /* HAVE_MORECORE */ | 
|  |  | 
|  | /** | 
|  | * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP | 
|  | */ | 
|  | #if HAVE_MMAP | 
|  | #define IS_MMAPPED_BIT          (SIZE_T_ONE) | 
|  | #define USE_MMAP_BIT            (SIZE_T_ONE) | 
|  |  | 
|  | #ifdef MMAP | 
|  | #define CALL_MMAP(s)        MMAP(s) | 
|  | #else /* MMAP */ | 
|  | #define CALL_MMAP(s)        MMAP_DEFAULT(s) | 
|  | #endif /* MMAP */ | 
|  | #ifdef MUNMAP | 
|  | #define CALL_MUNMAP(a, s)   MUNMAP((a), (s)) | 
|  | #else /* MUNMAP */ | 
|  | #define CALL_MUNMAP(a, s)   MUNMAP_DEFAULT((a), (s)) | 
|  | #endif /* MUNMAP */ | 
|  | #ifdef DIRECT_MMAP | 
|  | #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) | 
|  | #else /* DIRECT_MMAP */ | 
|  | #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) | 
|  | #endif /* DIRECT_MMAP */ | 
|  | #else  /* HAVE_MMAP */ | 
|  | #define IS_MMAPPED_BIT          (SIZE_T_ZERO) | 
|  | #define USE_MMAP_BIT            (SIZE_T_ZERO) | 
|  |  | 
|  | #define MMAP(s)                 MFAIL | 
|  | #define MUNMAP(a, s)            (-1) | 
|  | #define DIRECT_MMAP(s)          MFAIL | 
|  | #define CALL_DIRECT_MMAP(s)     DIRECT_MMAP(s) | 
|  | #define CALL_MMAP(s)            MMAP(s) | 
|  | #define CALL_MUNMAP(a, s)       MUNMAP((a), (s)) | 
|  | #endif /* HAVE_MMAP */ | 
|  |  | 
|  | /** | 
|  | * Define CALL_MREMAP | 
|  | */ | 
|  | #if HAVE_MMAP && HAVE_MREMAP | 
|  | #ifdef MREMAP | 
|  | #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) | 
|  | #else /* MREMAP */ | 
|  | #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) | 
|  | #endif /* MREMAP */ | 
|  | #else  /* HAVE_MMAP && HAVE_MREMAP */ | 
|  | #define CALL_MREMAP(addr, osz, nsz, mv)     MFAIL | 
|  | #endif /* HAVE_MMAP && HAVE_MREMAP */ | 
|  |  | 
|  | /* mstate bit set if continguous morecore disabled or failed */ | 
|  | #define USE_NONCONTIGUOUS_BIT (4U) | 
|  |  | 
|  | /* segment bit set in create_mspace_with_base */ | 
|  | #define EXTERN_BIT            (8U) | 
|  |  | 
|  |  | 
|  | /* --------------------------- Lock preliminaries ------------------------ */ | 
|  |  | 
|  | /* | 
|  | When locks are defined, there is one global lock, plus | 
|  | one per-mspace lock. | 
|  |  | 
|  | The global lock_ensures that mparams.magic and other unique | 
|  | mparams values are initialized only once. It also protects | 
|  | sequences of calls to MORECORE.  In many cases sys_alloc requires | 
|  | two calls, that should not be interleaved with calls by other | 
|  | threads.  This does not protect against direct calls to MORECORE | 
|  | by other threads not using this lock, so there is still code to | 
|  | cope the best we can on interference. | 
|  |  | 
|  | Per-mspace locks surround calls to malloc, free, etc.  To enable use | 
|  | in layered extensions, per-mspace locks are reentrant. | 
|  |  | 
|  | Because lock-protected regions generally have bounded times, it is | 
|  | OK to use the supplied simple spinlocks in the custom versions for | 
|  | x86. | 
|  |  | 
|  | If USE_LOCKS is > 1, the definitions of lock routines here are | 
|  | bypassed, in which case you will need to define at least | 
|  | INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly TRY_LOCK | 
|  | (which is not used in this malloc, but commonly needed in | 
|  | extensions.) | 
|  | */ | 
|  |  | 
|  | #if USE_LOCKS == 1 | 
|  |  | 
|  | #if USE_SPIN_LOCKS | 
|  | #ifndef WIN32 | 
|  |  | 
|  | /* Custom pthread-style spin locks on x86 and x64 for gcc */ | 
|  | struct pthread_mlock_t { | 
|  | volatile unsigned int l; | 
|  | volatile unsigned int c; | 
|  | volatile pthread_t threadid; | 
|  | }; | 
|  | #define MLOCK_T struct        pthread_mlock_t | 
|  | #define CURRENT_THREAD        pthread_self() | 
|  | #define INITIAL_LOCK(sl)      (memset(sl, 0, sizeof(MLOCK_T)), 0) | 
|  | #define ACQUIRE_LOCK(sl)      pthread_acquire_lock(sl) | 
|  | #define RELEASE_LOCK(sl)      pthread_release_lock(sl) | 
|  | #define TRY_LOCK(sl)          pthread_try_lock(sl) | 
|  | #define SPINS_PER_YIELD       63 | 
|  |  | 
|  | static MLOCK_T malloc_global_mutex = { 0, 0, 0}; | 
|  |  | 
|  | static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) { | 
|  | int spins = 0; | 
|  | volatile unsigned int* lp = &sl->l; | 
|  | for (;;) { | 
|  | if (*lp != 0) { | 
|  | if (sl->threadid == CURRENT_THREAD) { | 
|  | ++sl->c; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* place args to cmpxchgl in locals to evade oddities in some gccs */ | 
|  | int cmp = 0; | 
|  | int val = 1; | 
|  | int ret; | 
|  | __asm__ __volatile__  ("lock; cmpxchgl %1, %2" | 
|  | : "=a" (ret) | 
|  | : "r" (val), "m" (*(lp)), "0"(cmp) | 
|  | : "memory", "cc"); | 
|  | if (!ret) { | 
|  | assert(!sl->threadid); | 
|  | sl->c = 1; | 
|  | sl->threadid = CURRENT_THREAD; | 
|  | return 0; | 
|  | } | 
|  | if ((++spins & SPINS_PER_YIELD) == 0) { | 
|  | #if defined (__SVR4) && defined (__sun) /* solaris */ | 
|  | thr_yield(); | 
|  | #else | 
|  | #if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__) | 
|  | sched_yield(); | 
|  | #else  /* no-op yield on unknown systems */ | 
|  | ; | 
|  | #endif /* __linux__ || __FreeBSD__ || __APPLE__ */ | 
|  | #endif /* solaris */ | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) { | 
|  | assert(sl->l != 0); | 
|  | assert(sl->threadid == CURRENT_THREAD); | 
|  | if (--sl->c == 0) { | 
|  | sl->threadid = 0; | 
|  | volatile unsigned int* lp = &sl->l; | 
|  | int prev = 0; | 
|  | int ret; | 
|  | __asm__ __volatile__ ("lock; xchgl %0, %1" | 
|  | : "=r" (ret) | 
|  | : "m" (*(lp)), "0"(prev) | 
|  | : "memory"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) { | 
|  | volatile unsigned int* lp = &sl->l; | 
|  | if (*lp != 0) { | 
|  | if (sl->threadid == CURRENT_THREAD) { | 
|  | ++sl->c; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | else { | 
|  | int cmp = 0; | 
|  | int val = 1; | 
|  | int ret; | 
|  | __asm__ __volatile__  ("lock; cmpxchgl %1, %2" | 
|  | : "=a" (ret) | 
|  | : "r" (val), "m" (*(lp)), "0"(cmp) | 
|  | : "memory", "cc"); | 
|  | if (!ret) { | 
|  | assert(!sl->threadid); | 
|  | sl->c = 1; | 
|  | sl->threadid = CURRENT_THREAD; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #else /* WIN32 */ | 
|  | /* Custom win32-style spin locks on x86 and x64 for MSC */ | 
|  | struct win32_mlock_t | 
|  | { | 
|  | volatile long l; | 
|  | volatile unsigned int c; | 
|  | volatile long threadid; | 
|  | }; | 
|  |  | 
|  | #define MLOCK_T               struct win32_mlock_t | 
|  | #define CURRENT_THREAD        win32_getcurrentthreadid() | 
|  | #define INITIAL_LOCK(sl)      (memset(sl, 0, sizeof(MLOCK_T)), 0) | 
|  | #define ACQUIRE_LOCK(sl)      win32_acquire_lock(sl) | 
|  | #define RELEASE_LOCK(sl)      win32_release_lock(sl) | 
|  | #define TRY_LOCK(sl)          win32_try_lock(sl) | 
|  | #define SPINS_PER_YIELD       63 | 
|  |  | 
|  | static MLOCK_T malloc_global_mutex = { 0, 0, 0}; | 
|  |  | 
|  | static FORCEINLINE long win32_getcurrentthreadid() { | 
|  | #ifdef _MSC_VER | 
|  | #if defined(_M_IX86) | 
|  | long *threadstruct=(long *)__readfsdword(0x18); | 
|  | long threadid=threadstruct[0x24/sizeof(long)]; | 
|  | return threadid; | 
|  | #elif defined(_M_X64) | 
|  | /* todo */ | 
|  | return GetCurrentThreadId(); | 
|  | #else | 
|  | return GetCurrentThreadId(); | 
|  | #endif | 
|  | #else | 
|  | return GetCurrentThreadId(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) { | 
|  | int spins = 0; | 
|  | for (;;) { | 
|  | if (sl->l != 0) { | 
|  | if (sl->threadid == CURRENT_THREAD) { | 
|  | ++sl->c; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (!interlockedexchange(&sl->l, 1)) { | 
|  | assert(!sl->threadid); | 
|  | sl->c=CURRENT_THREAD; | 
|  | sl->threadid = CURRENT_THREAD; | 
|  | sl->c = 1; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if ((++spins & SPINS_PER_YIELD) == 0) | 
|  | SleepEx(0, FALSE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static FORCEINLINE void win32_release_lock (MLOCK_T *sl) { | 
|  | assert(sl->threadid == CURRENT_THREAD); | 
|  | assert(sl->l != 0); | 
|  | if (--sl->c == 0) { | 
|  | sl->threadid = 0; | 
|  | interlockedexchange (&sl->l, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static FORCEINLINE int win32_try_lock (MLOCK_T *sl) { | 
|  | if(sl->l != 0) { | 
|  | if (sl->threadid == CURRENT_THREAD) { | 
|  | ++sl->c; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (!interlockedexchange(&sl->l, 1)){ | 
|  | assert(!sl->threadid); | 
|  | sl->threadid = CURRENT_THREAD; | 
|  | sl->c = 1; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* WIN32 */ | 
|  | #else /* USE_SPIN_LOCKS */ | 
|  |  | 
|  | #ifndef WIN32 | 
|  | /* pthreads-based locks */ | 
|  |  | 
|  | #define MLOCK_T               pthread_mutex_t | 
|  | #define CURRENT_THREAD        pthread_self() | 
|  | #define INITIAL_LOCK(sl)      pthread_init_lock(sl) | 
|  | #define ACQUIRE_LOCK(sl)      pthread_mutex_lock(sl) | 
|  | #define RELEASE_LOCK(sl)      pthread_mutex_unlock(sl) | 
|  | #define TRY_LOCK(sl)          (!pthread_mutex_trylock(sl)) | 
|  |  | 
|  | static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; | 
|  |  | 
|  | /* Cope with old-style linux recursive lock initialization by adding */ | 
|  | /* skipped internal declaration from pthread.h */ | 
|  | #ifdef linux | 
|  | #ifndef PTHREAD_MUTEX_RECURSIVE | 
|  | extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, | 
|  | int __kind)); | 
|  | #define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP | 
|  | #define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | static int pthread_init_lock (MLOCK_T *sl) { | 
|  | pthread_mutexattr_t attr; | 
|  | if (pthread_mutexattr_init(&attr)) return 1; | 
|  | if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; | 
|  | if (pthread_mutex_init(sl, &attr)) return 1; | 
|  | if (pthread_mutexattr_destroy(&attr)) return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else /* WIN32 */ | 
|  | /* Win32 critical sections */ | 
|  | #define MLOCK_T               CRITICAL_SECTION | 
|  | #define CURRENT_THREAD        GetCurrentThreadId() | 
|  | #define INITIAL_LOCK(s)       (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000)) | 
|  | #define ACQUIRE_LOCK(s)       (EnterCriticalSection(s), 0) | 
|  | #define RELEASE_LOCK(s)       LeaveCriticalSection(s) | 
|  | #define TRY_LOCK(s)           TryEnterCriticalSection(s) | 
|  | #define NEED_GLOBAL_LOCK_INIT | 
|  |  | 
|  | static MLOCK_T malloc_global_mutex; | 
|  | static volatile long malloc_global_mutex_status; | 
|  |  | 
|  | /* Use spin loop to initialize global lock */ | 
|  | static void init_malloc_global_mutex() { | 
|  | for (;;) { | 
|  | long stat = malloc_global_mutex_status; | 
|  | if (stat > 0) | 
|  | return; | 
|  | /* transition to < 0 while initializing, then to > 0) */ | 
|  | if (stat == 0 && | 
|  | interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) { | 
|  | InitializeCriticalSection(&malloc_global_mutex); | 
|  | interlockedexchange(&malloc_global_mutex_status,1); | 
|  | return; | 
|  | } | 
|  | SleepEx(0, FALSE); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* WIN32 */ | 
|  | #endif /* USE_SPIN_LOCKS */ | 
|  | #endif /* USE_LOCKS == 1 */ | 
|  |  | 
|  | /* -----------------------  User-defined locks ------------------------ */ | 
|  |  | 
|  | #if USE_LOCKS > 1 | 
|  | /* Define your own lock implementation here */ | 
|  | /* #define INITIAL_LOCK(sl)  ... */ | 
|  | /* #define ACQUIRE_LOCK(sl)  ... */ | 
|  | /* #define RELEASE_LOCK(sl)  ... */ | 
|  | /* #define TRY_LOCK(sl) ... */ | 
|  | /* static MLOCK_T malloc_global_mutex = ... */ | 
|  | #endif /* USE_LOCKS > 1 */ | 
|  |  | 
|  | /* -----------------------  Lock-based state ------------------------ */ | 
|  |  | 
|  | #if USE_LOCKS | 
|  | #define USE_LOCK_BIT               (2U) | 
|  | #else  /* USE_LOCKS */ | 
|  | #define USE_LOCK_BIT               (0U) | 
|  | #define INITIAL_LOCK(l) | 
|  | #endif /* USE_LOCKS */ | 
|  |  | 
|  | #if USE_LOCKS | 
|  | #define ACQUIRE_MALLOC_GLOBAL_LOCK()  ACQUIRE_LOCK(&malloc_global_mutex); | 
|  | #define RELEASE_MALLOC_GLOBAL_LOCK()  RELEASE_LOCK(&malloc_global_mutex); | 
|  | #else  /* USE_LOCKS */ | 
|  | #define ACQUIRE_MALLOC_GLOBAL_LOCK() | 
|  | #define RELEASE_MALLOC_GLOBAL_LOCK() | 
|  | #endif /* USE_LOCKS */ | 
|  |  | 
|  |  | 
|  | /* -----------------------  Chunk representations ------------------------ */ | 
|  |  | 
|  | /* | 
|  | (The following includes lightly edited explanations by Colin Plumb.) | 
|  |  | 
|  | The malloc_chunk declaration below is misleading (but accurate and | 
|  | necessary).  It declares a "view" into memory allowing access to | 
|  | necessary fields at known offsets from a given base. | 
|  |  | 
|  | Chunks of memory are maintained using a `boundary tag' method as | 
|  | originally described by Knuth.  (See the paper by Paul Wilson | 
|  | ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such | 
|  | techniques.)  Sizes of free chunks are stored both in the front of | 
|  | each chunk and at the end.  This makes consolidating fragmented | 
|  | chunks into bigger chunks fast.  The head fields also hold bits | 
|  | representing whether chunks are free or in use. | 
|  |  | 
|  | Here are some pictures to make it clearer.  They are "exploded" to | 
|  | show that the state of a chunk can be thought of as extending from | 
|  | the high 31 bits of the head field of its header through the | 
|  | prev_foot and PINUSE_BIT bit of the following chunk header. | 
|  |  | 
|  | A chunk that's in use looks like: | 
|  |  | 
|  | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | | Size of previous chunk (if P = 0)                             | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| | 
|  | | Size of this chunk                                         1| +-+ | 
|  | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |                                                               | | 
|  | +-                                                             -+ | 
|  | |                                                               | | 
|  | +-                                                             -+ | 
|  | |                                                               : | 
|  | +-      size - sizeof(size_t) available payload bytes          -+ | 
|  | :                                                               | | 
|  | chunk-> +-                                                             -+ | 
|  | |                                                               | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| | 
|  | | Size of next chunk (may or may not be in use)               | +-+ | 
|  | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  |  | 
|  | And if it's free, it looks like this: | 
|  |  | 
|  | chunk-> +-                                                             -+ | 
|  | | User payload (must be in use, or we would have merged!)       | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| | 
|  | | Size of this chunk                                         0| +-+ | 
|  | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | | Next pointer                                                  | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | | Prev pointer                                                  | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |                                                               : | 
|  | +-      size - sizeof(struct chunk) unused bytes               -+ | 
|  | :                                                               | | 
|  | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | | Size of this chunk                                            | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| | 
|  | | Size of next chunk (must be in use, or we would have merged)| +-+ | 
|  | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |                                                               : | 
|  | +- User payload                                                -+ | 
|  | :                                                               | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |0| | 
|  | +-+ | 
|  | Note that since we always merge adjacent free chunks, the chunks | 
|  | adjacent to a free chunk must be in use. | 
|  |  | 
|  | Given a pointer to a chunk (which can be derived trivially from the | 
|  | payload pointer) we can, in O(1) time, find out whether the adjacent | 
|  | chunks are free, and if so, unlink them from the lists that they | 
|  | are on and merge them with the current chunk. | 
|  |  | 
|  | Chunks always begin on even word boundaries, so the mem portion | 
|  | (which is returned to the user) is also on an even word boundary, and | 
|  | thus at least double-word aligned. | 
|  |  | 
|  | The P (PINUSE_BIT) bit, stored in the unused low-order bit of the | 
|  | chunk size (which is always a multiple of two words), is an in-use | 
|  | bit for the *previous* chunk.  If that bit is *clear*, then the | 
|  | word before the current chunk size contains the previous chunk | 
|  | size, and can be used to find the front of the previous chunk. | 
|  | The very first chunk allocated always has this bit set, preventing | 
|  | access to non-existent (or non-owned) memory. If pinuse is set for | 
|  | any given chunk, then you CANNOT determine the size of the | 
|  | previous chunk, and might even get a memory addressing fault when | 
|  | trying to do so. | 
|  |  | 
|  | The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of | 
|  | the chunk size redundantly records whether the current chunk is | 
|  | inuse. This redundancy enables usage checks within free and realloc, | 
|  | and reduces indirection when freeing and consolidating chunks. | 
|  |  | 
|  | Each freshly allocated chunk must have both cinuse and pinuse set. | 
|  | That is, each allocated chunk borders either a previously allocated | 
|  | and still in-use chunk, or the base of its memory arena. This is | 
|  | ensured by making all allocations from the the `lowest' part of any | 
|  | found chunk.  Further, no free chunk physically borders another one, | 
|  | so each free chunk is known to be preceded and followed by either | 
|  | inuse chunks or the ends of memory. | 
|  |  | 
|  | Note that the `foot' of the current chunk is actually represented | 
|  | as the prev_foot of the NEXT chunk. This makes it easier to | 
|  | deal with alignments etc but can be very confusing when trying | 
|  | to extend or adapt this code. | 
|  |  | 
|  | The exceptions to all this are | 
|  |  | 
|  | 1. The special chunk `top' is the top-most available chunk (i.e., | 
|  | the one bordering the end of available memory). It is treated | 
|  | specially.  Top is never included in any bin, is used only if | 
|  | no other chunk is available, and is released back to the | 
|  | system if it is very large (see M_TRIM_THRESHOLD).  In effect, | 
