| /* |
| * Copyright 2020 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style |
| * license that can be found in the LICENSE file or at |
| * https://developers.google.com/open-source/licenses/bsd |
| */ |
| |
| #include "writer.h" |
| |
| #include "system.h" |
| |
| #include "block.h" |
| #include "constants.h" |
| #include "record.h" |
| #include "tree.h" |
| #include "reftable-error.h" |
| |
| /* finishes a block, and writes it to storage */ |
| static int writer_flush_block(struct reftable_writer *w); |
| |
| /* deallocates memory related to the index */ |
| static void writer_clear_index(struct reftable_writer *w); |
| |
| /* finishes writing a 'r' (refs) or 'g' (reflogs) section */ |
| static int writer_finish_public_section(struct reftable_writer *w); |
| |
| static struct reftable_block_stats * |
| writer_reftable_block_stats(struct reftable_writer *w, uint8_t typ) |
| { |
| switch (typ) { |
| case 'r': |
| return &w->stats.ref_stats; |
| case 'o': |
| return &w->stats.obj_stats; |
| case 'i': |
| return &w->stats.idx_stats; |
| case 'g': |
| return &w->stats.log_stats; |
| } |
| abort(); |
| return NULL; |
| } |
| |
| /* write data, queuing the padding for the next write. Returns negative for |
| * error. */ |
| static int padded_write(struct reftable_writer *w, uint8_t *data, size_t len, |
| int padding) |
| { |
| int n = 0; |
| if (w->pending_padding > 0) { |
| uint8_t *zeroed; |
| int n; |
| |
| zeroed = reftable_calloc(w->pending_padding, sizeof(*zeroed)); |
| if (!zeroed) |
| return -1; |
| |
| n = w->write(w->write_arg, zeroed, w->pending_padding); |
| if (n < 0) |
| return n; |
| |
| w->pending_padding = 0; |
| reftable_free(zeroed); |
| } |
| |
| w->pending_padding = padding; |
| n = w->write(w->write_arg, data, len); |
| if (n < 0) |
| return n; |
| n += padding; |
| return 0; |
| } |
| |
| static void options_set_defaults(struct reftable_write_options *opts) |
| { |
| if (opts->restart_interval == 0) { |
| opts->restart_interval = 16; |
| } |
| |
| if (opts->hash_id == 0) { |
| opts->hash_id = REFTABLE_HASH_SHA1; |
| } |
| if (opts->block_size == 0) { |
| opts->block_size = DEFAULT_BLOCK_SIZE; |
| } |
| } |
| |
| static int writer_version(struct reftable_writer *w) |
| { |
| return (w->opts.hash_id == 0 || w->opts.hash_id == REFTABLE_HASH_SHA1) ? |
| 1 : |
| 2; |
| } |
| |
| static int writer_write_header(struct reftable_writer *w, uint8_t *dest) |
| { |
| memcpy(dest, "REFT", 4); |
| |
| dest[4] = writer_version(w); |
| |
| reftable_put_be24(dest + 5, w->opts.block_size); |
| reftable_put_be64(dest + 8, w->min_update_index); |
| reftable_put_be64(dest + 16, w->max_update_index); |
| if (writer_version(w) == 2) { |
| uint32_t hash_id; |
| |
| switch (w->opts.hash_id) { |
| case REFTABLE_HASH_SHA1: |
| hash_id = REFTABLE_FORMAT_ID_SHA1; |
| break; |
| case REFTABLE_HASH_SHA256: |
| hash_id = REFTABLE_FORMAT_ID_SHA256; |
| break; |
| default: |
| return -1; |
| } |
| |
| reftable_put_be32(dest + 24, hash_id); |
| } |
| |
| return header_size(writer_version(w)); |
| } |
| |
| static int writer_reinit_block_writer(struct reftable_writer *w, uint8_t typ) |
| { |
| int block_start = 0, ret; |
| |
| if (w->next == 0) |
| block_start = header_size(writer_version(w)); |
| |
| reftable_buf_reset(&w->last_key); |
| ret = block_writer_init(&w->block_writer_data, typ, w->block, |
| w->opts.block_size, block_start, |
| hash_size(w->opts.hash_id)); |
| if (ret < 0) |
| return ret; |
| |
| w->block_writer = &w->block_writer_data; |
| w->block_writer->restart_interval = w->opts.restart_interval; |
| |
| return 0; |
| } |
| |
| int reftable_writer_new(struct reftable_writer **out, |
| ssize_t (*writer_func)(void *, const void *, size_t), |
| int (*flush_func)(void *), |
| void *writer_arg, const struct reftable_write_options *_opts) |
| { |
| struct reftable_write_options opts = {0}; |
| struct reftable_writer *wp; |
| |
| wp = reftable_calloc(1, sizeof(*wp)); |
| if (!wp) |
| return REFTABLE_OUT_OF_MEMORY_ERROR; |
| |
| if (_opts) |
| opts = *_opts; |
| options_set_defaults(&opts); |
| if (opts.block_size >= (1 << 24)) |
| return REFTABLE_API_ERROR; |
| |
| reftable_buf_init(&wp->block_writer_data.last_key); |
| reftable_buf_init(&wp->last_key); |
| reftable_buf_init(&wp->scratch); |
| REFTABLE_CALLOC_ARRAY(wp->block, opts.block_size); |
| if (!wp->block) { |
| reftable_free(wp); |
| return REFTABLE_OUT_OF_MEMORY_ERROR; |
| } |
| wp->write = writer_func; |
| wp->write_arg = writer_arg; |
| wp->opts = opts; |
| wp->flush = flush_func; |
| writer_reinit_block_writer(wp, REFTABLE_BLOCK_TYPE_REF); |
| |
| *out = wp; |
| |
| return 0; |
| } |
| |
| int reftable_writer_set_limits(struct reftable_writer *w, uint64_t min, |
| uint64_t max) |
| { |
| /* |
| * Set the min/max update index limits for the reftable writer. |
| * This must be called before adding any records, since: |
| * - The 'next' field gets set after writing the first block. |
| * - The 'last_key' field updates with each new record (but resets |
| * after sections). |
| * Returns REFTABLE_API_ERROR if called after writing has begun. |
| */ |
| if (w->next || w->last_key.len) |
| return REFTABLE_API_ERROR; |
| |
| w->min_update_index = min; |
| w->max_update_index = max; |
| |
| return 0; |
| } |
| |
| static void writer_release(struct reftable_writer *w) |
| { |
| if (w) { |
| reftable_free(w->block); |
| w->block = NULL; |
| block_