|  | the top chunk is treated as larger (and thus less well | 
|  | fitting) than any other available chunk.  The top chunk | 
|  | doesn't update its trailing size field since there is no next | 
|  | contiguous chunk that would have to index off it. However, | 
|  | space is still allocated for it (TOP_FOOT_SIZE) to enable | 
|  | separation or merging when space is extended. | 
|  |  | 
|  | 3. Chunks allocated via mmap, which have the lowest-order bit | 
|  | (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set | 
|  | PINUSE_BIT in their head fields.  Because they are allocated | 
|  | one-by-one, each must carry its own prev_foot field, which is | 
|  | also used to hold the offset this chunk has within its mmapped | 
|  | region, which is needed to preserve alignment. Each mmapped | 
|  | chunk is trailed by the first two fields of a fake next-chunk | 
|  | for sake of usage checks. | 
|  |  | 
|  | */ | 
|  |  | 
|  | struct malloc_chunk { | 
|  | size_t               prev_foot;  /* Size of previous chunk (if free).  */ | 
|  | size_t               head;       /* Size and inuse bits. */ | 
|  | struct malloc_chunk* fd;         /* double links -- used only if free. */ | 
|  | struct malloc_chunk* bk; | 
|  | }; | 
|  |  | 
|  | typedef struct malloc_chunk  mchunk; | 
|  | typedef struct malloc_chunk* mchunkptr; | 
|  | typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */ | 
|  | typedef unsigned int bindex_t;         /* Described below */ | 
|  | typedef unsigned int binmap_t;         /* Described below */ | 
|  | typedef unsigned int flag_t;           /* The type of various bit flag sets */ | 
|  |  | 
|  | /* ------------------- Chunks sizes and alignments ----------------------- */ | 
|  |  | 
|  | #define MCHUNK_SIZE         (sizeof(mchunk)) | 
|  |  | 
|  | #if FOOTERS | 
|  | #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES) | 
|  | #else /* FOOTERS */ | 
|  | #define CHUNK_OVERHEAD      (SIZE_T_SIZE) | 
|  | #endif /* FOOTERS */ | 
|  |  | 
|  | /* MMapped chunks need a second word of overhead ... */ | 
|  | #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) | 
|  | /* ... and additional padding for fake next-chunk at foot */ | 
|  | #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES) | 
|  |  | 
|  | /* The smallest size we can malloc is an aligned minimal chunk */ | 
|  | #define MIN_CHUNK_SIZE\ | 
|  | ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) | 
|  |  | 
|  | /* conversion from malloc headers to user pointers, and back */ | 
|  | #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES)) | 
|  | #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) | 
|  | /* chunk associated with aligned address A */ | 
|  | #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A))) | 
|  |  | 
|  | /* Bounds on request (not chunk) sizes. */ | 
|  | #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2) | 
|  | #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) | 
|  |  | 
|  | /* pad request bytes into a usable size */ | 
|  | #define pad_request(req) \ | 
|  | (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) | 
|  |  | 
|  | /* pad request, checking for minimum (but not maximum) */ | 
|  | #define request2size(req) \ | 
|  | (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) | 
|  |  | 
|  |  | 
|  | /* ------------------ Operations on head and foot fields ----------------- */ | 
|  |  | 
|  | /* | 
|  | The head field of a chunk is or'ed with PINUSE_BIT when previous | 
|  | adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in | 
|  | use. If the chunk was obtained with mmap, the prev_foot field has | 
|  | IS_MMAPPED_BIT set, otherwise holding the offset of the base of the | 
|  | mmapped region to the base of the chunk. | 
|  |  | 
|  | FLAG4_BIT is not used by this malloc, but might be useful in extensions. | 
|  | */ | 
|  |  | 
|  | #define PINUSE_BIT          (SIZE_T_ONE) | 
|  | #define CINUSE_BIT          (SIZE_T_TWO) | 
|  | #define FLAG4_BIT           (SIZE_T_FOUR) | 
|  | #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT) | 
|  | #define FLAG_BITS           (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) | 
|  |  | 
|  | /* Head value for fenceposts */ | 
|  | #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE) | 
|  |  | 
|  | /* extraction of fields from head words */ | 
|  | #define cinuse(p)           ((p)->head & CINUSE_BIT) | 
|  | #define pinuse(p)           ((p)->head & PINUSE_BIT) | 
|  | #define chunksize(p)        ((p)->head & ~(FLAG_BITS)) | 
|  |  | 
|  | #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT) | 
|  | #define clear_cinuse(p)     ((p)->head &= ~CINUSE_BIT) | 
|  |  | 
|  | /* Treat space at ptr +/- offset as a chunk */ | 
|  | #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s))) | 
|  | #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) | 
|  |  | 
|  | /* Ptr to next or previous physical malloc_chunk. */ | 
|  | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) | 
|  | #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) | 
|  |  | 
|  | /* extract next chunk's pinuse bit */ | 
|  | #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT) | 
|  |  | 
|  | /* Get/set size at footer */ | 
|  | #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot) | 
|  | #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) | 
|  |  | 
|  | /* Set size, pinuse bit, and foot */ | 
|  | #define set_size_and_pinuse_of_free_chunk(p, s)\ | 
|  | ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) | 
|  |  | 
|  | /* Set size, pinuse bit, foot, and clear next pinuse */ | 
|  | #define set_free_with_pinuse(p, s, n)\ | 
|  | (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) | 
|  |  | 
|  | #define is_mmapped(p)\ | 
|  | (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) | 
|  |  | 
|  | /* Get the internal overhead associated with chunk p */ | 
|  | #define overhead_for(p)\ | 
|  | (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) | 
|  |  | 
|  | /* Return true if malloced space is not necessarily cleared */ | 
|  | #if MMAP_CLEARS | 
|  | #define calloc_must_clear(p) (!is_mmapped(p)) | 
|  | #else /* MMAP_CLEARS */ | 
|  | #define calloc_must_clear(p) (1) | 
|  | #endif /* MMAP_CLEARS */ | 
|  |  | 
|  | /* ---------------------- Overlaid data structures ----------------------- */ | 
|  |  | 
|  | /* | 
|  | When chunks are not in use, they are treated as nodes of either | 
|  | lists or trees. | 
|  |  | 
|  | "Small"  chunks are stored in circular doubly-linked lists, and look | 
|  | like this: | 
|  |  | 
|  | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Size of previous chunk                            | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | `head:' |             Size of chunk, in bytes                         |P| | 
|  | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Forward pointer to next chunk in list             | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Back pointer to previous chunk in list            | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Unused space (may be 0 bytes long)                . | 
|  | .                                                               . | 
|  | .                                                               | | 
|  | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | `foot:' |             Size of chunk, in bytes                           | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  |  | 
|  | Larger chunks are kept in a form of bitwise digital trees (aka | 
|  | tries) keyed on chunksizes.  Because malloc_tree_chunks are only for | 
|  | free chunks greater than 256 bytes, their size doesn't impose any | 
|  | constraints on user chunk sizes.  Each node looks like: | 
|  |  | 
|  | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Size of previous chunk                            | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | `head:' |             Size of chunk, in bytes                         |P| | 
|  | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Forward pointer to next chunk of same size        | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Back pointer to previous chunk of same size       | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Pointer to left child (child[0])                  | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Pointer to right child (child[1])                 | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Pointer to parent                                 | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             bin index of this chunk                           | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | |             Unused space                                      . | 
|  | .                                                               | | 
|  | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | `foot:' |             Size of chunk, in bytes                           | | 
|  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  |  | 
|  | Each tree holding treenodes is a tree of unique chunk sizes.  Chunks | 
|  | of the same size are arranged in a circularly-linked list, with only | 
|  | the oldest chunk (the next to be used, in our FIFO ordering) | 
|  | actually in the tree.  (Tree members are distinguished by a non-null | 
|  | parent pointer.)  If a chunk with the same size an an existing node | 
|  | is inserted, it is linked off the existing node using pointers that | 
|  | work in the same way as fd/bk pointers of small chunks. | 
|  |  | 
|  | Each tree contains a power of 2 sized range of chunk sizes (the | 
|  | smallest is 0x100 <= x < 0x180), which is is divided in half at each | 
|  | tree level, with the chunks in the smaller half of the range (0x100 | 
|  | <= x < 0x140 for the top nose) in the left subtree and the larger | 
|  | half (0x140 <= x < 0x180) in the right subtree.  This is, of course, | 
|  | done by inspecting individual bits. | 
|  |  | 
|  | Using these rules, each node's left subtree contains all smaller | 
|  | sizes than its right subtree.  However, the node at the root of each | 
|  | subtree has no particular ordering relationship to either.  (The | 
|  | dividing line between the subtree sizes is based on trie relation.) | 
|  | If we remove the last chunk of a given size from the interior of the | 
|  | tree, we need to replace it with a leaf node.  The tree ordering | 
|  | rules permit a node to be replaced by any leaf below it. | 
|  |  | 
|  | The smallest chunk in a tree (a common operation in a best-fit | 
|  | allocator) can be found by walking a path to the leftmost leaf in | 
|  | the tree.  Unlike a usual binary tree, where we follow left child | 
|  | pointers until we reach a null, here we follow the right child | 
|  | pointer any time the left one is null, until we reach a leaf with | 
|  | both child pointers null. The smallest chunk in the tree will be | 
|  | somewhere along that path. | 
|  |  | 
|  | The worst case number of steps to add, find, or remove a node is | 
|  | bounded by the number of bits differentiating chunks within | 
|  | bins. Under current bin calculations, this ranges from 6 up to 21 | 
|  | (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case | 
|  | is of course much better. | 
|  | */ | 
|  |  | 
|  | struct malloc_tree_chunk { | 
|  | /* The first four fields must be compatible with malloc_chunk */ | 
|  | size_t                    prev_foot; | 
|  | size_t                    head; | 
|  | struct malloc_tree_chunk* fd; | 
|  | struct malloc_tree_chunk* bk; | 
|  |  | 
|  | struct malloc_tree_chunk* child[2]; | 
|  | struct malloc_tree_chunk* parent; | 
|  | bindex_t                  index; | 
|  | }; | 
|  |  | 
|  | typedef struct malloc_tree_chunk  tchunk; | 
|  | typedef struct malloc_tree_chunk* tchunkptr; | 
|  | typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ | 
|  |  | 
|  | /* A little helper macro for trees */ | 
|  | #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) | 
|  |  | 
|  | /* ----------------------------- Segments -------------------------------- */ | 
|  |  | 
|  | /* | 
|  | Each malloc space may include non-contiguous segments, held in a | 
|  | list headed by an embedded malloc_segment record representing the | 
|  | top-most space. Segments also include flags holding properties of | 
|  | the space. Large chunks that are directly allocated by mmap are not | 
|  | included in this list. They are instead independently created and | 
|  | destroyed without otherwise keeping track of them. | 
|  |  | 
|  | Segment management mainly comes into play for spaces allocated by | 
|  | MMAP.  Any call to MMAP might or might not return memory that is | 
|  | adjacent to an existing segment.  MORECORE normally contiguously | 
|  | extends the current space, so this space is almost always adjacent, | 
|  | which is simpler and faster to deal with. (This is why MORECORE is | 
|  | used preferentially to MMAP when both are available -- see | 
|  | sys_alloc.)  When allocating using MMAP, we don't use any of the | 
|  | hinting mechanisms (inconsistently) supported in various | 
|  | implementations of unix mmap, or distinguish reserving from | 
|  | committing memory. Instead, we just ask for space, and exploit | 
|  | contiguity when we get it.  It is probably possible to do | 
|  | better than this on some systems, but no general scheme seems | 
|  | to be significantly better. | 
|  |  | 
|  | Management entails a simpler variant of the consolidation scheme | 
|  | used for chunks to reduce fragmentation -- new adjacent memory is | 
|  | normally prepended or appended to an existing segment. However, | 
|  | there are limitations compared to chunk consolidation that mostly | 
|  | reflect the fact that segment processing is relatively infrequent | 
|  | (occurring only when getting memory from system) and that we | 
|  | don't expect to have huge numbers of segments: | 
|  |  | 
|  | * Segments are not indexed, so traversal requires linear scans.  (It | 
|  | would be possible to index these, but is not worth the extra | 
|  | overhead and complexity for most programs on most platforms.) | 
|  | * New segments are only appended to old ones when holding top-most | 
|  | memory; if they cannot be prepended to others, they are held in | 
|  | different segments. | 
|  |  | 
|  | Except for the top-most segment of an mstate, each segment record | 
|  | is kept at the tail of its segment. Segments are added by pushing | 
|  | segment records onto the list headed by &mstate.seg for the | 
|  | containing mstate. | 
|  |  | 
|  | Segment flags control allocation/merge/deallocation policies: | 
|  | * If EXTERN_BIT set, then we did not allocate this segment, | 
|  | and so should not try to deallocate or merge with others. | 
|  | (This currently holds only for the initial segment passed | 
|  | into create_mspace_with_base.) | 
|  | * If IS_MMAPPED_BIT set, the segment may be merged with | 
|  | other surrounding mmapped segments and trimmed/de-allocated | 
|  | using munmap. | 
|  | * If neither bit is set, then the segment was obtained using | 
|  | MORECORE so can be merged with surrounding MORECORE'd segments | 
|  | and deallocated/trimmed using MORECORE with negative arguments. | 
|  | */ | 
|  |  | 
|  | struct malloc_segment { | 
|  | char*        base;             /* base address */ | 
|  | size_t       size;             /* allocated size */ | 
|  | struct malloc_segment* next;   /* ptr to next segment */ | 
|  | flag_t       sflags;           /* mmap and extern flag */ | 
|  | }; | 
|  |  | 
|  | #define is_mmapped_segment(S)  ((S)->sflags & IS_MMAPPED_BIT) | 
|  | #define is_extern_segment(S)   ((S)->sflags & EXTERN_BIT) | 
|  |  | 
|  | typedef struct malloc_segment  msegment; | 
|  | typedef struct malloc_segment* msegmentptr; | 
|  |  | 
|  | /* ---------------------------- malloc_state ----------------------------- */ | 
|  |  | 
|  | /* | 
|  | A malloc_state holds all of the bookkeeping for a space. | 
|  | The main fields are: | 
|  |  | 
|  | Top | 
|  | The topmost chunk of the currently active segment. Its size is | 
|  | cached in topsize.  The actual size of topmost space is | 
|  | topsize+TOP_FOOT_SIZE, which includes space reserved for adding | 
|  | fenceposts and segment records if necessary when getting more | 
|  | space from the system.  The size at which to autotrim top is | 
|  | cached from mparams in trim_check, except that it is disabled if | 
|  | an autotrim fails. | 
|  |  | 
|  | Designated victim (dv) | 
|  | This is the preferred chunk for servicing small requests that | 
|  | don't have exact fits.  It is normally the chunk split off most | 
|  | recently to service another small request.  Its size is cached in | 
|  | dvsize. The link fields of this chunk are not maintained since it | 
|  | is not kept in a bin. | 
|  |  | 
|  | SmallBins | 
|  | An array of bin headers for free chunks.  These bins hold chunks | 
|  | with sizes less than MIN_LARGE_SIZE bytes. Each bin contains | 
|  | chunks of all the same size, spaced 8 bytes apart.  To simplify | 
|  | use in double-linked lists, each bin header acts as a malloc_chunk | 
|  | pointing to the real first node, if it exists (else pointing to | 
|  | itself).  This avoids special-casing for headers.  But to avoid | 
|  | waste, we allocate only the fd/bk pointers of bins, and then use | 
|  | repositioning tricks to treat these as the fields of a chunk. | 
|  |  | 
|  | TreeBins | 
|  | Treebins are pointers to the roots of trees holding a range of | 
|  | sizes. There are 2 equally spaced treebins for each power of two | 
|  | from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything | 
|  | larger. | 
|  |  | 
|  | Bin maps | 
|  | There is one bit map for small bins ("smallmap") and one for | 
|  | treebins ("treemap).  Each bin sets its bit when non-empty, and | 
|  | clears the bit when empty.  Bit operations are then used to avoid | 
|  | bin-by-bin searching -- nearly all "search" is done without ever | 
|  | looking at bins that won't be selected.  The bit maps | 
|  | conservatively use 32 bits per map word, even if on 64bit system. | 
|  | For a good description of some of the bit-based techniques used | 
|  | here, see Henry S. Warren Jr's book "Hacker's Delight" (and | 
|  | supplement at http://hackersdelight.org/). Many of these are | 
|  | intended to reduce the branchiness of paths through malloc etc, as | 
|  | well as to reduce the number of memory locations read or written. | 
|  |  | 
|  | Segments | 
|  | A list of segments headed by an embedded malloc_segment record | 
|  | representing the initial space. | 
|  |  | 
|  | Address check support | 
|  | The least_addr field is the least address ever obtained from | 
|  | MORECORE or MMAP. Attempted frees and reallocs of any address less | 
|  | than this are trapped (unless INSECURE is defined). | 
|  |  | 
|  | Magic tag | 
|  | A cross-check field that should always hold same value as mparams.magic. | 
|  |  | 
|  | Flags | 
|  | Bits recording whether to use MMAP, locks, or contiguous MORECORE | 
|  |  | 
|  | Statistics | 
|  | Each space keeps track of current and maximum system memory | 
|  | obtained via MORECORE or MMAP. | 
|  |  | 
|  | Trim support | 
|  | Fields holding the amount of unused topmost memory that should trigger | 
|  | timming, and a counter to force periodic scanning to release unused | 
|  | non-topmost segments. | 
|  |  | 
|  | Locking | 
|  | If USE_LOCKS is defined, the "mutex" lock is acquired and released | 
|  | around every public call using this mspace. | 
|  |  | 
|  | Extension support | 
|  | A void* pointer and a size_t field that can be used to help implement | 
|  | extensions to this malloc. | 
|  | */ | 
|  |  | 
|  | /* Bin types, widths and sizes */ | 
|  | #define NSMALLBINS        (32U) | 
|  | #define NTREEBINS         (32U) | 
|  | #define SMALLBIN_SHIFT    (3U) | 
|  | #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT) | 
|  | #define TREEBIN_SHIFT     (8U) | 
|  | #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT) | 
|  | #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE) | 
|  | #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) | 
|  |  | 
|  | struct malloc_state { | 
|  | binmap_t   smallmap; | 
|  | binmap_t   treemap; | 
|  | size_t     dvsize; | 
|  | size_t     topsize; | 
|  | char*      least_addr; | 
|  | mchunkptr  dv; | 
|  | mchunkptr  top; | 
|  | size_t     trim_check; | 
|  | size_t     release_checks; | 
|  | size_t     magic; | 
|  | mchunkptr  smallbins[(NSMALLBINS+1)*2]; | 
|  | tbinptr    treebins[NTREEBINS]; | 
|  | size_t     footprint; | 
|  | size_t     max_footprint; | 
|  | flag_t     mflags; | 
|  | #if USE_LOCKS | 
|  | MLOCK_T    mutex;     /* locate lock among fields that rarely change */ | 
|  | #endif /* USE_LOCKS */ | 
|  | msegment   seg; | 
|  | void*      extp;      /* Unused but available for extensions */ | 
|  | size_t     exts; | 
|  | }; | 
|  |  | 
|  | typedef struct malloc_state*    mstate; | 
|  |  | 
|  | /* ------------- Global malloc_state and malloc_params ------------------- */ | 
|  |  | 
|  | /* | 
|  | malloc_params holds global properties, including those that can be | 
|  | dynamically set using mallopt. There is a single instance, mparams, | 
|  | initialized in init_mparams. Note that the non-zeroness of "magic" | 
|  | also serves as an initialization flag. | 
|  | */ | 
|  |  | 
|  | struct malloc_params { | 
|  | volatile size_t magic; | 
|  | size_t page_size; | 
|  | size_t granularity; | 
|  | size_t mmap_threshold; | 
|  | size_t trim_threshold; | 
|  | flag_t default_mflags; | 
|  | }; | 
|  |  | 
|  | static struct malloc_params mparams; | 
|  |  | 
|  | /* Ensure mparams initialized */ | 
|  | #define ensure_initialization() ((void)(mparams.magic != 0 || init_mparams())) | 
|  |  | 
|  | #if !ONLY_MSPACES | 
|  |  | 
|  | /* The global malloc_state used for all non-"mspace" calls */ | 
|  | static struct malloc_state _gm_; | 
|  | #define gm                 (&_gm_) | 
|  | #define is_global(M)       ((M) == &_gm_) | 
|  |  | 
|  | #endif /* !ONLY_MSPACES */ | 
|  |  | 
|  | #define is_initialized(M)  ((M)->top != 0) | 
|  |  | 
|  | /* -------------------------- system alloc setup ------------------------- */ | 
|  |  | 
|  | /* Operations on mflags */ | 
|  |  | 
|  | #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT) | 
|  | #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT) | 
|  | #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT) | 
|  |  | 
|  | #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT) | 
|  | #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT) | 
|  | #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT) | 
|  |  | 
|  | #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT) | 
|  | #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT) | 
|  |  | 
|  | #define set_lock(M,L)\ | 
|  | ((M)->mflags = (L)?\ | 
|  | ((M)->mflags | USE_LOCK_BIT) :\ | 
|  | ((M)->mflags & ~USE_LOCK_BIT)) | 
|  |  | 
|  | /* page-align a size */ | 
|  | #define page_align(S)\ | 
|  | (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) | 
|  |  | 
|  | /* granularity-align a size */ | 
|  | #define granularity_align(S)\ | 
|  | (((S) + (mparams.granularity - SIZE_T_ONE))\ | 
|  | & ~(mparams.granularity - SIZE_T_ONE)) | 
|  |  | 
|  |  | 
|  | /* For mmap, use granularity alignment on windows, else page-align */ | 
|  | #ifdef WIN32 | 
|  | #define mmap_align(S) granularity_align(S) | 
|  | #else | 
|  | #define mmap_align(S) page_align(S) | 
|  | #endif | 
|  |  | 
|  | /* For sys_alloc, enough padding to ensure can malloc request on success */ | 
|  | #define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) | 
|  |  | 
|  | #define is_page_aligned(S)\ | 
|  | (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) | 
|  | #define is_granularity_aligned(S)\ | 
|  | (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) | 
|  |  | 
|  | /*  True if segment S holds address A */ | 
|  | #define segment_holds(S, A)\ | 
|  | ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) | 
|  |  | 
|  | /* Return segment holding given address */ | 
|  | static msegmentptr segment_holding(mstate m, char* addr) { | 
|  | msegmentptr sp = &m->seg; | 
|  | for (;;) { | 
|  | if (addr >= sp->base && addr < sp->base + sp->size) | 
|  | return sp; | 
|  | if ((sp = sp->next) == 0) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return true if segment contains a segment link */ | 
|  | static int has_segment_link(mstate m, msegmentptr ss) { | 
|  | msegmentptr sp = &m->seg; | 
|  | for (;;) { | 
|  | if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) | 
|  | return 1; | 
|  | if ((sp = sp->next) == 0) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef MORECORE_CANNOT_TRIM | 
|  | #define should_trim(M,s)  ((s) > (M)->trim_check) | 
|  | #else  /* MORECORE_CANNOT_TRIM */ | 
|  | #define should_trim(M,s)  (0) | 
|  | #endif /* MORECORE_CANNOT_TRIM */ | 
|  |  | 
|  | /* | 
|  | TOP_FOOT_SIZE is padding at the end of a segment, including space | 
|  | that may be needed to place segment records and fenceposts when new | 
|  | noncontiguous segments are added. | 
|  | */ | 
|  | #define TOP_FOOT_SIZE\ | 
|  | (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) | 
|  |  | 
|  |  | 
|  | /* -------------------------------  Hooks -------------------------------- */ | 
|  |  | 
|  | /* | 
|  | PREACTION should be defined to return 0 on success, and nonzero on | 
|  | failure. If you are not using locking, you can redefine these to do | 
|  | anything you like. | 
|  | */ | 
|  |  | 
|  | #if USE_LOCKS | 
|  |  | 
|  | #define PREACTION(M)  ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) | 
|  | #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } | 
|  | #else /* USE_LOCKS */ | 
|  |  | 
|  | #ifndef PREACTION | 
|  | #define PREACTION(M) (0) | 
|  | #endif  /* PREACTION */ | 
|  |  | 
|  | #ifndef POSTACTION | 
|  | #define POSTACTION(M) | 
|  | #endif  /* POSTACTION */ | 
|  |  | 
|  | #endif /* USE_LOCKS */ | 
|  |  | 
|  | /* | 
|  | CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. | 
|  | USAGE_ERROR_ACTION is triggered on detected bad frees and | 
|  | reallocs. The argument p is an address that might have triggered the | 
|  | fault. It is ignored by the two predefined actions, but might be | 
|  | useful in custom actions that try to help diagnose errors. | 
|  | */ | 
|  |  | 
|  | #if PROCEED_ON_ERROR | 
|  |  | 
|  | /* A count of the number of corruption errors causing resets */ | 
|  | int malloc_corruption_error_count; | 
|  |  | 
|  | /* default corruption action */ | 
|  | static void reset_on_error(mstate m); | 
|  |  | 
|  | #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m) | 
|  | #define USAGE_ERROR_ACTION(m, p) | 
|  |  | 
|  | #else /* PROCEED_ON_ERROR */ | 
|  |  | 
|  | #ifndef CORRUPTION_ERROR_ACTION | 
|  | #define CORRUPTION_ERROR_ACTION(m) ABORT | 
|  | #endif /* CORRUPTION_ERROR_ACTION */ | 
|  |  | 
|  | #ifndef USAGE_ERROR_ACTION | 
|  | #define USAGE_ERROR_ACTION(m,p) ABORT | 
|  | #endif /* USAGE_ERROR_ACTION */ | 
|  |  | 
|  | #endif /* PROCEED_ON_ERROR */ | 
|  |  | 
|  | /* -------------------------- Debugging setup ---------------------------- */ | 
|  |  | 
|  | #if ! DEBUG | 
|  |  | 
|  | #define check_free_chunk(M,P) | 
|  | #define check_inuse_chunk(M,P) | 
|  | #define check_malloced_chunk(M,P,N) | 
|  | #define check_mmapped_chunk(M,P) | 
|  | #define check_malloc_state(M) | 
|  | #define check_top_chunk(M,P) | 
|  |  | 
|  | #else /* DEBUG */ | 
|  | #define check_free_chunk(M,P)       do_check_free_chunk(M,P) | 
|  | #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P) | 
|  | #define check_top_chunk(M,P)        do_check_top_chunk(M,P) | 
|  | #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) | 
|  | #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P) | 
|  | #define check_malloc_state(M)       do_check_malloc_state(M) | 
|  |  | 
|  | static void   do_check_any_chunk(mstate m, mchunkptr p); | 
|  | static void   do_check_top_chunk(mstate m, mchunkptr p); | 
|  | static void   do_check_mmapped_chunk(mstate m, mchunkptr p); | 
|  | static void   do_check_inuse_chunk(mstate m, mchunkptr p); | 
|  | static void   do_check_free_chunk(mstate m, mchunkptr p); | 
|  | static void   do_check_malloced_chunk(mstate m, void* mem, size_t s); | 
|  | static void   do_check_tree(mstate m, tchunkptr t); | 
|  | static void   do_check_treebin(mstate m, bindex_t i); | 
|  | static void   do_check_smallbin(mstate m, bindex_t i); | 
|  | static void   do_check_malloc_state(mstate m); | 
|  | static int    bin_find(mstate m, mchunkptr x); | 
|  | static size_t traverse_and_check(mstate m); | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | /* ---------------------------- Indexing Bins ---------------------------- */ | 
|  |  | 
|  | #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) | 
|  | #define small_index(s)      ((s)  >> SMALLBIN_SHIFT) | 
|  | #define small_index2size(i) ((i)  << SMALLBIN_SHIFT) | 
|  | #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE)) | 
|  |  | 
|  | /* addressing by index. See above about smallbin repositioning */ | 
|  | #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) | 
|  | #define treebin_at(M,i)     (&((M)->treebins[i])) | 
|  |  | 
|  | /* assign tree index for size S to variable I. Use x86 asm if possible  */ | 
|  | #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) | 
|  | #define compute_tree_index(S, I)\ | 
|  | {\ | 
|  | unsigned int X = S >> TREEBIN_SHIFT;\ | 
|  | if (X == 0)\ | 
|  | I = 0;\ | 
|  | else if (X > 0xFFFF)\ | 
|  | I = NTREEBINS-1;\ | 
|  | else {\ | 
|  | unsigned int K;\ | 
|  | __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "rm"  (X));\ | 
|  | I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ | 
|  | }\ | 
|  | } | 
|  |  | 
|  | #elif defined (__INTEL_COMPILER) | 
|  | #define compute_tree_index(S, I)\ | 
|  | {\ | 
|  | size_t X = S >> TREEBIN_SHIFT;\ | 
|  | if (X == 0)\ | 
|  | I = 0;\ | 
|  | else if (X > 0xFFFF)\ | 
|  | I = NTREEBINS-1;\ | 
|  | else {\ | 
|  | unsigned int K = _bit_scan_reverse (X); \ | 
|  | I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ | 
|  | }\ | 
|  | } | 
|  |  | 
|  | #elif defined(_MSC_VER) && _MSC_VER>=1300 | 
|  | #define compute_tree_index(S, I)\ | 
|  | {\ | 
|  | size_t X = S >> TREEBIN_SHIFT;\ | 
|  | if (X == 0)\ | 
|  | I = 0;\ | 
|  | else if (X > 0xFFFF)\ | 
|  | I = NTREEBINS-1;\ | 
|  | else {\ | 
|  | unsigned int K;\ | 
|  | _BitScanReverse((DWORD *) &K, X);\ | 
|  | I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ | 
|  | }\ | 
|  | } | 
|  |  | 
|  | #else /* GNUC */ | 
|  | #define compute_tree_index(S, I)\ | 
|  | {\ | 
|  | size_t X = S >> TREEBIN_SHIFT;\ | 
|  | if (X == 0)\ | 
|  | I = 0;\ | 
|  | else if (X > 0xFFFF)\ | 
|  | I = NTREEBINS-1;\ | 
|  | else {\ | 
|  | unsigned int Y = (unsigned int)X;\ | 
|  | unsigned int N = ((Y - 0x100) >> 16) & 8;\ | 
|  | unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ | 
|  | N += K;\ | 
|  | N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ | 
|  | K = 14 - N + ((Y <<= K) >> 15);\ | 
|  | I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ | 
|  | }\ | 
|  | } | 
|  | #endif /* GNUC */ | 
|  |  | 
|  | /* Bit representing maximum resolved size in a treebin at i */ | 
|  | #define bit_for_tree_index(i) \ | 
|  | (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) | 
|  |  | 
|  | /* Shift placing maximum resolved bit in a treebin at i as sign bit */ | 
|  | #define leftshift_for_tree_index(i) \ | 
|  | ((i == NTREEBINS-1)? 0 : \ | 
|  | ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) | 
|  |  | 
|  | /* The size of the smallest chunk held in bin with index i */ | 
|  | #define minsize_for_tree_index(i) \ | 
|  | ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \ | 
|  | (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) | 
|  |  | 
|  |  | 
|  | /* ------------------------ Operations on bin maps ----------------------- */ | 
|  |  | 
|  | /* bit corresponding to given index */ | 
|  | #define idx2bit(i)              ((binmap_t)(1) << (i)) | 
|  |  | 
|  | /* Mark/Clear bits with given index */ | 
|  | #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i)) | 
|  | #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i)) | 
|  | #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i)) | 
|  |  | 
|  | #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i)) | 
|  | #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i)) | 
|  | #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i)) | 
|  |  | 
|  | /* isolate the least set bit of a bitmap */ | 
|  | #define least_bit(x)         ((x) & -(x)) | 
|  |  | 
|  | /* mask with all bits to left of least bit of x on */ | 
|  | #define left_bits(x)         ((x<<1) | -(x<<1)) | 
|  |  | 
|  | /* mask with all bits to left of or equal to least bit of x on */ | 
|  | #define same_or_left_bits(x) ((x) | -(x)) | 
|  |  | 
|  | /* index corresponding to given bit. Use x86 asm if possible */ | 
|  |  | 
|  | #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) | 
|  | #define compute_bit2idx(X, I)\ | 
|  | {\ | 
|  | unsigned int J;\ | 
|  | __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "rm" (X));\ | 
|  | I = (bindex_t)J;\ | 
|  | } | 
|  |  | 
|  | #elif defined (__INTEL_COMPILER) | 
|  | #define compute_bit2idx(X, I)\ | 
|  | {\ | 
|  | unsigned int J;\ | 
|  | J = _bit_scan_forward (X); \ | 
|  | I = (bindex_t)J;\ | 
|  | } | 
|  |  | 
|  | #elif defined(_MSC_VER) && _MSC_VER>=1300 | 
|  | #define compute_bit2idx(X, I)\ | 
|  | {\ | 
|  | unsigned int J;\ | 
|  | _BitScanForward((DWORD *) &J, X);\ | 
|  | I = (bindex_t)J;\ | 
|  | } | 
|  |  | 
|  | #elif USE_BUILTIN_FFS | 
|  | #define compute_bit2idx(X, I) I = ffs(X)-1 | 
|  |  | 
|  | #else | 
|  | #define compute_bit2idx(X, I)\ | 
|  | {\ | 
|  | unsigned int Y = X - 1;\ | 
|  | unsigned int K = Y >> (16-4) & 16;\ | 
|  | unsigned int N = K;        Y >>= K;\ | 
|  | N += K = Y >> (8-3) &  8;  Y >>= K;\ | 
|  | N += K = Y >> (4-2) &  4;  Y >>= K;\ | 
|  | N += K = Y >> (2-1) &  2;  Y >>= K;\ | 
|  | N += K = Y >> (1-0) &  1;  Y >>= K;\ | 
|  | I = (bindex_t)(N + Y);\ | 
|  | } | 
|  | #endif /* GNUC */ | 
|  |  | 
|  |  | 
|  | /* ----------------------- Runtime Check Support ------------------------- */ | 
|  |  | 
|  | /* | 
|  | For security, the main invariant is that malloc/free/etc never | 
|  | writes to a static address other than malloc_state, unless static | 
|  | malloc_state itself has been corrupted, which cannot occur via | 
|  | malloc (because of these checks). In essence this means that we | 
|  | believe all pointers, sizes, maps etc held in malloc_state, but | 
|  | check all of those linked or offsetted from other embedded data | 
|  | structures.  These checks are interspersed with main code in a way | 
|  | that tends to minimize their run-time cost. | 
|  |  | 
|  | When FOOTERS is defined, in addition to range checking, we also | 
|  | verify footer fields of inuse chunks, which can be used guarantee | 
|  | that the mstate controlling malloc/free is intact.  This is a | 
|  | streamlined version of the approach described by William Robertson | 
|  | et al in "Run-time Detection of Heap-based Overflows" LISA'03 | 
|  | http://www.usenix.org/events/lisa03/tech/robertson.html The footer | 
|  | of an inuse chunk holds the xor of its mstate and a random seed, | 
|  | that is checked upon calls to free() and realloc().  This is | 
|  | (probablistically) unguessable from outside the program, but can be | 
|  | computed by any code successfully malloc'ing any chunk, so does not | 
|  | itself provide protection against code that has already broken | 
|  | security through some other means.  Unlike Robertson et al, we | 
|  | always dynamically check addresses of all offset chunks (previous, | 
|  | next, etc). This turns out to be cheaper than relying on hashes. | 
|  | */ | 
|  |  | 
|  | #if !INSECURE | 
|  | /* Check if address a is at least as high as any from MORECORE or MMAP */ | 
|  | #define ok_address(M, a) ((char*)(a) >= (M)->least_addr) | 
|  | /* Check if address of next chunk n is higher than base chunk p */ | 
|  | #define ok_next(p, n)    ((char*)(p) < (char*)(n)) | 
|  | /* Check if p has its cinuse bit on */ | 
|  | #define ok_cinuse(p)     cinuse(p) | 
|  | /* Check if p has its pinuse bit on */ | 
|  | #define ok_pinuse(p)     pinuse(p) | 
|  |  | 
|  | #else /* !INSECURE */ | 
|  | #define ok_address(M, a) (1) | 
|  | #define ok_next(b, n)    (1) | 
|  | #define ok_cinuse(p)     (1) | 
|  | #define ok_pinuse(p)     (1) | 
|  | #endif /* !INSECURE */ | 
|  |  | 
|  | #if (FOOTERS && !INSECURE) | 
|  | /* Check if (alleged) mstate m has expected magic field */ | 
|  | #define ok_magic(M)      ((M)->magic == mparams.magic) | 
|  | #else  /* (FOOTERS && !INSECURE) */ | 
|  | #define ok_magic(M)      (1) | 
|  | #endif /* (FOOTERS && !INSECURE) */ | 
|  |  | 
|  |  | 
|  | /* In gcc, use __builtin_expect to minimize impact of checks */ | 
|  | #if !INSECURE | 
|  | #if defined(__GNUC__) && __GNUC__ >= 3 | 
|  | #define RTCHECK(e)  __builtin_expect(e, 1) | 
|  | #else /* GNUC */ | 
|  | #define RTCHECK(e)  (e) | 
|  | #endif /* GNUC */ | 
|  | #else /* !INSECURE */ | 
|  | #define RTCHECK(e)  (1) | 
|  | #endif /* !INSECURE */ | 
|  |  | 
|  | /* macros to set up inuse chunks with or without footers */ | 
|  |  | 
|  | #if !FOOTERS | 
|  |  | 
|  | #define mark_inuse_foot(M,p,s) | 
|  |  | 
|  | /* Set cinuse bit and pinuse bit of next chunk */ | 
|  | #define set_inuse(M,p,s)\ | 
|  | ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ | 
|  | ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) | 
|  |  | 
|  | /* Set cinuse and pinuse of this chunk and pinuse of next chunk */ | 
|  | #define set_inuse_and_pinuse(M,p,s)\ | 
|  | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ | 
|  | ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) | 
|  |  | 
|  | /* Set size, cinuse and pinuse bit of this chunk */ | 
|  | #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ | 
|  | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) | 
|  |  | 
|  | #else /* FOOTERS */ | 
|  |  | 
|  | /* Set foot of inuse chunk to be xor of mstate and seed */ | 
|  | #define mark_inuse_foot(M,p,s)\ | 
|  | (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) | 
|  |  | 
|  | #define get_mstate_for(p)\ | 
|  | ((mstate)(((mchunkptr)((char*)(p) +\ | 
|  | (chunksize(p))))->prev_foot ^ mparams.magic)) | 
|  |  | 
|  | #define set_inuse(M,p,s)\ | 
|  | ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ | 
|  | (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ | 
|  | mark_inuse_foot(M,p,s)) | 
|  |  | 
|  | #define set_inuse_and_pinuse(M,p,s)\ | 
|  | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ | 
|  | (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ | 
|  | mark_inuse_foot(M,p,s)) | 
|  |  | 
|  | #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ | 
|  | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ | 
|  | mark_inuse_foot(M, p, s)) | 
|  |  | 
|  | #endif /* !FOOTERS */ | 
|  |  | 
|  | /* ---------------------------- setting mparams -------------------------- */ | 
|  |  | 
|  | /* Initialize mparams */ | 
|  | static int init_mparams(void) { | 
|  | #ifdef NEED_GLOBAL_LOCK_INIT | 
|  | if (malloc_global_mutex_status <= 0) | 
|  | init_malloc_global_mutex(); | 
|  | #endif | 
|  |  | 
|  | ACQUIRE_MALLOC_GLOBAL_LOCK(); | 
|  | if (mparams.magic == 0) { | 
|  | size_t magic; | 
|  | size_t psize; | 
|  | size_t gsize; | 
|  |  | 
|  | #ifndef WIN32 | 
|  | psize = malloc_getpagesize; | 
|  | gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); | 
|  | #else /* WIN32 */ | 
|  | { | 
|  | SYSTEM_INFO system_info; | 
|  | GetSystemInfo(&system_info); | 
|  | psize = system_info.dwPageSize; | 
|  | gsize = ((DEFAULT_GRANULARITY != 0)? | 
|  | DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); | 
|  | } | 
|  | #endif /* WIN32 */ | 
|  |  | 
|  | /* Sanity-check configuration: | 
|  | size_t must be unsigned and as wide as pointer type. | 
|  | ints must be at least 4 bytes. | 
|  | alignment must be at least 8. | 
|  | Alignment, min chunk size, and page size must all be powers of 2. | 
|  | */ | 
|  | if ((sizeof(size_t) != sizeof(char*)) || | 
|  | (MAX_SIZE_T < MIN_CHUNK_SIZE)  || | 
|  | (sizeof(int) < 4)  || | 
|  | (MALLOC_ALIGNMENT < (size_t)8U) || | 
|  | ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || | 
|  | ((MCHUNK_SIZE      & (MCHUNK_SIZE-SIZE_T_ONE))      != 0) || | 
|  | ((gsize            & (gsize-SIZE_T_ONE))            != 0) || | 
|  | ((psize            & (psize-SIZE_T_ONE))            != 0)) | 
|  | ABORT; | 
|  |  | 
|  | mparams.granularity = gsize; | 
|  | mparams.page_size = psize; | 
|  | mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; | 
|  | mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; | 
|  | #if MORECORE_CONTIGUOUS | 
|  | mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; | 
|  | #else  /* MORECORE_CONTIGUOUS */ | 
|  | mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; | 
|  | #endif /* MORECORE_CONTIGUOUS */ | 
|  |  | 
|  | #if !ONLY_MSPACES | 
|  | /* Set up lock for main malloc area */ | 
|  | gm->mflags = mparams.default_mflags; | 
|  | INITIAL_LOCK(&gm->mutex); | 
|  | #endif | 
|  |  | 
|  | #if (FOOTERS && !INSECURE) | 
|  | { | 
|  | #if USE_DEV_RANDOM | 
|  | int fd; | 
|  | unsigned char buf[sizeof(size_t)]; | 
|  | /* Try to use /dev/urandom, else fall back on using time */ | 
|  | if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && | 
|  | read(fd, buf, sizeof(buf)) == sizeof(buf)) { | 
|  | magic = *((size_t *) buf); | 
|  | close(fd); | 
|  | } | 
|  | else | 
|  | #endif /* USE_DEV_RANDOM */ | 
|  | #ifdef WIN32 | 
|  | magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); | 
|  | #else | 
|  | magic = (size_t)(time(0) ^ (size_t)0x55555555U); | 
|  | #endif | 
|  | magic |= (size_t)8U;    /* ensure nonzero */ | 
|  | magic &= ~(size_t)7U;   /* improve chances of fault for bad values */ | 
|  | } | 
|  | #else /* (FOOTERS && !INSECURE) */ | 
|  | magic = (size_t)0x58585858U; | 
|  | #endif /* (FOOTERS && !INSECURE) */ | 
|  |  | 
|  | mparams.magic = magic; | 
|  | } | 
|  |  | 
|  | RELEASE_MALLOC_GLOBAL_LOCK(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* support for mallopt */ | 
|  | static int change_mparam(int param_number, int value) { | 
|  | size_t val = (value == -1)? MAX_SIZE_T : (size_t)value; | 
|  | ensure_initialization(); | 
|  | switch(param_number) { | 
|  | case M_TRIM_THRESHOLD: | 
|  | mparams.trim_threshold = val; | 
|  | return 1; | 
|  | case M_GRANULARITY: | 
|  | if (val >= mparams.page_size && ((val & (val-1)) == 0)) { | 
|  | mparams.granularity = val; | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | return 0; | 
|  | case M_MMAP_THRESHOLD: | 
|  | mparams.mmap_threshold = val; | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  | /* ------------------------- Debugging Support --------------------------- */ | 
|  |  | 
|  | /* Check properties of any chunk, whether free, inuse, mmapped etc  */ | 
|  | static void do_check_any_chunk(mstate m, mchunkptr p) { | 
|  | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); | 
|  | assert(ok_address(m, p)); | 
|  | } | 
|  |  | 
|  | /* Check properties of top chunk */ | 
|  | static void do_check_top_chunk(mstate m, mchunkptr p) { | 
|  | msegmentptr sp = segment_holding(m, (char*)p); | 
|  | size_t  sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ | 
|  | assert(sp != 0); | 
|  | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); | 
|  | assert(ok_address(m, p)); | 
|  | assert(sz == m->topsize); | 
|  | assert(sz > 0); | 
|  | assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); | 
|  | assert(pinuse(p)); | 
|  | assert(!pinuse(chunk_plus_offset(p, sz))); | 
|  | } | 
|  |  | 
|  | /* Check properties of (inuse) mmapped chunks */ | 
|  | static void do_check_mmapped_chunk(mstate m, mchunkptr p) { | 
|  | size_t  sz = chunksize(p); | 
|  | size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD); | 
|  | assert(is_mmapped(p)); | 
|  | assert(use_mmap(m)); | 
|  | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); | 
|  | assert(ok_address(m, p)); | 
|  | assert(!is_small(sz)); | 
|  | assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); | 
|  | assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); | 
|  | assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); | 
|  | } | 
|  |  | 
|  | /* Check properties of inuse chunks */ | 
|  | static void do_check_inuse_chunk(mstate m, mchunkptr p) { | 
|  | do_check_any_chunk(m, p); | 
|  | assert(cinuse(p)); | 
|  | assert(next_pinuse(p)); | 
|  | /* If not pinuse and not mmapped, previous chunk has OK offset */ | 
|  | assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); | 
|  | if (is_mmapped(p)) | 
|  | do_check_mmapped_chunk(m, p); | 
|  | } | 
|  |  | 
|  | /* Check properties of free chunks */ | 
|  | static void do_check_free_chunk(mstate m, mchunkptr p) { | 
|  | size_t sz = chunksize(p); | 
|  | mchunkptr next = chunk_plus_offset(p, sz); | 
|  | do_check_any_chunk(m, p); | 
|  | assert(!cinuse(p)); | 
|  | assert(!next_pinuse(p)); | 
|  | assert (!is_mmapped(p)); | 
|  | if (p != m->dv && p != m->top) { | 
|  | if (sz >= MIN_CHUNK_SIZE) { | 
|  | assert((sz & CHUNK_ALIGN_MASK) == 0); | 
|  | assert(is_aligned(chunk2mem(p))); | 
|  | assert(next->prev_foot == sz); | 
|  | assert(pinuse(p)); | 
|  | assert (next == m->top || cinuse(next)); | 
|  | assert(p->fd->bk == p); | 
|  | assert(p->bk->fd == p); | 
|  | } | 
|  | else  /* markers are always of size SIZE_T_SIZE */ | 
|  | assert(sz == SIZE_T_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check properties of malloced chunks at the point they are malloced */ | 
|  | static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { | 
|  | if (mem != 0) { | 
|  | mchunkptr p = mem2chunk(mem); | 
|  | size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); | 
|  | do_check_inuse_chunk(m, p); | 
|  | assert((sz & CHUNK_ALIGN_MASK) == 0); | 
|  | assert(sz >= MIN_CHUNK_SIZE); | 
|  | assert(sz >= s); | 
|  | /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ | 
|  | assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check a tree and its subtrees.  */ | 
|  | static void do_check_tree(mstate m, tchunkptr t) { | 
|  | tchunkptr head = 0; | 
|  | tchunkptr u = t; | 
|  | bindex_t tindex = t->index; | 
|  | size_t tsize = chunksize(t); | 
|  | bindex_t idx; | 
|  | compute_tree_index(tsize, idx); | 
|  | assert(tindex == idx); | 
|  | assert(tsize >= MIN_LARGE_SIZE); | 
|  | assert(tsize >= minsize_for_tree_index(idx)); | 
|  | assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); | 
|  |  | 
|  | do { /* traverse through chain of same-sized nodes */ | 
|  | do_check_any_chunk(m, ((mchunkptr)u)); | 
|  | assert(u->index == tindex); | 
|  | assert(chunksize(u) == tsize); | 
|  | assert(!cinuse(u)); | 
|  | assert(!next_pinuse(u)); | 
|  | assert(u->fd->bk == u); | 
|  | assert(u->bk->fd == u); | 
|  | if (u->parent == 0) { | 
|  | assert(u->child[0] == 0); | 
|  | assert(u->child[1] == 0); | 
|  | } | 
|  | else { | 
|  | assert(head == 0); /* only one node on chain has parent */ | 
|  | head = u; | 
|  | assert(u->parent != u); | 
|  | assert (u->parent->child[0] == u || | 
|  | u->parent->child[1] == u || | 
|  | *((tbinptr*)(u->parent)) == u); | 
|  | if (u->child[0] != 0) { | 
|  | assert(u->child[0]->parent == u); | 
|  | assert(u->child[0] != u); | 
|  | do_check_tree(m, u->child[0]); | 
|  | } | 
|  | if (u->child[1] != 0) { | 
|  | assert(u->child[1]->parent == u); | 
|  | assert(u->child[1] != u); | 
|  | do_check_tree(m, u->child[1]); | 
|  | } | 
|  | if (u->child[0] != 0 && u->child[1] != 0) { | 
|  | assert(chunksize(u->child[0]) < chunksize(u->child[1])); | 
|  | } | 
|  | } | 
|  | u = u->fd; | 
|  | } while (u != t); | 
|  | assert(head != 0); | 
|  | } | 
|  |  | 
|  | /*  Check all the chunks in a treebin.  */ | 
|  | static void do_check_treebin(mstate m, bindex_t i) { | 
|  | tbinptr* tb = treebin_at(m, i); | 
|  | tchunkptr t = *tb; | 
|  | int empty = (m->treemap & (1U << i)) == 0; | 
|  | if (t == 0) | 
|  | assert(empty); | 
|  | if (!empty) | 
|  | do_check_tree(m, t); | 
|  | } | 
|  |  | 
|  | /*  Check all the chunks in a smallbin.  */ | 
|  | static void do_check_smallbin(mstate m, bindex_t i) { | 
|  | sbinptr b = smallbin_at(m, i); | 
|  | mchunkptr p = b->bk; | 
|  | unsigned int empty = (m->smallmap & (1U << i)) == 0; | 
|  | if (p == b) | 
|  | assert(empty); | 
|  | if (!empty) { | 
|  | for (; p != b; p = p->bk) { | 
|  | size_t size = chunksize(p); | 
|  | mchunkptr q; | 
|  | /* each chunk claims to be free */ | 
|  | do_check_free_chunk(m, p); | 
|  | /* chunk belongs in bin */ | 
|  | assert(small_index(size) == i); | 
|  | assert(p->bk == b || chunksize(p->bk) == chunksize(p)); | 
|  | /* chunk is followed by an inuse chunk */ | 
|  | q = next_chunk(p); | 
|  | if (q->head != FENCEPOST_HEAD) | 
|  | do_check_inuse_chunk(m, q); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find x in a bin. Used in other check functions. */ | 
|  | static int bin_find(mstate m, mchunkptr x) { | 
|  | size_t size = chunksize(x); | 
|  | if (is_small(size)) { | 
|  | bindex_t sidx = small_index(size); | 
|  | sbinptr b = smallbin_at(m, sidx); | 
|  | if (smallmap_is_marked(m, sidx)) { | 
|  | mchunkptr p = b; | 
|  | do { | 
|  | if (p == x) | 
|  | return 1; | 
|  | } while ((p = p->fd) != b); | 
|  | } | 
|  | } | 
|  | else { | 
|  | bindex_t tidx; | 
|  | compute_tree_index(size, tidx); | 
|  | if (treemap_is_marked(m, tidx)) { | 
|  | tchunkptr t = *treebin_at(m, tidx); | 
|  | size_t sizebits = size << leftshift_for_tree_index(tidx); | 
|  | while (t != 0 && chunksize(t) != size) { | 
|  | t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; | 
|  | sizebits <<= 1; | 
|  | } | 
|  | if (t != 0) { | 
|  | tchunkptr u = t; | 
|  | do { | 
|  | if (u == (tchunkptr)x) | 
|  | return 1; | 
|  | } while ((u = u->fd) != t); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Traverse each chunk and check it; return total */ | 
|  | static size_t traverse_and_check(mstate m) { | 
|  | size_t sum = 0; | 
|  | if (is_initialized(m)) { | 
|  | msegmentptr s = &m->seg; | 
|  | sum += m->topsize + TOP_FOOT_SIZE; | 
|  | while (s != 0) { | 
|  | mchunkptr q = align_as_chunk(s->base); | 
|  | mchunkptr lastq = 0; | 
|  | assert(pinuse(q)); | 
|  | while (segment_holds(s, q) && | 
|  | q != m->top && q->head != FENCEPOST_HEAD) { | 
|  | sum += chunksize(q); | 
|  | if (cinuse(q)) { | 
|  | assert(!bin_find(m, q)); | 
|  | do_check_inuse_chunk(m, q); | 
|  | } | 
|  | else { | 
|  | assert(q == m->dv || bin_find(m, q)); | 
|  | assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */ | 
|  | do_check_free_chunk(m, q); | 
|  | } | 
|  | lastq = q; | 
|  | q = next_chunk(q); | 
|  | } | 
|  | s = s->next; | 
|  | } | 
|  | } | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* Check all properties of malloc_state. */ | 
|  | static void do_check_malloc_state(mstate m) { | 
|  | bindex_t i; | 
|  | size_t total; | 
|  | /* check bins */ | 
|  | for (i = 0; i < NSMALLBINS; ++i) | 
|  | do_check_smallbin(m, i); | 
|  | for (i = 0; i < NTREEBINS; ++i) | 
|  | do_check_treebin(m, i); | 
|  |  | 
|  | if (m->dvsize != 0) { /* check dv chunk */ | 
|  | do_check_any_chunk(m, m->dv); | 
|  | assert(m->dvsize == chunksize(m->dv)); | 
|  | assert(m->dvsize >= MIN_CHUNK_SIZE); | 
|  | assert(bin_find(m, m->dv) == 0); | 
|  | } | 
|  |  | 
|  | if (m->top != 0) {   /* check top chunk */ | 
|  | do_check_top_chunk(m, m->top); | 
|  | /*assert(m->topsize == chunksize(m->top)); redundant */ | 
|  | assert(m->topsize > 0); | 
|  | assert(bin_find(m, m->top) == 0); | 
|  | } | 
|  |  | 
|  | total = traverse_and_check(m); | 
|  | assert(total <= m->footprint); | 
|  | assert(m->footprint <= m->max_footprint); | 
|  | } | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | /* ----------------------------- statistics ------------------------------ */ | 
|  |  | 
|  | #if !NO_MALLINFO | 
|  | static struct mallinfo internal_mallinfo(mstate m) { | 
|  | struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | 
|  | ensure_initialization(); | 
|  | if (!PREACTION(m)) { | 
|  | check_malloc_state(m); | 
|  | if (is_initialized(m)) { | 
|  | size_t nfree = SIZE_T_ONE; /* top always free */ | 
|  | size_t mfree = m->topsize + TOP_FOOT_SIZE; | 
|  | size_t sum = mfree; | 
|  | msegmentptr s = &m->seg; | 
|  | while (s != 0) { | 
|  | mchunkptr q = align_as_chunk(s->base); | 
|  | while (segment_holds(s, q) && | 
|  | q != m->top && q->head != FENCEPOST_HEAD) { | 
|  | size_t sz = chunksize(q); | 
|  | sum += sz; | 
|  | if (!cinuse(q)) { | 
|  | mfree += sz; | 
|  | ++nfree; | 
|  | } | 
|  | q = next_chunk(q); | 
|  | } | 
|  | s = s->next; | 
|  | } | 
|  |  | 
|  | nm.arena    = sum; | 
|  | nm.ordblks  = nfree; | 
|  | nm.hblkhd   = m->footprint - sum; | 
|  | nm.usmblks  = m->max_footprint; | 
|  | nm.uordblks = m->footprint - mfree; | 
|  | nm.fordblks = mfree; | 
|  | nm.keepcost = m->topsize; | 
|  | } | 
|  |  | 
|  | POSTACTION(m); | 
|  | } | 
|  | return nm; | 
|  | } | 
|  | #endif /* !NO_MALLINFO */ | 
|  |  | 
|  | static void internal_malloc_stats(mstate m) { | 
|  | ensure_initialization(); | 
|  | if (!PREACTION(m)) { | 
|  | size_t maxfp = 0; | 
|  | size_t fp = 0; | 
|  | size_t used = 0; | 
|  | check_malloc_state(m); | 
|  | if (is_initialized(m)) { | 
|  | msegmentptr s = &m->seg; | 
|  | maxfp = m->max_footprint; | 
|  | fp = m->footprint; | 
|  | used = fp - (m->topsize + TOP_FOOT_SIZE); | 
|  |  | 
|  | while (s != 0) { | 
|  | mchunkptr q = align_as_chunk(s->base); | 
|  | while (segment_holds(s, q) && | 
|  | q != m->top && q->head != FENCEPOST_HEAD) { | 
|  | if (!cinuse(q)) | 
|  | used -= chunksize(q); | 
|  | q = next_chunk(q); | 
|  | } | 
|  | s = s->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); | 
|  | fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp)); | 
|  | fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used)); | 
|  |  | 
|  | POSTACTION(m); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ----------------------- Operations on smallbins ----------------------- */ | 
|  |  | 
|  | /* | 
|  | Various forms of linking and unlinking are defined as macros.  Even | 
|  | the ones for trees, which are very long but have very short typical | 
|  | paths.  This is ugly but reduces reliance on inlining support of | 
|  | compilers. | 
|  | */ | 
|  |  | 
|  | /* Link a free chunk into a smallbin  */ | 
|  | #define insert_small_chunk(M, P, S) {\ | 
|  | bindex_t I  = small_index(S);\ | 
|  | mchunkptr B = smallbin_at(M, I);\ | 
|  | mchunkptr F = B;\ | 
|  | assert(S >= MIN_CHUNK_SIZE);\ | 
|  | if (!smallmap_is_marked(M, I))\ | 
|  | mark_smallmap(M, I);\ | 
|  | else if (RTCHECK(ok_address(M, B->fd)))\ | 
|  | F = B->fd;\ | 
|  | else {\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | }\ | 
|  | B->fd = P;\ | 
|  | F->bk = P;\ | 
|  | P->fd = F;\ | 
|  | P->bk = B;\ | 
|  | } | 
|  |  | 
|  | /* Unlink a chunk from a smallbin  */ | 
|  | #define unlink_small_chunk(M, P, S) {\ | 
|  | mchunkptr F = P->fd;\ | 
|  | mchunkptr B = P->bk;\ | 
|  | bindex_t I = small_index(S);\ | 
|  | assert(P != B);\ | 
|  | assert(P != F);\ | 
|  | assert(chunksize(P) == small_index2size(I));\ | 
|  | if (F == B)\ | 
|  | clear_smallmap(M, I);\ | 
|  | else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ | 
|  | (B == smallbin_at(M,I) || ok_address(M, B)))) {\ | 
|  | F->bk = B;\ | 
|  | B->fd = F;\ | 
|  | }\ | 
|  | else {\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | }\ | 
|  | } | 
|  |  | 
|  | /* Unlink the first chunk from a smallbin */ | 
|  | #define unlink_first_small_chunk(M, B, P, I) {\ | 
|  | mchunkptr F = P->fd;\ | 
|  | assert(P != B);\ | 
|  | assert(P != F);\ | 
|  | assert(chunksize(P) == small_index2size(I));\ | 
|  | if (B == F)\ | 
|  | clear_smallmap(M, I);\ | 
|  | else if (RTCHECK(ok_address(M, F))) {\ | 
|  | B->fd = F;\ | 
|  | F->bk = B;\ | 
|  | }\ | 
|  | else {\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | }\ | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Replace dv node, binning the old one */ | 
|  | /* Used only when dvsize known to be small */ | 
|  | #define replace_dv(M, P, S) {\ | 
|  | size_t DVS = M->dvsize;\ | 
|  | if (DVS != 0) {\ | 
|  | mchunkptr DV = M->dv;\ | 
|  | assert(is_small(DVS));\ | 
|  | insert_small_chunk(M, DV, DVS);\ | 
|  | }\ | 
|  | M->dvsize = S;\ | 
|  | M->dv = P;\ | 
|  | } | 
|  |  | 
|  | /* ------------------------- Operations on trees ------------------------- */ | 
|  |  | 
|  | /* Insert chunk into tree */ | 
|  | #define insert_large_chunk(M, X, S) {\ | 
|  | tbinptr* H;\ | 
|  | bindex_t I;\ | 
|  | compute_tree_index(S, I);\ | 
|  | H = treebin_at(M, I);\ | 
|  | X->index = I;\ | 
|  | X->child[0] = X->child[1] = 0;\ | 
|  | if (!treemap_is_marked(M, I)) {\ | 
|  | mark_treemap(M, I);\ | 
|  | *H = X;\ | 
|  | X->parent = (tchunkptr)H;\ | 
|  | X->fd = X->bk = X;\ | 
|  | }\ | 
|  | else {\ | 
|  | tchunkptr T = *H;\ | 
|  | size_t K = S << leftshift_for_tree_index(I);\ | 
|  | for (;;) {\ | 
|  | if (chunksize(T) != S) {\ | 
|  | tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ | 
|  | K <<= 1;\ | 
|  | if (*C != 0)\ | 
|  | T = *C;\ | 
|  | else if (RTCHECK(ok_address(M, C))) {\ | 
|  | *C = X;\ | 
|  | X->parent = T;\ | 
|  | X->fd = X->bk = X;\ | 
|  | break;\ | 
|  | }\ | 
|  | else {\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | break;\ | 
|  | }\ | 
|  | }\ | 
|  | else {\ | 
|  | tchunkptr F = T->fd;\ | 
|  | if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ | 
|  | T->fd = F->bk = X;\ | 
|  | X->fd = F;\ | 
|  | X->bk = T;\ | 
|  | X->parent = 0;\ | 
|  | break;\ | 
|  | }\ | 
|  | else {\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | break;\ | 
|  | }\ | 
|  | }\ | 
|  | }\ | 
|  | }\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | Unlink steps: | 
|  |  | 
|  | 1. If x is a chained node, unlink it from its same-sized fd/bk links | 
|  | and choose its bk node as its replacement. | 
|  | 2. If x was the last node of its size, but not a leaf node, it must | 
|  | be replaced with a leaf node (not merely one with an open left or | 
|  | right), to make sure that lefts and rights of descendents | 
|  | correspond properly to bit masks.  We use the rightmost descendent | 
|  | of x.  We could use any other leaf, but this is easy to locate and | 
|  | tends to counteract removal of leftmosts elsewhere, and so keeps | 
|  | paths shorter than minimally guaranteed.  This doesn't loop much | 
|  | because on average a node in a tree is near the bottom. | 
|  | 3. If x is the base of a chain (i.e., has parent links) relink | 
|  | x's parent and children to x's replacement (or null if none). | 
|  | */ | 
|  |  | 
|  | #define unlink_large_chunk(M, X) {\ | 
|  | tchunkptr XP = X->parent;\ | 
|  | tchunkptr R;\ | 
|  | if (X->bk != X) {\ | 
|  | tchunkptr F = X->fd;\ | 
|  | R = X->bk;\ | 
|  | if (RTCHECK(ok_address(M, F))) {\ | 
|  | F->bk = R;\ | 
|  | R->fd = F;\ | 
|  | }\ | 
|  | else {\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | }\ | 
|  | }\ | 
|  | else {\ | 
|  | tchunkptr* RP;\ | 
|  | if (((R = *(RP = &(X->child[1]))) != 0) ||\ | 
|  | ((R = *(RP = &(X->child[0]))) != 0)) {\ | 
|  | tchunkptr* CP;\ | 
|  | while ((*(CP = &(R->child[1])) != 0) ||\ | 
|  | (*(CP = &(R->child[0])) != 0)) {\ | 
|  | R = *(RP = CP);\ | 
|  | }\ | 
|  | if (RTCHECK(ok_address(M, RP)))\ | 
|  | *RP = 0;\ | 
|  | else {\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | }\ | 
|  | }\ | 
|  | }\ | 
|  | if (XP != 0) {\ | 
|  | tbinptr* H = treebin_at(M, X->index);\ | 
|  | if (X == *H) {\ | 
|  | if ((*H = R) == 0) \ | 
|  | clear_treemap(M, X->index);\ | 
|  | }\ | 
|  | else if (RTCHECK(ok_address(M, XP))) {\ | 
|  | if (XP->child[0] == X) \ | 
|  | XP->child[0] = R;\ | 
|  | else \ | 
|  | XP->child[1] = R;\ | 
|  | }\ | 
|  | else\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | if (R != 0) {\ | 
|  | if (RTCHECK(ok_address(M, R))) {\ | 
|  | tchunkptr C0, C1;\ | 
|  | R->parent = XP;\ | 
|  | if ((C0 = X->child[0]) != 0) {\ | 
|  | if (RTCHECK(ok_address(M, C0))) {\ | 
|  | R->child[0] = C0;\ | 
|  | C0->parent = R;\ | 
|  | }\ | 
|  | else\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | }\ | 
|  | if ((C1 = X->child[1]) != 0) {\ | 
|  | if (RTCHECK(ok_address(M, C1))) {\ | 
|  | R->child[1] = C1;\ | 
|  | C1->parent = R;\ | 
|  | }\ | 
|  | else\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | }\ | 
|  | }\ | 
|  | else\ | 
|  | CORRUPTION_ERROR_ACTION(M);\ | 
|  | }\ | 
|  | }\ | 
|  | } | 
|  |  | 
|  | /* Relays to large vs small bin operations */ | 
|  |  | 
|  | #define insert_chunk(M, P, S)\ | 
|  | if (is_small(S)) insert_small_chunk(M, P, S)\ | 
|  | else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } | 
|  |  | 
|  | #define unlink_chunk(M, P, S)\ | 
|  | if (is_small(S)) unlink_small_chunk(M, P, S)\ | 
|  | else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } | 
|  |  | 
|  |  | 
|  | /* Relays to internal calls to malloc/free from realloc, memalign etc */ | 
|  |  | 
|  | #if ONLY_MSPACES | 
|  | #define internal_malloc(m, b) mspace_malloc(m, b) | 
|  | #define internal_free(m, mem) mspace_free(m,mem); | 
|  | #else /* ONLY_MSPACES */ | 
|  | #if MSPACES | 
|  | #define internal_malloc(m, b)\ | 
|  | (m == gm)? dlmalloc(b) : mspace_malloc(m, b) | 
|  | #define internal_free(m, mem)\ | 
|  | if (m == gm) dlfree(mem); else mspace_free(m,mem); | 
|  | #else /* MSPACES */ | 
|  | #define internal_malloc(m, b) dlmalloc(b) | 
|  | #define internal_free(m, mem) dlfree(mem) | 
|  | #endif /* MSPACES */ | 
|  | #endif /* ONLY_MSPACES */ | 
|  |  | 
|  | /* -----------------------  Direct-mmapping chunks ----------------------- */ | 
|  |  | 
|  | /* | 
|  | Directly mmapped chunks are set up with an offset to the start of | 
|  | the mmapped region stored in the prev_foot field of the chunk. This | 
|  | allows reconstruction of the required argument to MUNMAP when freed, | 
|  | and also allows adjustment of the returned chunk to meet alignment | 
|  | requirements (especially in memalign).  There is also enough space | 
|  | allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain | 
|  | the PINUSE bit so frees can be checked. | 
|  | */ | 
|  |  | 
|  | /* Malloc using mmap */ | 
|  | static void* mmap_alloc(mstate m, size_t nb) { | 
|  | size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); | 
|  | if (mmsize > nb) {     /* Check for wrap around 0 */ | 
|  | char* mm = (char*)(CALL_DIRECT_MMAP(mmsize)); | 
|  | if (mm != CMFAIL) { | 
|  | size_t offset = align_offset(chunk2mem(mm)); | 
|  | size_t psize = mmsize - offset - MMAP_FOOT_PAD; | 
|  | mchunkptr p = (mchunkptr)(mm + offset); | 
|  | p->prev_foot = offset | IS_MMAPPED_BIT; | 
|  | (p)->head = (psize|CINUSE_BIT); | 
|  | mark_inuse_foot(m, p, psize); | 
|  | chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; | 
|  | chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; | 
|  |  | 
|  | if (mm < m->least_addr) | 
|  | m->least_addr = mm; | 
|  | if ((m->footprint += mmsize) > m->max_footprint) | 
|  | m->max_footprint = m->footprint; | 
|  | assert(is_aligned(chunk2mem(p))); | 
|  | check_mmapped_chunk(m, p); | 
|  | return chunk2mem(p); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Realloc using mmap */ | 
|  | static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { | 
|  | size_t oldsize = chunksize(oldp); | 
|  | if (is_small(nb)) /* Can't shrink mmap regions below small size */ | 
|  | return 0; | 
|  | /* Keep old chunk if big enough but not too big */ | 
|  | if (oldsize >= nb + SIZE_T_SIZE && | 
|  | (oldsize - nb) <= (mparams.granularity << 1)) | 
|  | return oldp; | 
|  | else { | 
|  | size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT; | 
|  | size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; | 
|  | size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); | 
|  | char* cp = (char*)CALL_MREMAP((char*)oldp - offset, | 
|  | oldmmsize, newmmsize, 1); | 
|  | if (cp != CMFAIL) { | 
|  | mchunkptr newp = (mchunkptr)(cp + offset); | 
|  | size_t psize = newmmsize - offset - MMAP_FOOT_PAD; | 
|  | newp->head = (psize|CINUSE_BIT); | 
|  | mark_inuse_foot(m, newp, psize); | 
|  | chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; | 
|  | chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; | 
|  |  | 
|  | if (cp < m->least_addr) | 
|  | m->least_addr = cp; | 
|  | if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) | 
|  | m->max_footprint = m->footprint; | 
|  | check_mmapped_chunk(m, newp); | 
|  | return newp; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* -------------------------- mspace management -------------------------- */ | 
|  |  | 
|  | /* Initialize top chunk and its size */ | 
|  | static void init_top(mstate m, mchunkptr p, size_t psize) { | 
|  | /* Ensure alignment */ | 
|  | size_t offset = align_offset(chunk2mem(p)); | 
|  | p = (mchunkptr)((char*)p + offset); | 
|  | psize -= offset; | 
|  |  | 
|  | m->top = p; | 
|  | m->topsize = psize; | 
|  | p->head = psize | PINUSE_BIT; | 
|  | /* set size of fake trailing chunk holding overhead space only once */ | 
|  | chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; | 
|  | m->trim_check = mparams.trim_threshold; /* reset on each update */ | 
|  | } | 
|  |  | 
|  | /* Initialize bins for a new mstate that is otherwise zeroed out */ | 
|  | static void init_bins(mstate m) { | 
|  | /* Establish circular links for smallbins */ | 
|  | bindex_t i; | 
|  | for (i = 0; i < NSMALLBINS; ++i) { | 
|  | sbinptr bin = smallbin_at(m,i); | 
|  | bin->fd = bin->bk = bin; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if PROCEED_ON_ERROR | 
|  |  | 
|  | /* default corruption action */ | 
|  | static void reset_on_error(mstate m) { | 
|  | int i; | 
|  | ++malloc_corruption_error_count; | 
|  | /* Reinitialize fields to forget about all memory */ | 
|  | m->smallbins = m->treebins = 0; | 
|  | m->dvsize = m->topsize = 0; | 
|  | m->seg.base = 0; | 
|  | m->seg.size = 0; | 
|  | m->seg.next = 0; | 
|  | m->top = m->dv = 0; | 
|  | for (i = 0; i < NTREEBINS; ++i) | 
|  | *treebin_at(m, i) = 0; | 
|  | init_bins(m); | 
|  | } | 
|  | #endif /* PROCEED_ON_ERROR */ | 
|  |  | 
|  | /* Allocate chunk and prepend remainder with chunk in successor base. */ | 
|  | static void* prepend_alloc(mstate m, char* newbase, char* oldbase, | 
|  | size_t nb) { | 
|  | mchunkptr p = align_as_chunk(newbase); | 
|  | mchunkptr oldfirst = align_as_chunk(oldbase); | 
|  | size_t psize = (char*)oldfirst - (char*)p; | 
|  | mchunkptr q = chunk_plus_offset(p, nb); | 
|  | size_t qsize = psize - nb; | 
|  | set_size_and_pinuse_of_inuse_chunk(m, p, nb); | 
|  |  | 
|  | assert((char*)oldfirst > (char*)q); | 
|  | assert(pinuse(oldfirst)); | 
|  | assert(qsize >= MIN_CHUNK_SIZE); | 
|  |  | 
|  | /* consolidate remainder with first chunk of old base */ | 
|  | if (oldfirst == m->top) { | 
|  | size_t tsize = m->topsize += qsize; | 
|  | m->top = q; | 
|  | q->head = tsize | PINUSE_BIT; | 
|  | check_top_chunk(m, q); | 
|  | } | 
|  | else if (oldfirst == m->dv) { | 
|  | size_t dsize = m->dvsize += qsize; | 
|  | m->dv = q; | 
|  | set_size_and_pinuse_of_free_chunk(q, dsize); | 
|  | } | 
|  | else { | 
|  | if (!cinuse(oldfirst)) { | 
|  | size_t nsize = chunksize(oldfirst); | 
|  | unlink_chunk(m, oldfirst, nsize); | 
|  | oldfirst = chunk_plus_offset(oldfirst, nsize); | 
|  | qsize += nsize; | 
|  | } | 
|  | set_free_with_pinuse(q, qsize, oldfirst); | 
|  | insert_chunk(m, q, qsize); | 
|  | check_free_chunk(m, q); | 
|  | } | 
|  |  | 
|  | check_malloced_chunk(m, chunk2mem(p), nb); | 
|  | return chunk2mem(p); | 
|  | } | 
|  |  | 
|  | /* Add a segment to hold a new noncontiguous region */ | 
|  | static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { | 
|  | /* Determine locations and sizes of segment, fenceposts, old top */ | 
|  | char* old_top = (char*)m->top; | 
|  | msegmentptr oldsp = segment_holding(m, old_top); | 
|  | char* old_end = oldsp->base + oldsp->size; | 
|  | size_t ssize = pad_request(sizeof(struct malloc_segment)); | 
|  | char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); | 
|  | size_t offset = align_offset(chunk2mem(rawsp)); | 
|  | char* asp = rawsp + offset; | 
|  | char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; | 
|  | mchunkptr sp = (mchunkptr)csp; | 
|  | msegmentptr ss = (msegmentptr)(chunk2mem(sp)); | 
|  | mchunkptr tnext = chunk_plus_offset(sp, ssize); | 
|  | mchunkptr p = tnext; | 
|  | int nfences = 0; | 
|  |  | 
|  | /* reset top to new space */ | 
|  | init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); | 
|  |  | 
|  | /* Set up segment record */ | 
|  | assert(is_aligned(ss)); | 
|  | set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); | 
|  | *ss = m->seg; /* Push current record */ | 
|  | m->seg.base = tbase; | 
|  | m->seg.size = tsize; | 
|  | m->seg.sflags = mmapped; | 
|  | m->seg.next = ss; | 
|  |  | 
|  | /* Insert trailing fenceposts */ | 
|  | for (;;) { | 
|  | mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); | 
|  | p->head = FENCEPOST_HEAD; | 
|  | ++nfences; | 
|  | if ((char*)(&(nextp->head)) < old_end) | 
|  | p = nextp; | 
|  | else | 
|  | break; | 
|  | } | 
|  | assert(nfences >= 2); | 
|  |  | 
|  | /* Insert the rest of old top into a bin as an ordinary free chunk */ | 
|  | if (csp != old_top) { | 
|  | mchunkptr q = (mchunkptr)old_top; | 
|  | size_t psize = csp - old_top; | 
|  | mchunkptr tn = chunk_plus_offset(q, psize); | 
|  | set_free_with_pinuse(q, psize, tn); | 
|  | insert_chunk(m, q, psize); | 
|  | } | 
|  |  | 
|  | check_top_chunk(m, m->top); | 
|  | } | 
|  |  | 
|  | /* -------------------------- System allocation -------------------------- */ | 
|  |  | 
|  | /* Get memory from system using MORECORE or MMAP */ | 
|  | static void* sys_alloc(mstate m, size_t nb) { | 
|  | char* tbase = CMFAIL; | 
|  | size_t tsize = 0; | 
|  | flag_t mmap_flag = 0; | 
|  |  | 
|  | ensure_initialization(); | 
|  |  | 
|  | /* Directly map large chunks */ | 
|  | if (use_mmap(m) && nb >= mparams.mmap_threshold) { | 
|  | void* mem = mmap_alloc(m, nb); | 
|  | if (mem != 0) | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | Try getting memory in any of three ways (in most-preferred to | 
|  | least-preferred order): | 
|  | 1. A call to MORECORE that can normally contiguously extend memory. | 
|  | (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or | 
|  | or main space is mmapped or a previous contiguous call failed) | 
|  | 2. A call to MMAP new space (disabled if not HAVE_MMAP). | 
|  | Note that under the default settings, if MORECORE is unable to | 
|  | fulfill a request, and HAVE_MMAP is true, then mmap is | 
|  | used as a noncontiguous system allocator. This is a useful backup | 
|  | strategy for systems with holes in address spaces -- in this case | 
|  | sbrk cannot contiguously expand the heap, but mmap may be able to | 
|  | find space. | 
|  | 3. A call to MORECORE that cannot usually contiguously extend memory. | 
|  | (disabled if not HAVE_MORECORE) | 
|  |  | 
|  | In all cases, we need to request enough bytes from system to ensure | 
|  | we can malloc nb bytes upon success, so pad with enough space for | 
|  | top_foot, plus alignment-pad to make sure we don't lose bytes if | 
|  | not on boundary, and round this up to a granularity unit. | 
|  | */ | 
|  |  | 
|  | if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { | 
|  | char* br = CMFAIL; | 
|  | msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); | 
|  | size_t asize = 0; | 
|  | ACQUIRE_MALLOC_GLOBAL_LOCK(); | 
|  |  | 
|  | if (ss == 0) {  /* First time through or recovery */ | 
|  | char* base = (char*)CALL_MORECORE(0); | 
|  | if (base != CMFAIL) { | 
|  | asize = granularity_align(nb + SYS_ALLOC_PADDING); | 
|  | /* Adjust to end on a page boundary */ | 
|  | if (!is_page_aligned(base)) | 
|  | asize += (page_align((size_t)base) - (size_t)base); | 
|  | /* Can't call MORECORE if size is negative when treated as signed */ | 
|  | if (asize < HALF_MAX_SIZE_T && | 
|  | (br = (char*)(CALL_MORECORE(asize))) == base) { | 
|  | tbase = base; | 
|  | tsize = asize; | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* Subtract out existing available top space from MORECORE request. */ | 
|  | asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); | 
|  | /* Use mem here only if it did continuously extend old space */ | 
|  | if (asize < HALF_MAX_SIZE_T && | 
|  | (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { | 
|  | tbase = br; | 
|  | tsize = asize; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tbase == CMFAIL) {    /* Cope with partial failure */ | 
|  | if (br != CMFAIL) {    /* Try to use/extend the space we did get */ | 
|  | if (asize < HALF_MAX_SIZE_T && | 
|  | asize < nb + SYS_ALLOC_PADDING) { | 
|  | size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize); | 
|  | if (esize < HALF_MAX_SIZE_T) { | 
|  | char* end = (char*)CALL_MORECORE(esize); | 
|  | if (end != CMFAIL) | 
|  | asize += esize; | 
|  | else {            /* Can't use; try to release */ | 
|  | (void) CALL_MORECORE(-asize); | 
|  | br = CMFAIL; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (br != CMFAIL) {    /* Use the space we did get */ | 
|  | tbase = br; | 
|  | tsize = asize; | 
|  | } | 
|  | else | 
|  | disable_contiguous(m); /* Don't try contiguous path in the future */ | 
|  | } | 
|  |  | 
|  | RELEASE_MALLOC_GLOBAL_LOCK(); | 
|  | } | 
|  |  | 
|  | if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */ | 
|  | size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING); | 
|  | if (rsize > nb) { /* Fail if wraps around zero */ | 
|  | char* mp = (char*)(CALL_MMAP(rsize)); | 
|  | if (mp != CMFAIL) { | 
|  | tbase = mp; | 
|  | tsize = rsize; | 
|  | mmap_flag = IS_MMAPPED_BIT; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ | 
|  | size_t asize = granularity_align(nb + SYS_ALLOC_PADDING); | 
|  | if (asize < HALF_MAX_SIZE_T) { | 
|  | char* br = CMFAIL; | 
|  | char* end = CMFAIL; | 
|  | ACQUIRE_MALLOC_GLOBAL_LOCK(); | 
|  | br = (char*)(CALL_MORECORE(asize)); | 
|  | end = (char*)(CALL_MORECORE(0)); | 
|  | RELEASE_MALLOC_GLOBAL_LOCK(); | 
|  | if (br != CMFAIL && end != CMFAIL && br < end) { | 
|  | size_t ssize = end - br; | 
|  | if (ssize > nb + TOP_FOOT_SIZE) { | 
|  | tbase = br; | 
|  | tsize = ssize; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tbase != CMFAIL) { | 
|  |  | 
|  | if ((m->footprint += tsize) > m->max_footprint) | 
|  | m->max_footprint = m->footprint; | 
|  |  | 
|  | if (!is_initialized(m)) { /* first-time initialization */ | 
|  | m->seg.base = m->least_addr = tbase; | 
|  | m->seg.size = tsize; | 
|  | m->seg.sflags = mmap_flag; | 
|  | m->magic = mparams.magic; | 
|  | m->release_checks = MAX_RELEASE_CHECK_RATE; | 
|  | init_bins(m); | 
|  | #if !ONLY_MSPACES | 
|  | if (is_global(m)) | 
|  | init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); | 
|  | else | 
|  | #endif | 
|  | { | 
|  | /* Offset top by embedded malloc_state */ | 
|  | mchunkptr mn = next_chunk(mem2chunk(m)); | 
|  | init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | else { | 
|  | /* Try to merge with an existing segment */ | 
|  | msegmentptr sp = &m->seg; | 
|  | /* Only consider most recent segment if traversal suppressed */ | 
|  | while (sp != 0 && tbase != sp->base + sp->size) | 
|  | sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; | 
|  | if (sp != 0 && | 
|  | !is_extern_segment(sp) && | 
|  | (sp->sflags & IS_MMAPPED_BIT) == mmap_flag && | 
|  | segment_holds(sp, m->top)) { /* append */ | 
|  | sp->size += tsize; | 
|  | init_top(m, m->top, m->topsize + tsize); | 
|  | } | 
|  | else { | 
|  | if (tbase < m->least_addr) | 
|  | m->least_addr = tbase; | 
|  | sp = &m->seg; | 
|  | while (sp != 0 && sp->base != tbase + tsize) | 
|  | sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; | 
|  | if (sp != 0 && | 
|  | !is_extern_segment(sp) && | 
|  | (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) { | 
|  | char* oldbase = sp->base; | 
|  | sp->base = tbase; | 
|  | sp->size += tsize; | 
|  | return prepend_alloc(m, tbase, oldbase, nb); | 
|  | } | 
|  | else | 
|  | add_segment(m, tbase, tsize, mmap_flag); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nb < m->topsize) { /* Allocate from new or extended top space */ | 
|  | size_t rsize = m->topsize -= nb; | 
|  | mchunkptr p = m->top; | 
|  | mchunkptr r = m->top = chunk_plus_offset(p, nb); | 
|  | r->head = rsize | PINUSE_BIT; | 
|  | set_size_and_pinuse_of_inuse_chunk(m, p, nb); | 
|  | check_top_chunk(m, m->top); | 
|  | check_malloced_chunk(m, chunk2mem(p), nb); | 
|  | return chunk2mem(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | MALLOC_FAILURE_ACTION; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* -----------------------  system deallocation -------------------------- */ | 
|  |  | 
|  | /* Unmap and unlink any mmapped segments that don't contain used chunks */ | 
|  | static size_t release_unused_segments(mstate m) { | 
|  | size_t released = 0; | 
|  | int nsegs = 0; | 
|  | msegmentptr pred = &m->seg; | 
|  | msegmentptr sp = pred->next; | 
|  | while (sp != 0) { | 
|  | char* base = sp->base; | 
|  | size_t size = sp->size; | 
|  | msegmentptr next = sp->next; | 
|  | ++nsegs; | 
|  | if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { | 
|  | mchunkptr p = align_as_chunk(base); | 
|  | size_t psize = chunksize(p); | 
|  | /* Can unmap if first chunk holds entire segment and not pinned */ | 
|  | if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { | 
|  | tchunkptr tp = (tchunkptr)p; | 
|  | assert(segment_holds(sp, (char*)sp)); | 
|  | if (p == m->dv) { | 
|  | m->dv = 0; | 
|  | m->dvsize = 0; | 
|  | } | 
|  | else { | 
|  | unlink_large_chunk(m, tp); | 
|  | } | 
|  | if (CALL_MUNMAP(base, size) == 0) { | 
|  | released += size; | 
|  | m->footprint -= size; | 
|  | /* unlink obsoleted record */ | 
|  | sp = pred; | 
|  | sp->next = next; | 
|  | } | 
|  | else { /* back out if cannot unmap */ | 
|  | insert_large_chunk(m, tp, psize); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ | 
|  | break; | 
|  | pred = sp; | 
|  | sp = next; | 
|  | } | 
|  | /* Reset check counter */ | 
|  | m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)? | 
|  | nsegs : MAX_RELEASE_CHECK_RATE); | 
|  | return released; | 
|  | } | 
|  |  | 
|  | static int sys_trim(mstate m, size_t pad) { | 
|  | size_t released = 0; | 
|  | ensure_initialization(); | 
|  | if (pad < MAX_REQUEST && is_initialized(m)) { | 
|  | pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ | 
|  |  | 
|  | if (m->topsize > pad) { | 
|  | /* Shrink top space in granularity-size units, keeping at least one */ | 
|  | size_t unit = mparams.granularity; | 
|  | size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - | 
|  | SIZE_T_ONE) * unit; | 
|  | msegmentptr sp = segment_holding(m, (char*)m->top); | 
|  |  | 
|  | if (!is_extern_segment(sp)) { | 
|  | if (is_mmapped_segment(sp)) { | 
|  | if (HAVE_MMAP && | 
|  | sp->size >= extra && | 
|  | !has_segment_link(m, sp)) { /* can't shrink if pinned */ | 
|  | size_t newsize = sp->size - extra; | 
|  | /* Prefer mremap, fall back to munmap */ | 
|  | if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || | 
|  | (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { | 
|  | released = extra; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (HAVE_MORECORE) { | 
|  | if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ | 
|  | extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; | 
|  | ACQUIRE_MALLOC_GLOBAL_LOCK(); | 
|  | { | 
|  | /* Make sure end of memory is where we last set it. */ | 
|  | char* old_br = (char*)(CALL_MORECORE(0)); | 
|  | if (old_br == sp->base + sp->size) { | 
|  | char* rel_br = (char*)(CALL_MORECORE(-extra)); | 
|  | char* new_br = (char*)(CALL_MORECORE(0)); | 
|  | if (rel_br != CMFAIL && new_br < old_br) | 
|  | released = old_br - new_br; | 
|  | } | 
|  | } | 
|  | RELEASE_MALLOC_GLOBAL_LOCK(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (released != 0) { | 
|  | sp->size -= released; | 
|  | m->footprint -= released; | 
|  | init_top(m, m->top, m->topsize - released); | 
|  | check_top_chunk(m, m->top); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unmap any unused mmapped segments */ | 
|  | if (HAVE_MMAP) | 
|  | released += release_unused_segments(m); | 
|  |  | 
|  | /* On failure, disable autotrim to avoid repeated failed future calls */ | 
|  | if (released == 0 && m->topsize > m->trim_check) | 
|  | m->trim_check = MAX_SIZE_T; | 
|  | } | 
|  |  | 
|  | return (released != 0)? 1 : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ---------------------------- malloc support --------------------------- */ | 
|  |  | 
|  | /* allocate a large request from the best fitting chunk in a treebin */ | 
|  | static void* tmalloc_large(mstate m, size_t nb) { | 
|  | tchunkptr v = 0; | 
|  | size_t rsize = -nb; /* Unsigned negation */ | 
|  | tchunkptr t; | 
|  | bindex_t idx; | 
|  | compute_tree_index(nb, idx); | 
|  | if ((t = *treebin_at(m, idx)) != 0) { | 
|  | /* Traverse tree for this bin looking for node with size == nb */ | 
|  | size_t sizebits = nb << leftshift_for_tree_index(idx); | 
|  | tchunkptr rst = 0;  /* The deepest untaken right subtree */ | 
|  | for (;;) { | 
|  | tchunkptr rt; | 
|  | size_t trem = chunksize(t) - nb; | 
|  | if (trem < rsize) { | 
|  | v = t; | 
|  | if ((rsize = trem) == 0) | 
|  | break; | 
|  | } | 
|  | rt = t->child[1]; | 
|  | t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; | 
|  | if (rt != 0 && rt != t) | 
|  | rst = rt; | 
|  | if (t == 0) { | 
|  | t = rst; /* set t to least subtree holding sizes > nb */ | 
|  | break; | 
|  | } | 
|  | sizebits <<= 1; | 
|  | } | 
|  | } | 
|  | if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ | 
|  | binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; | 
|  | if (leftbits != 0) { | 
|  | bindex_t i; | 
|  | binmap_t leastbit = least_bit(leftbits); | 
|  | compute_bit2idx(leastbit, i); | 
|  | t = *treebin_at(m, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (t != 0) { /* find smallest of tree or subtree */ | 
|  | size_t trem = chunksize(t) - nb; | 
|  | if (trem < rsize) { | 
|  | rsize = trem; | 
|  | v = t; | 
|  | } | 
|  | t = leftmost_child(t); | 
|  | } | 
|  |  | 
|  | /*  If dv is a better fit, return 0 so malloc will use it */ | 
|  | if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { | 
|  | if (RTCHECK(ok_address(m, v))) { /* split */ | 
|  | mchunkptr r = chunk_plus_offset(v, nb); | 
|  | assert(chunksize(v) == rsize + nb); | 
|  | if (RTCHECK(ok_next(v, r))) { | 
|  | unlink_large_chunk(m, v); | 
|  | if (rsize < MIN_CHUNK_SIZE) | 
|  | set_inuse_and_pinuse(m, v, (rsize + nb)); | 
|  | else { | 
|  | set_size_and_pinuse_of_inuse_chunk(m, v, nb); | 
|  | set_size_and_pinuse_of_free_chunk(r, rsize); | 
|  | insert_chunk(m, r, rsize); | 
|  | } | 
|  | return chunk2mem(v); | 
|  | } | 
|  | } | 
|  | CORRUPTION_ERROR_ACTION(m); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* allocate a small request from the best fitting chunk in a treebin */ | 
|  | static void* tmalloc_small(mstate m, size_t nb) { | 
|  | tchunkptr t, v; | 
|  | size_t rsize; | 
|  | bindex_t i; | 
|  | binmap_t leastbit = least_bit(m->treemap); | 
|  | compute_bit2idx(leastbit, i); | 
|  | v = t = *treebin_at(m, i); | 
|  | rsize = chunksize(t) - nb; | 
|  |  | 
|  | while ((t = leftmost_child(t)) != 0) { | 
|  | size_t trem = chunksize(t) - nb; | 
|  | if (trem < rsize) { | 
|  | rsize = trem; | 
|  | v = t; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RTCHECK(ok_address(m, v))) { | 
|  | mchunkptr r = chunk_plus_offset(v, nb); | 
|  | assert(chunksize(v) == rsize + nb); | 
|  | if (RTCHECK(ok_next(v, r))) { | 
|  | unlink_large_chunk(m, v); | 
|  | if (rsize < MIN_CHUNK_SIZE) | 
|  | set_inuse_and_pinuse(m, v, (rsize + nb)); | 
|  | else { | 
|  | set_size_and_pinuse_of_inuse_chunk(m, v, nb); | 
|  | set_size_and_pinuse_of_free_chunk(r, rsize); | 
|  | replace_dv(m, r, rsize); | 
|  | } | 
|  | return chunk2mem(v); | 
|  | } | 
|  | } | 
|  |  | 
|  | CORRUPTION_ERROR_ACTION(m); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* --------------------------- realloc support --------------------------- */ | 
|  |  | 
|  | static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { | 
|  | if (bytes >= MAX_REQUEST) { | 
|  | MALLOC_FAILURE_ACTION; | 
|  | return 0; | 
|  | } | 
|  | if (!PREACTION(m)) { | 
|  | mchunkptr oldp = mem2chunk(oldmem); | 
|  | size_t oldsize = chunksize(oldp); | 
|  | mchunkptr next = chunk_plus_offset(oldp, oldsize); | 
|  | mchunkptr newp = 0; | 
|  | void* extra = 0; | 
|  |  | 
|  | /* Try to either shrink or extend into top. Else malloc-copy-free */ | 
|  |  | 
|  | if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) && | 
|  | ok_next(oldp, next) && ok_pinuse(next))) { | 
|  | size_t nb = request2size(bytes); | 
|  | if (is_mmapped(oldp)) | 
|  | newp = mmap_resize(m, oldp, nb); | 
|  | else if (oldsize >= nb) { /* already big enough */ | 
|  | size_t rsize = oldsize - nb; | 
|  | newp = oldp; | 
|  | if (rsize >= MIN_CHUNK_SIZE) { | 
|  | mchunkptr remainder = chunk_plus_offset(newp, nb); | 
|  | set_inuse(m, newp, nb); | 
|  | set_inuse(m, remainder, rsize); | 
|  | extra = chunk2mem(remainder); | 
|  | } | 
|  | } | 
|  | else if (next == m->top && oldsize + m->topsize > nb) { | 
|  | /* Expand into top */ | 
|  | size_t newsize = oldsize + m->topsize; | 
|  | size_t newtopsize = newsize - nb; | 
|  | mchunkptr newtop = chunk_plus_offset(oldp, nb); | 
|  | set_inuse(m, oldp, nb); | 
|  | newtop->head = newtopsize |PINUSE_BIT; | 
|  | m->top = newtop; | 
|  | m->topsize = newtopsize; | 
|  | newp = oldp; | 
|  | } | 
|  | } | 
|  | else { | 
|  | USAGE_ERROR_ACTION(m, oldmem); | 
|  | POSTACTION(m); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | POSTACTION(m); | 
|  |  | 
|  | if (newp != 0) { | 
|  | if (extra != 0) { | 
|  | internal_free(m, extra); | 
|  | } | 
|  | check_inuse_chunk(m, newp); | 
|  | return chunk2mem(newp); | 
|  | } | 
|  | else { | 
|  | void* newmem = internal_malloc(m, bytes); | 
|  | if (newmem != 0) { | 
|  | size_t oc = oldsize - overhead_for(oldp); | 
|  | memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); | 
|  | internal_free(m, oldmem); | 
|  | } | 
|  | return newmem; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* --------------------------- memalign support -------------------------- */ | 
|  |  | 
|  | static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { | 
|  | if (alignment <= MALLOC_ALIGNMENT)    /* Can just use malloc */ | 
|  | return internal_malloc(m, bytes); | 
|  | if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ | 
|  | alignment = MIN_CHUNK_SIZE; | 
|  | if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ | 
|  | size_t a = MALLOC_ALIGNMENT << 1; | 
|  | while (a < alignment) a <<= 1; | 
|  | alignment = a; | 
|  | } | 
|  |  | 
|  | if (bytes >= MAX_REQUEST - alignment) { | 
|  | if (m != 0)  { /* Test isn't needed but avoids compiler warning */ | 
|  | MALLOC_FAILURE_ACTION; | 
|  | } | 
|  | } | 
|  | else { | 
|  | size_t nb = request2size(bytes); | 
|  | size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; | 
|  | char* mem = (char*)internal_malloc(m, req); | 
|  | if (mem != 0) { | 
|  | void* leader = 0; | 
|  | void* trailer = 0; | 
|  | mchunkptr p = mem2chunk(mem); | 
|  |  | 
|  | if (PREACTION(m)) return 0; | 
|  | if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ | 
|  | /* | 
|  | Find an aligned spot inside chunk.  Since we need to give | 
|  | back leading space in a chunk of at least MIN_CHUNK_SIZE, if | 
|  | the first calculation places us at a spot with less than | 
|  | MIN_CHUNK_SIZE leader, we can move to the next aligned spot. | 
|  | We've allocated enough total room so that this is always | 
|  | possible. | 
|  | */ | 
|  | char* br = (char*)mem2chunk((size_t)(((size_t)(mem + | 
|  | alignment - | 
|  | SIZE_T_ONE)) & | 
|  | -alignment)); | 
|  | char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? | 
|  | br : br+alignment; | 
|  | mchunkptr newp = (mchunkptr)pos; | 
|  | size_t leadsize = pos - (char*)(p); | 
|  | size_t newsize = chunksize(p) - leadsize; | 
|  |  | 
|  | if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ | 
|  | newp->prev_foot = p->prev_foot + leadsize; | 
|  | newp->head = (newsize|CINUSE_BIT); | 
|  | } | 
|  | else { /* Otherwise, give back leader, use the rest */ | 
|  | set_inuse(m, newp, newsize); | 
|  | set_inuse(m, p, leadsize); | 
|  | leader = chunk2mem(p); | 
|  | } | 
|  | p = newp; | 
|  | } | 
|  |  | 
|  | /* Give back spare room at the end */ | 
|  | if (!is_mmapped(p)) { | 
|  | size_t size = chunksize(p); | 
|  | if (size > nb + MIN_CHUNK_SIZE) { | 
|  | size_t remainder_size = size - nb; | 
|  | mchunkptr remainder = chunk_plus_offset(p, nb); | 
|  | set_inuse(m, p, nb); | 
|  | set_inuse(m, remainder, remainder_size); | 
|  | trailer = chunk2mem(remainder); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert (chunksize(p) >= nb); | 
|  | assert((((size_t)(chunk2mem(p))) % alignment) == 0); | 
|  | check_inuse_chunk(m, p); | 
|  | POSTACTION(m); | 
|  | if (leader != 0) { | 
|  | internal_free(m, leader); | 
|  | } | 
|  | if (trailer != 0) { | 
|  | internal_free(m, trailer); | 
|  | } | 
|  | return chunk2mem(p); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ------------------------ comalloc/coalloc support --------------------- */ | 
|  |  | 
|  | static void** ialloc(mstate m, | 
|  | size_t n_elements, | 
|  | size_t* sizes, | 
|  | int opts, | 
|  | void* chunks[]) { | 
|  | /* | 
|  | This provides common support for independent_X routines, handling | 
|  | all of the combinations that can result. | 
|  |  | 
|  | The opts arg has: | 
|  | bit 0 set if all elements are same size (using sizes[0]) | 
|  | bit 1 set if elements should be zeroed | 
|  | */ | 
|  |  | 
|  | size_t    element_size;   /* chunksize of each element, if all same */ | 
|  | size_t    contents_size;  /* total size of elements */ | 
|  | size_t    array_size;     /* request size of pointer array */ | 
|  | void*     mem;            /* malloced aggregate space */ | 
|  | mchunkptr p;              /* corresponding chunk */ | 
|  | size_t    remainder_size; /* remaining bytes while splitting */ | 
|  | void**    marray;         /* either "chunks" or malloced ptr array */ | 
|  | mchunkptr array_chunk;    /* chunk for malloced ptr array */ | 
|  | flag_t    was_enabled;    /* to disable mmap */ | 
|  | size_t    size; | 
|  | size_t    i; | 
|  |  | 
|  | ensure_initialization(); | 
|  | /* compute array length, if needed */ | 
|  | if (chunks != 0) { | 
|  | if (n_elements == 0) | 
|  | return chunks; /* nothing to do */ | 
|  | marray = chunks; | 
|  | array_size = 0; | 
|  | } | 
|  | else { | 
|  | /* if empty req, must still return chunk representing empty array */ | 
|  | if (n_elements == 0) | 
|  | return (void**)internal_malloc(m, 0); | 
|  | marray = 0; | 
|  | array_size = request2size(n_elements * (sizeof(void*))); | 
|  | } | 
|  |  | 
|  | /* compute total element size */ | 
|  | if (opts & 0x1) { /* all-same-size */ | 
|  | element_size = request2size(*sizes); | 
|  | contents_size = n_elements * element_size; | 
|  | } | 
|  | else { /* add up all the sizes */ | 
|  | element_size = 0; | 
|  | contents_size = 0; | 
|  | for (i = 0; i != n_elements; ++i) | 
|  | contents_size += request2size(sizes[i]); | 
|  | } | 
|  |  | 
|  | size = contents_size + array_size; | 
|  |  | 
|  | /* | 
|  | Allocate the aggregate chunk.  First disable direct-mmapping so | 
|  | malloc won't use it, since we would not be able to later | 
|  | free/realloc space internal to a segregated mmap region. | 
|  | */ | 
|  | was_enabled = use_mmap(m); | 
|  | disable_mmap(m); | 
|  | mem = internal_malloc(m, size - CHUNK_OVERHEAD); | 
|  | if (was_enabled) | 
|  | enable_mmap(m); | 
|  | if (mem == 0) | 
|  | return 0; | 
|  |  | 
|  | if (PREACTION(m)) return 0; | 
|  | p = mem2chunk(mem); | 
|  | remainder_size = chunksize(p); | 
|  |  | 
|  | assert(!is_mmapped(p)); | 
|  |  | 
|  | if (opts & 0x2) {       /* optionally clear the elements */ | 
|  | memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); | 
|  | } | 
|  |  | 
|  | /* If not provided, allocate the pointer array as final part of chunk */ | 
|  | if (marray == 0) { | 
|  | size_t  array_chunk_size; | 
|  | array_chunk = chunk_plus_offset(p, contents_size); | 
|  | array_chunk_size = remainder_size - contents_size; | 
|  | marray = (void**) (chunk2mem(array_chunk)); | 
|  | set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); | 
|  | remainder_size = contents_size; | 
|  | } | 
|  |  | 
|  | /* split out elements */ | 
|  | for (i = 0; ; ++i) { | 
|  | marray[i] = chunk2mem(p); | 
|  | if (i != n_elements-1) { | 
|  | if (element_size != 0) | 
|  | size = element_size; | 
|  | else | 
|  | size = request2size(sizes[i]); | 
|  | remainder_size -= size; | 
|  | set_size_and_pinuse_of_inuse_chunk(m, p, size); | 
|  | p = chunk_plus_offset(p, size); | 
|  | } | 
|  | else { /* the final element absorbs any overallocation slop */ | 
|  | set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  | if (marray != chunks) { | 
|  | /* final element must have exactly exhausted chunk */ | 
|  | if (element_size != 0) { | 
|  | assert(remainder_size == element_size); | 
|  | } | 
|  | else { | 
|  | assert(remainder_size == request2size(sizes[i])); | 
|  | } | 
|  | check_inuse_chunk(m, mem2chunk(marray)); | 
|  | } | 
|  | for (i = 0; i != n_elements; ++i) | 
|  | check_inuse_chunk(m, mem2chunk(marray[i])); | 
|  |  | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | POSTACTION(m); | 
|  | return marray; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* -------------------------- public routines ---------------------------- */ | 
|  |  | 
|  | #if !ONLY_MSPACES | 
|  |  | 
|  | void* dlmalloc(size_t bytes) { | 
|  | /* | 
|  | Basic algorithm: | 
|  | If a small request (< 256 bytes minus per-chunk overhead): | 
|  | 1. If one exists, use a remainderless chunk in associated smallbin. | 
|  | (Remainderless means that there are too few excess bytes to | 
|  | represent as a chunk.) | 
|  | 2. If it is big enough, use the dv chunk, which is normally the | 
|  | chunk adjacent to the one used for the most recent small request. | 
|  | 3. If one exists, split the smallest available chunk in a bin, | 
|  | saving remainder in dv. | 
|  | 4. If it is big enough, use the top chunk. | 
|  | 5. If available, get memory from system and use it | 
|  | Otherwise, for a large request: | 
|  | 1. Find the smallest available binned chunk that fits, and use it | 
|  | if it is better fitting than dv chunk, splitting if necessary. | 
|  | 2. If better fitting than any binned chunk, use the dv chunk. | 
|  | 3. If it is big enough, use the top chunk. | 
|  | 4. If request size >= mmap threshold, try to directly mmap this chunk. | 
|  | 5. If available, get memory from system and use it | 
|  |  | 
|  | The ugly goto's here ensure that postaction occurs along all paths. | 
|  | */ | 
|  |  | 
|  | #if USE_LOCKS | 
|  | ensure_initialization(); /* initialize in sys_alloc if not using locks */ | 
|  | #endif | 
|  |  | 
|  | if (!PREACTION(gm)) { | 
|  | void* mem; | 
|  | size_t nb; | 
|  | if (bytes <= MAX_SMALL_REQUEST) { | 
|  | bindex_t idx; | 
|  | binmap_t smallbits; | 
|  | nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); | 
|  | idx = small_index(nb); | 
|  | smallbits = gm->smallmap >> idx; | 
|  |  | 
|  | if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ | 
|  | mchunkptr b, p; | 
|  | idx += ~smallbits & 1;       /* Uses next bin if idx empty */ | 
|  | b = smallbin_at(gm, idx); | 
|  | p = b->fd; | 
|  | assert(chunksize(p) == small_index2size(idx)); | 
|  | unlink_first_small_chunk(gm, b, p, idx); | 
|  | set_inuse_and_pinuse(gm, p, small_index2size(idx)); | 
|  | mem = chunk2mem(p); | 
|  | check_malloced_chunk(gm, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  |  | 
|  | else if (nb > gm->dvsize) { | 
|  | if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ | 
|  | mchunkptr b, p, r; | 
|  | size_t rsize; | 
|  | bindex_t i; | 
|  | binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); | 
|  | binmap_t leastbit = least_bit(leftbits); | 
|  | compute_bit2idx(leastbit, i); | 
|  | b = smallbin_at(gm, i); | 
|  | p = b->fd; | 
|  | assert(chunksize(p) == small_index2size(i)); | 
|  | unlink_first_small_chunk(gm, b, p, i); | 
|  | rsize = small_index2size(i) - nb; | 
|  | /* Fit here cannot be remainderless if 4byte sizes */ | 
|  | if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) | 
|  | set_inuse_and_pinuse(gm, p, small_index2size(i)); | 
|  | else { | 
|  | set_size_and_pinuse_of_inuse_chunk(gm, p, nb); | 
|  | r = chunk_plus_offset(p, nb); | 
|  | set_size_and_pinuse_of_free_chunk(r, rsize); | 
|  | replace_dv(gm, r, rsize); | 
|  | } | 
|  | mem = chunk2mem(p); | 
|  | check_malloced_chunk(gm, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  |  | 
|  | else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { | 
|  | check_malloced_chunk(gm, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (bytes >= MAX_REQUEST) | 
|  | nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ | 
|  | else { | 
|  | nb = pad_request(bytes); | 
|  | if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { | 
|  | check_malloced_chunk(gm, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nb <= gm->dvsize) { | 
|  | size_t rsize = gm->dvsize - nb; | 
|  | mchunkptr p = gm->dv; | 
|  | if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ | 
|  | mchunkptr r = gm->dv = chunk_plus_offset(p, nb); | 
|  | gm->dvsize = rsize; | 
|  | set_size_and_pinuse_of_free_chunk(r, rsize); | 
|  | set_size_and_pinuse_of_inuse_chunk(gm, p, nb); | 
|  | } | 
|  | else { /* exhaust dv */ | 
|  | size_t dvs = gm->dvsize; | 
|  | gm->dvsize = 0; | 
|  | gm->dv = 0; | 
|  | set_inuse_and_pinuse(gm, p, dvs); | 
|  | } | 
|  | mem = chunk2mem(p); | 
|  | check_malloced_chunk(gm, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  |  | 
|  | else if (nb < gm->topsize) { /* Split top */ | 
|  | size_t rsize = gm->topsize -= nb; | 
|  | mchunkptr p = gm->top; | 
|  | mchunkptr r = gm->top = chunk_plus_offset(p, nb); | 
|  | r->head = rsize | PINUSE_BIT; | 
|  | set_size_and_pinuse_of_inuse_chunk(gm, p, nb); | 
|  | mem = chunk2mem(p); | 
|  | check_top_chunk(gm, gm->top); | 
|  | check_malloced_chunk(gm, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  |  | 
|  | mem = sys_alloc(gm, nb); | 
|  |  | 
|  | postaction: | 
|  | POSTACTION(gm); | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void dlfree(void* mem) { | 
|  | /* | 
|  | Consolidate freed chunks with preceeding or succeeding bordering | 
|  | free chunks, if they exist, and then place in a bin.  Intermixed | 
|  | with special cases for top, dv, mmapped chunks, and usage errors. | 
|  | */ | 
|  |  | 
|  | if (mem != 0) { | 
|  | mchunkptr p  = mem2chunk(mem); | 
|  | #if FOOTERS | 
|  | mstate fm = get_mstate_for(p); | 
|  | if (!ok_magic(fm)) { | 
|  | USAGE_ERROR_ACTION(fm, p); | 
|  | return; | 
|  | } | 
|  | #else /* FOOTERS */ | 
|  | #define fm gm | 
|  | #endif /* FOOTERS */ | 
|  | if (!PREACTION(fm)) { | 
|  | check_inuse_chunk(fm, p); | 
|  | if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { | 
|  | size_t psize = chunksize(p); | 
|  | mchunkptr next = chunk_plus_offset(p, psize); | 
|  | if (!pinuse(p)) { | 
|  | size_t prevsize = p->prev_foot; | 
|  | if ((prevsize & IS_MMAPPED_BIT) != 0) { | 
|  | prevsize &= ~IS_MMAPPED_BIT; | 
|  | psize += prevsize + MMAP_FOOT_PAD; | 
|  | if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) | 
|  | fm->footprint -= psize; | 
|  | goto postaction; | 
|  | } | 
|  | else { | 
|  | mchunkptr prev = chunk_minus_offset(p, prevsize); | 
|  | psize += prevsize; | 
|  | p = prev; | 
|  | if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ | 
|  | if (p != fm->dv) { | 
|  | unlink_chunk(fm, p, prevsize); | 
|  | } | 
|  | else if ((next->head & INUSE_BITS) == INUSE_BITS) { | 
|  | fm->dvsize = psize; | 
|  | set_free_with_pinuse(p, psize, next); | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  | else | 
|  | goto erroraction; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { | 
|  | if (!cinuse(next)) {  /* consolidate forward */ | 
|  | if (next == fm->top) { | 
|  | size_t tsize = fm->topsize += psize; | 
|  | fm->top = p; | 
|  | p->head = tsize | PINUSE_BIT; | 
|  | if (p == fm->dv) { | 
|  | fm->dv = 0; | 
|  | fm->dvsize = 0; | 
|  | } | 
|  | if (should_trim(fm, tsize)) | 
|  | sys_trim(fm, 0); | 
|  | goto postaction; | 
|  | } | 
|  | else if (next == fm->dv) { | 
|  | size_t dsize = fm->dvsize += psize; | 
|  | fm->dv = p; | 
|  | set_size_and_pinuse_of_free_chunk(p, dsize); | 
|  | goto postaction; | 
|  | } | 
|  | else { | 
|  | size_t nsize = chunksize(next); | 
|  | psize += nsize; | 
|  | unlink_chunk(fm, next, nsize); | 
|  | set_size_and_pinuse_of_free_chunk(p, psize); | 
|  | if (p == fm->dv) { | 
|  | fm->dvsize = psize; | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | set_free_with_pinuse(p, psize, next); | 
|  |  | 
|  | if (is_small(psize)) { | 
|  | insert_small_chunk(fm, p, psize); | 
|  | check_free_chunk(fm, p); | 
|  | } | 
|  | else { | 
|  | tchunkptr tp = (tchunkptr)p; | 
|  | insert_large_chunk(fm, tp, psize); | 
|  | check_free_chunk(fm, p); | 
|  | if (--fm->release_checks == 0) | 
|  | release_unused_segments(fm); | 
|  | } | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  | erroraction: | 
|  | USAGE_ERROR_ACTION(fm, p); | 
|  | postaction: | 
|  | POSTACTION(fm); | 
|  | } | 
|  | } | 
|  | #if !FOOTERS | 
|  | #undef fm | 
|  | #endif /* FOOTERS */ | 
|  | } | 
|  |  | 
|  | void* dlcalloc(size_t n_elements, size_t elem_size) { | 
|  | void* mem; | 
|  | size_t req = 0; | 
|  | if (n_elements != 0) { | 
|  | req = n_elements * elem_size; | 
|  | if (((n_elements | elem_size) & ~(size_t)0xffff) && | 
|  | (req / n_elements != elem_size)) | 
|  | req = MAX_SIZE_T; /* force downstream failure on overflow */ | 
|  | } | 
|  | mem = dlmalloc(req); | 
|  | if (mem != 0 && calloc_must_clear(mem2chunk(mem))) | 
|  | memset(mem, 0, req); | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | void* dlrealloc(void* oldmem, size_t bytes) { | 
|  | if (oldmem == 0) | 
|  | return dlmalloc(bytes); | 
|  | #ifdef REALLOC_ZERO_BYTES_FREES | 
|  | if (bytes == 0) { | 
|  | dlfree(oldmem); | 
|  | return 0; | 
|  | } | 
|  | #endif /* REALLOC_ZERO_BYTES_FREES */ | 
|  | else { | 
|  | #if ! FOOTERS | 
|  | mstate m = gm; | 
|  | #else /* FOOTERS */ | 
|  | mstate m = get_mstate_for(mem2chunk(oldmem)); | 
|  | if (!ok_magic(m)) { | 
|  | USAGE_ERROR_ACTION(m, oldmem); | 
|  | return 0; | 
|  | } | 
|  | #endif /* FOOTERS */ | 
|  | return internal_realloc(m, oldmem, bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | void* dlmemalign(size_t alignment, size_t bytes) { | 
|  | return internal_memalign(gm, alignment, bytes); | 
|  | } | 
|  |  | 
|  | void** dlindependent_calloc(size_t n_elements, size_t elem_size, | 
|  | void* chunks[]) { | 
|  | size_t sz = elem_size; /* serves as 1-element array */ | 
|  | return ialloc(gm, n_elements, &sz, 3, chunks); | 
|  | } | 
|  |  | 
|  | void** dlindependent_comalloc(size_t n_elements, size_t sizes[], | 
|  | void* chunks[]) { | 
|  | return ialloc(gm, n_elements, sizes, 0, chunks); | 
|  | } | 
|  |  | 
|  | void* dlvalloc(size_t bytes) { | 
|  | size_t pagesz; | 
|  | ensure_initialization(); | 
|  | pagesz = mparams.page_size; | 
|  | return dlmemalign(pagesz, bytes); | 
|  | } | 
|  |  | 
|  | void* dlpvalloc(size_t bytes) { | 
|  | size_t pagesz; | 
|  | ensure_initialization(); | 
|  | pagesz = mparams.page_size; | 
|  | return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); | 
|  | } | 
|  |  | 
|  | int dlmalloc_trim(size_t pad) { | 
|  | ensure_initialization(); | 
|  | int result = 0; | 
|  | if (!PREACTION(gm)) { | 
|  | result = sys_trim(gm, pad); | 
|  | POSTACTION(gm); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | size_t dlmalloc_footprint(void) { | 
|  | return gm->footprint; | 
|  | } | 
|  |  | 
|  | size_t dlmalloc_max_footprint(void) { | 
|  | return gm->max_footprint; | 
|  | } | 
|  |  | 
|  | #if !NO_MALLINFO | 
|  | struct mallinfo dlmallinfo(void) { | 
|  | return internal_mallinfo(gm); | 
|  | } | 
|  | #endif /* NO_MALLINFO */ | 
|  |  | 
|  | void dlmalloc_stats() { | 
|  | internal_malloc_stats(gm); | 
|  | } | 
|  |  | 
|  | int dlmallopt(int param_number, int value) { | 
|  | return change_mparam(param_number, value); | 
|  | } | 
|  |  | 
|  | #endif /* !ONLY_MSPACES */ | 
|  |  | 
|  | size_t dlmalloc_usable_size(void* mem) { | 
|  | if (mem != 0) { | 
|  | mchunkptr p = mem2chunk(mem); | 
|  | if (cinuse(p)) | 
|  | return chunksize(p) - overhead_for(p); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ----------------------------- user mspaces ---------------------------- */ | 
|  |  | 
|  | #if MSPACES | 
|  |  | 
|  | static mstate init_user_mstate(char* tbase, size_t tsize) { | 
|  | size_t msize = pad_request(sizeof(struct malloc_state)); | 
|  | mchunkptr mn; | 
|  | mchunkptr msp = align_as_chunk(tbase); | 
|  | mstate m = (mstate)(chunk2mem(msp)); | 
|  | memset(m, 0, msize); | 
|  | INITIAL_LOCK(&m->mutex); | 
|  | msp->head = (msize|PINUSE_BIT|CINUSE_BIT); | 
|  | m->seg.base = m->least_addr = tbase; | 
|  | m->seg.size = m->footprint = m->max_footprint = tsize; | 
|  | m->magic = mparams.magic; | 
|  | m->release_checks = MAX_RELEASE_CHECK_RATE; | 
|  | m->mflags = mparams.default_mflags; | 
|  | m->extp = 0; | 
|  | m->exts = 0; | 
|  | disable_contiguous(m); | 
|  | init_bins(m); | 
|  | mn = next_chunk(mem2chunk(m)); | 
|  | init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); | 
|  | check_top_chunk(m, m->top); | 
|  | return m; | 
|  | } | 
|  |  | 
|  | mspace create_mspace(size_t capacity, int locked) { | 
|  | mstate m = 0; | 
|  | size_t msize; | 
|  | ensure_initialization(); | 
|  | msize = pad_request(sizeof(struct malloc_state)); | 
|  | if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { | 
|  | size_t rs = ((capacity == 0)? mparams.granularity : | 
|  | (capacity + TOP_FOOT_SIZE + msize)); | 
|  | size_t tsize = granularity_align(rs); | 
|  | char* tbase = (char*)(CALL_MMAP(tsize)); | 
|  | if (tbase != CMFAIL) { | 
|  | m = init_user_mstate(tbase, tsize); | 
|  | m->seg.sflags = IS_MMAPPED_BIT; | 
|  | set_lock(m, locked); | 
|  | } | 
|  | } | 
|  | return (mspace)m; | 
|  | } | 
|  |  | 
|  | mspace create_mspace_with_base(void* base, size_t capacity, int locked) { | 
|  | mstate m = 0; | 
|  | size_t msize; | 
|  | ensure_initialization(); | 
|  | msize = pad_request(sizeof(struct malloc_state)); | 
|  | if (capacity > msize + TOP_FOOT_SIZE && | 
|  | capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { | 
|  | m = init_user_mstate((char*)base, capacity); | 
|  | m->seg.sflags = EXTERN_BIT; | 
|  | set_lock(m, locked); | 
|  | } | 
|  | return (mspace)m; | 
|  | } | 
|  |  | 
|  | int mspace_mmap_large_chunks(mspace msp, int enable) { | 
|  | int ret = 0; | 
|  | mstate ms = (mstate)msp; | 
|  | if (!PREACTION(ms)) { | 
|  | if (use_mmap(ms)) | 
|  | ret = 1; | 
|  | if (enable) | 
|  | enable_mmap(ms); | 
|  | else | 
|  | disable_mmap(ms); | 
|  | POSTACTION(ms); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | size_t destroy_mspace(mspace msp) { | 
|  | size_t freed = 0; | 
|  | mstate ms = (mstate)msp; | 
|  | if (ok_magic(ms)) { | 
|  | msegmentptr sp = &ms->seg; | 
|  | while (sp != 0) { | 
|  | char* base = sp->base; | 
|  | size_t size = sp->size; | 
|  | flag_t flag = sp->sflags; | 
|  | sp = sp->next; | 
|  | if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) && | 
|  | CALL_MUNMAP(base, size) == 0) | 
|  | freed += size; | 
|  | } | 
|  | } | 
|  | else { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | } | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | mspace versions of routines are near-clones of the global | 
|  | versions. This is not so nice but better than the alternatives. | 
|  | */ | 
|  |  | 
|  |  | 
|  | void* mspace_malloc(mspace msp, size_t bytes) { | 
|  | mstate ms = (mstate)msp; | 
|  | if (!ok_magic(ms)) { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | return 0; | 
|  | } | 
|  | if (!PREACTION(ms)) { | 
|  | void* mem; | 
|  | size_t nb; | 
|  | if (bytes <= MAX_SMALL_REQUEST) { | 
|  | bindex_t idx; | 
|  | binmap_t smallbits; | 
|  | nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); | 
|  | idx = small_index(nb); | 
|  | smallbits = ms->smallmap >> idx; | 
|  |  | 
|  | if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ | 
|  | mchunkptr b, p; | 
|  | idx += ~smallbits & 1;       /* Uses next bin if idx empty */ | 
|  | b = smallbin_at(ms, idx); | 
|  | p = b->fd; | 
|  | assert(chunksize(p) == small_index2size(idx)); | 
|  | unlink_first_small_chunk(ms, b, p, idx); | 
|  | set_inuse_and_pinuse(ms, p, small_index2size(idx)); | 
|  | mem = chunk2mem(p); | 
|  | check_malloced_chunk(ms, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  |  | 
|  | else if (nb > ms->dvsize) { | 
|  | if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ | 
|  | mchunkptr b, p, r; | 
|  | size_t rsize; | 
|  | bindex_t i; | 
|  | binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); | 
|  | binmap_t leastbit = least_bit(leftbits); | 
|  | compute_bit2idx(leastbit, i); | 
|  | b = smallbin_at(ms, i); | 
|  | p = b->fd; | 
|  | assert(chunksize(p) == small_index2size(i)); | 
|  | unlink_first_small_chunk(ms, b, p, i); | 
|  | rsize = small_index2size(i) - nb; | 
|  | /* Fit here cannot be remainderless if 4byte sizes */ | 
|  | if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) | 
|  | set_inuse_and_pinuse(ms, p, small_index2size(i)); | 
|  | else { | 
|  | set_size_and_pinuse_of_inuse_chunk(ms, p, nb); | 
|  | r = chunk_plus_offset(p, nb); | 
|  | set_size_and_pinuse_of_free_chunk(r, rsize); | 
|  | replace_dv(ms, r, rsize); | 
|  | } | 
|  | mem = chunk2mem(p); | 
|  | check_malloced_chunk(ms, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  |  | 
|  | else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { | 
|  | check_malloced_chunk(ms, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (bytes >= MAX_REQUEST) | 
|  | nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ | 
|  | else { | 
|  | nb = pad_request(bytes); | 
|  | if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { | 
|  | check_malloced_chunk(ms, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nb <= ms->dvsize) { | 
|  | size_t rsize = ms->dvsize - nb; | 
|  | mchunkptr p = ms->dv; | 
|  | if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ | 
|  | mchunkptr r = ms->dv = chunk_plus_offset(p, nb); | 
|  | ms->dvsize = rsize; | 
|  | set_size_and_pinuse_of_free_chunk(r, rsize); | 
|  | set_size_and_pinuse_of_inuse_chunk(ms, p, nb); | 
|  | } | 
|  | else { /* exhaust dv */ | 
|  | size_t dvs = ms->dvsize; | 
|  | ms->dvsize = 0; | 
|  | ms->dv = 0; | 
|  | set_inuse_and_pinuse(ms, p, dvs); | 
|  | } | 
|  | mem = chunk2mem(p); | 
|  | check_malloced_chunk(ms, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  |  | 
|  | else if (nb < ms->topsize) { /* Split top */ | 
|  | size_t rsize = ms->topsize -= nb; | 
|  | mchunkptr p = ms->top; | 
|  | mchunkptr r = ms->top = chunk_plus_offset(p, nb); | 
|  | r->head = rsize | PINUSE_BIT; | 
|  | set_size_and_pinuse_of_inuse_chunk(ms, p, nb); | 
|  | mem = chunk2mem(p); | 
|  | check_top_chunk(ms, ms->top); | 
|  | check_malloced_chunk(ms, mem, nb); | 
|  | goto postaction; | 
|  | } | 
|  |  | 
|  | mem = sys_alloc(ms, nb); | 
|  |  | 
|  | postaction: | 
|  | POSTACTION(ms); | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void mspace_free(mspace msp, void* mem) { | 
|  | if (mem != 0) { | 
|  | mchunkptr p  = mem2chunk(mem); | 
|  | #if FOOTERS | 
|  | mstate fm = get_mstate_for(p); | 
|  | #else /* FOOTERS */ | 
|  | mstate fm = (mstate)msp; | 
|  | #endif /* FOOTERS */ | 
|  | if (!ok_magic(fm)) { | 
|  | USAGE_ERROR_ACTION(fm, p); | 
|  | return; | 
|  | } | 
|  | if (!PREACTION(fm)) { | 
|  | check_inuse_chunk(fm, p); | 
|  | if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { | 
|  | size_t psize = chunksize(p); | 
|  | mchunkptr next = chunk_plus_offset(p, psize); | 
|  | if (!pinuse(p)) { | 
|  | size_t prevsize = p->prev_foot; | 
|  | if ((prevsize & IS_MMAPPED_BIT) != 0) { | 
|  | prevsize &= ~IS_MMAPPED_BIT; | 
|  | psize += prevsize + MMAP_FOOT_PAD; | 
|  | if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) | 
|  | fm->footprint -= psize; | 
|  | goto postaction; | 
|  | } | 
|  | else { | 
|  | mchunkptr prev = chunk_minus_offset(p, prevsize); | 
|  | psize += prevsize; | 
|  | p = prev; | 
|  | if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ | 
|  | if (p != fm->dv) { | 
|  | unlink_chunk(fm, p, prevsize); | 
|  | } | 
|  | else if ((next->head & INUSE_BITS) == INUSE_BITS) { | 
|  | fm->dvsize = psize; | 
|  | set_free_with_pinuse(p, psize, next); | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  | else | 
|  | goto erroraction; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { | 
|  | if (!cinuse(next)) {  /* consolidate forward */ | 
|  | if (next == fm->top) { | 
|  | size_t tsize = fm->topsize += psize; | 
|  | fm->top = p; | 
|  | p->head = tsize | PINUSE_BIT; | 
|  | if (p == fm->dv) { | 
|  | fm->dv = 0; | 
|  | fm->dvsize = 0; | 
|  | } | 
|  | if (should_trim(fm, tsize)) | 
|  | sys_trim(fm, 0); | 
|  | goto postaction; | 
|  | } | 
|  | else if (next == fm->dv) { | 
|  | size_t dsize = fm->dvsize += psize; | 
|  | fm->dv = p; | 
|  | set_size_and_pinuse_of_free_chunk(p, dsize); | 
|  | goto postaction; | 
|  | } | 
|  | else { | 
|  | size_t nsize = chunksize(next); | 
|  | psize += nsize; | 
|  | unlink_chunk(fm, next, nsize); | 
|  | set_size_and_pinuse_of_free_chunk(p, psize); | 
|  | if (p == fm->dv) { | 
|  | fm->dvsize = psize; | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | set_free_with_pinuse(p, psize, next); | 
|  |  | 
|  | if (is_small(psize)) { | 
|  | insert_small_chunk(fm, p, psize); | 
|  | check_free_chunk(fm, p); | 
|  | } | 
|  | else { | 
|  | tchunkptr tp = (tchunkptr)p; | 
|  | insert_large_chunk(fm, tp, psize); | 
|  | check_free_chunk(fm, p); | 
|  | if (--fm->release_checks == 0) | 
|  | release_unused_segments(fm); | 
|  | } | 
|  | goto postaction; | 
|  | } | 
|  | } | 
|  | erroraction: | 
|  | USAGE_ERROR_ACTION(fm, p); | 
|  | postaction: | 
|  | POSTACTION(fm); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { | 
|  | void* mem; | 
|  | size_t req = 0; | 
|  | mstate ms = (mstate)msp; | 
|  | if (!ok_magic(ms)) { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | return 0; | 
|  | } | 
|  | if (n_elements != 0) { | 
|  | req = n_elements * elem_size; | 
|  | if (((n_elements | elem_size) & ~(size_t)0xffff) && | 
|  | (req / n_elements != elem_size)) | 
|  | req = MAX_SIZE_T; /* force downstream failure on overflow */ | 
|  | } | 
|  | mem = internal_malloc(ms, req); | 
|  | if (mem != 0 && calloc_must_clear(mem2chunk(mem))) | 
|  | memset(mem, 0, req); | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { | 
|  | if (oldmem == 0) | 
|  | return mspace_malloc(msp, bytes); | 
|  | #ifdef REALLOC_ZERO_BYTES_FREES | 
|  | if (bytes == 0) { | 
|  | mspace_free(msp, oldmem); | 
|  | return 0; | 
|  | } | 
|  | #endif /* REALLOC_ZERO_BYTES_FREES */ | 
|  | else { | 
|  | #if FOOTERS | 
|  | mchunkptr p  = mem2chunk(oldmem); | 
|  | mstate ms = get_mstate_for(p); | 
|  | #else /* FOOTERS */ | 
|  | mstate ms = (mstate)msp; | 
|  | #endif /* FOOTERS */ | 
|  | if (!ok_magic(ms)) { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | return 0; | 
|  | } | 
|  | return internal_realloc(ms, oldmem, bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { | 
|  | mstate ms = (mstate)msp; | 
|  | if (!ok_magic(ms)) { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | return 0; | 
|  | } | 
|  | return internal_memalign(ms, alignment, bytes); | 
|  | } | 
|  |  | 
|  | void** mspace_independent_calloc(mspace msp, size_t n_elements, | 
|  | size_t elem_size, void* chunks[]) { | 
|  | size_t sz = elem_size; /* serves as 1-element array */ | 
|  | mstate ms = (mstate)msp; | 
|  | if (!ok_magic(ms)) { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | return 0; | 
|  | } | 
|  | return ialloc(ms, n_elements, &sz, 3, chunks); | 
|  | } | 
|  |  | 
|  | void** mspace_independent_comalloc(mspace msp, size_t n_elements, | 
|  | size_t sizes[], void* chunks[]) { | 
|  | mstate ms = (mstate)msp; | 
|  | if (!ok_magic(ms)) { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | return 0; | 
|  | } | 
|  | return ialloc(ms, n_elements, sizes, 0, chunks); | 
|  | } | 
|  |  | 
|  | int mspace_trim(mspace msp, size_t pad) { | 
|  | int result = 0; | 
|  | mstate ms = (mstate)msp; | 
|  | if (ok_magic(ms)) { | 
|  | if (!PREACTION(ms)) { | 
|  | result = sys_trim(ms, pad); | 
|  | POSTACTION(ms); | 
|  | } | 
|  | } | 
|  | else { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void mspace_malloc_stats(mspace msp) { | 
|  | mstate ms = (mstate)msp; | 
|  | if (ok_magic(ms)) { | 
|  | internal_malloc_stats(ms); | 
|  | } | 
|  | else { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t mspace_footprint(mspace msp) { | 
|  | size_t result = 0; | 
|  | mstate ms = (mstate)msp; | 
|  | if (ok_magic(ms)) { | 
|  | result = ms->footprint; | 
|  | } | 
|  | else { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | size_t mspace_max_footprint(mspace msp) { | 
|  | size_t result = 0; | 
|  | mstate ms = (mstate)msp; | 
|  | if (ok_magic(ms)) { | 
|  | result = ms->max_footprint; | 
|  | } | 
|  | else { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if !NO_MALLINFO | 
|  | struct mallinfo mspace_mallinfo(mspace msp) { | 
|  | mstate ms = (mstate)msp; | 
|  | if (!ok_magic(ms)) { | 
|  | USAGE_ERROR_ACTION(ms,ms); | 
|  | } | 
|  | return internal_mallinfo(ms); | 
|  | } | 
|  | #endif /* NO_MALLINFO */ | 
|  |  | 
|  | size_t mspace_usable_size(void* mem) { | 
|  | if (mem != 0) { | 
|  | mchunkptr p = mem2chunk(mem); | 
|  | if (cinuse(p)) | 
|  | return chunksize(p) - overhead_for(p); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mspace_mallopt(int param_number, int value) { | 
|  | return change_mparam(param_number, value); | 
|  | } | 
|  |  | 
|  | #endif /* MSPACES */ | 
|  |  | 
|  | /* -------------------- Alternative MORECORE functions ------------------- */ | 
|  |  | 
|  | /* | 
|  | Guidelines for creating a custom version of MORECORE: | 
|  |  | 
|  | * For best performance, MORECORE should allocate in multiples of pagesize. | 
|  | * MORECORE may allocate more memory than requested. (Or even less, | 
|  | but this will usually result in a malloc failure.) | 
|  | * MORECORE must not allocate memory when given argument zero, but | 
|  | instead return one past the end address of memory from previous | 
|  | nonzero call. | 
|  | * For best performance, consecutive calls to MORECORE with positive | 
|  | arguments should return increasing addresses, indicating that | 
|  | space has been contiguously extended. | 
|  | * Even though consecutive calls to MORECORE need not return contiguous | 
|  | addresses, it must be OK for malloc'ed chunks to span multiple | 
|  | regions in those cases where they do happen to be contiguous. | 
|  | * MORECORE need not handle negative arguments -- it may instead | 
|  | just return MFAIL when given negative arguments. | 
|  | Negative arguments are always multiples of pagesize. MORECORE | 
|  | must not misinterpret negative args as large positive unsigned | 
|  | args. You can suppress all such calls from even occurring by defining | 
|  | MORECORE_CANNOT_TRIM, | 
|  |  | 
|  | As an example alternative MORECORE, here is a custom allocator | 
|  | kindly contributed for pre-OSX macOS.  It uses virtually but not | 
|  | necessarily physically contiguous non-paged memory (locked in, | 
|  | present and won't get swapped out).  You can use it by uncommenting | 
|  | this section, adding some #includes, and setting up the appropriate | 
|  | defines above: | 
|  |  | 
|  | #define MORECORE osMoreCore | 
|  |  | 
|  | There is also a shutdown routine that should somehow be called for | 
|  | cleanup upon program exit. | 
|  |  | 
|  | #define MAX_POOL_ENTRIES 100 | 
|  | #define MINIMUM_MORECORE_SIZE  (64 * 1024U) | 
|  | static int next_os_pool; | 
|  | void *our_os_pools[MAX_POOL_ENTRIES]; | 
|  |  | 
|  | void *osMoreCore(int size) | 
|  | { | 
|  | void *ptr = 0; | 
|  | static void *sbrk_top = 0; | 
|  |  | 
|  | if (size > 0) | 
|  | { | 
|  | if (size < MINIMUM_MORECORE_SIZE) | 
|  | size = MINIMUM_MORECORE_SIZE; | 
|  | if (CurrentExecutionLevel() == kTaskLevel) | 
|  | ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); | 
|  | if (ptr == 0) | 
|  | { | 
|  | return (void *) MFAIL; | 
|  | } | 
|  | // save ptrs so they can be freed during cleanup | 
|  | our_os_pools[next_os_pool] = ptr; | 
|  | next_os_pool++; | 
|  | ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); | 
|  | sbrk_top = (char *) ptr + size; | 
|  | return ptr; | 
|  | } | 
|  | else if (size < 0) | 
|  | { | 
|  | // we don't currently support shrink behavior | 
|  | return (void *) MFAIL; | 
|  | } | 
|  | else | 
|  | { | 
|  | return sbrk_top; | 
|  | } | 
|  | } | 
|  |  | 
|  | // cleanup any allocated memory pools | 
|  | // called as last thing before shutting down driver | 
|  |  | 
|  | void osCleanupMem(void) | 
|  | { | 
|  | void **ptr; | 
|  |  | 
|  | for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) | 
|  | if (*ptr) | 
|  | { | 
|  | PoolDeallocate(*ptr); | 
|  | *ptr = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* ----------------------------------------------------------------------- | 
|  | History: | 
|  | V2.8.4 (not yet released) | 
|  | * Add mspace_mmap_large_chunks; thanks to Jean Brouwers | 
|  | * Fix insufficient sys_alloc padding when using 16byte alignment | 
|  | * Fix bad error check in mspace_footprint | 
|  | * Adaptations for ptmalloc, courtesy of Wolfram Gloger. | 
|  | * Reentrant spin locks, courtesy of Earl Chew and others | 
|  | * Win32 improvements, courtesy of Niall Douglas and Earl Chew | 
|  | * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options | 
|  | * Extension hook in malloc_state | 
|  | * Various small adjustments to reduce warnings on some compilers | 
|  | * Various configuration extensions/changes for more platforms. Thanks | 
|  | to all who contributed these. | 
|  |  | 
|  | V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee) | 
|  | * Add max_footprint functions | 
|  | * Ensure all appropriate literals are size_t | 
|  | * Fix conditional compilation problem for some #define settings | 
|  | * Avoid concatenating segments with the one provided | 
|  | in create_mspace_with_base | 
|  | * Rename some variables to avoid compiler shadowing warnings | 
|  | * Use explicit lock initialization. | 
|  | * Better handling of sbrk interference. | 
|  | * Simplify and fix segment insertion, trimming and mspace_destroy | 
|  | * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x | 
|  | * Thanks especially to Dennis Flanagan for help on these. | 
|  |  | 
|  | V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee) | 
|  | * Fix memalign brace error. | 
|  |  | 
|  | V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee) | 
|  | * Fix improper #endif nesting in C++ | 
|  | * Add explicit casts needed for C++ | 
|  |  | 
|  | V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee) | 
|  | * Use trees for large bins | 
|  | * Support mspaces | 
|  | * Use segments to unify sbrk-based and mmap-based system allocation, | 
|  | removing need for emulation on most platforms without sbrk. | 
|  | * Default safety checks | 
|  | * Optional footer checks. Thanks to William Robertson for the idea. | 
|  | * Internal code refactoring | 
|  | * Incorporate suggestions and platform-specific changes. | 
|  | Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, | 
|  | Aaron Bachmann,  Emery Berger, and others. | 
|  | * Speed up non-fastbin processing enough to remove fastbins. | 
|  | * Remove useless cfree() to avoid conflicts with other apps. | 
|  | * Remove internal memcpy, memset. Compilers handle builtins better. | 
|  | * Remove some options that no one ever used and rename others. | 
|  |  | 
|  | V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee) | 
|  | * Fix malloc_state bitmap array misdeclaration | 
|  |  | 
|  | V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee) | 
|  | * Allow tuning of FIRST_SORTED_BIN_SIZE | 
|  | * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. | 
|  | * Better detection and support for non-contiguousness of MORECORE. | 
|  | Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger | 
|  | * Bypass most of malloc if no frees. Thanks To Emery Berger. | 
|  | * Fix freeing of old top non-contiguous chunk im sysmalloc. | 
|  | * Raised default trim and map thresholds to 256K. | 
|  | * Fix mmap-related #defines. Thanks to Lubos Lunak. | 
|  | * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. | 
|  | * Branch-free bin calculation | 
|  | * Default trim and mmap thresholds now 256K. | 
|  |  | 
|  | V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee) | 
|  | * Introduce independent_comalloc and independent_calloc. | 
|  | Thanks to Michael Pachos for motivation and help. | 
|  | * Make optional .h file available | 
|  | * Allow > 2GB requests on 32bit systems. | 
|  | * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. | 
|  | Thanks also to Andreas Mueller <a.mueller at paradatec.de>, | 
|  | and Anonymous. | 
|  | * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for | 
|  | helping test this.) | 
|  | * memalign: check alignment arg | 
|  | * realloc: don't try to shift chunks backwards, since this | 
|  | leads to  more fragmentation in some programs and doesn't | 
|  | seem to help in any others. | 
|  | * Collect all cases in malloc requiring system memory into sysmalloc | 
|  | * Use mmap as backup to sbrk | 
|  | * Place all internal state in malloc_state | 
|  | * Introduce fastbins (although similar to 2.5.1) | 
|  | * Many minor tunings and cosmetic improvements | 
|  | * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK | 
|  | * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS | 
|  | Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. | 
|  | * Include errno.h to support default failure action. | 
|  |  | 
|  | V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee) | 
|  | * return null for negative arguments | 
|  | * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> | 
|  | * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' | 
|  | (e.g. WIN32 platforms) | 
|  | * Cleanup header file inclusion for WIN32 platforms | 
|  | * Cleanup code to avoid Microsoft Visual C++ compiler complaints | 
|  | * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing | 
|  | memory allocation routines | 
|  | * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) | 
|  | * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to | 
|  | usage of 'assert' in non-WIN32 code | 
|  | * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to | 
|  | avoid infinite loop | 
|  | * Always call 'fREe()' rather than 'free()' | 
|  |  | 
|  | V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee) | 
|  | * Fixed ordering problem with boundary-stamping | 
|  |  | 
|  | V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee) | 
|  | * Added pvalloc, as recommended by H.J. Liu | 
|  | * Added 64bit pointer support mainly from Wolfram Gloger | 
|  | * Added anonymously donated WIN32 sbrk emulation | 
|  | * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen | 
|  | * malloc_extend_top: fix mask error that caused wastage after | 
|  | foreign sbrks | 
|  | * Add linux mremap support code from HJ Liu | 
|  |  | 
|  | V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee) | 
|  | * Integrated most documentation with the code. | 
|  | * Add support for mmap, with help from | 
|  | Wolfram Gloger (Gloger@lrz.uni-muenchen.de). | 
|  | * Use last_remainder in more cases. | 
|  | * Pack bins using idea from  colin@nyx10.cs.du.edu | 
|  | * Use ordered bins instead of best-fit threshhold | 
|  | * Eliminate block-local decls to simplify tracing and debugging. | 
|  | * Support another case of realloc via move into top | 
|  | * Fix error occuring when initial sbrk_base not word-aligned. | 
|  | * Rely on page size for units instead of SBRK_UNIT to | 
|  | avoid surprises about sbrk alignment conventions. | 
|  | * Add mallinfo, mallopt. Thanks to Raymond Nijssen | 
|  | (raymond@es.ele.tue.nl) for the suggestion. | 
|  | * Add `pad' argument to malloc_trim and top_pad mallopt parameter. | 
|  | * More precautions for cases where other routines call sbrk, | 
|  | courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). | 
|  | * Added macros etc., allowing use in linux libc from | 
|  | H.J. Lu (hjl@gnu.ai.mit.edu) | 
|  | * Inverted this history list | 
|  |  | 
|  | V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee) | 
|  | * Re-tuned and fixed to behave more nicely with V2.6.0 changes. | 
|  | * Removed all preallocation code since under current scheme | 
|  | the work required to undo bad preallocations exceeds | 
|  | the work saved in good cases for most test programs. | 
|  | * No longer use return list or unconsolidated bins since | 
|  | no scheme using them consistently outperforms those that don't | 
|  | given above changes. | 
|  | * Use best fit for very large chunks to prevent some worst-cases. | 
|  | * Added some support for debugging | 
|  |  | 
|  | V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee) | 
|  | * Removed footers when chunks are in use. Thanks to | 
|  | Paul Wilson (wilson@cs.texas.edu) for the suggestion. | 
|  |  | 
|  | V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee) | 
|  | * Added malloc_trim, with help from Wolfram Gloger | 
|  | (wmglo@Dent.MED.Uni-Muenchen.DE). | 
|  |  | 
|  | V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g) | 
|  |  | 
|  | V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g) | 
|  | * realloc: try to expand in both directions | 
|  | * malloc: swap order of clean-bin strategy; | 
|  | * realloc: only conditionally expand backwards | 
|  | * Try not to scavenge used bins | 
|  | * Use bin counts as a guide to preallocation | 
|  | * Occasionally bin return list chunks in first scan | 
|  | * Add a few optimizations from colin@nyx10.cs.du.edu | 
|  |  | 
|  | V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g) | 
|  | * faster bin computation & slightly different binning | 
|  | * merged all consolidations to one part of malloc proper | 
|  | (eliminating old malloc_find_space & malloc_clean_bin) | 
|  | * Scan 2 returns chunks (not just 1) | 
|  | * Propagate failure in realloc if malloc returns 0 | 
|  | * Add stuff to allow compilation on non-ANSI compilers | 
|  | from kpv@research.att.com | 
|  |  | 
|  | V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu) | 
|  | * removed potential for odd address access in prev_chunk | 
|  | * removed dependency on getpagesize.h | 
|  | * misc cosmetics and a bit more internal documentation | 
|  | * anticosmetics: mangled names in macros to evade debugger strangeness | 
|  | * tested on sparc, hp-700, dec-mips, rs6000 | 
|  | with gcc & native cc (hp, dec only) allowing | 
|  | Detlefs & Zorn comparison study (in SIGPLAN Notices.) | 
|  |  | 
|  | Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu) | 
|  | * Based loosely on libg++-1.2X malloc. (It retains some of the overall | 
|  | structure of old version,  but most details differ.) | 
|  |  | 
|  | */ | 
|  |  | 
|  |  |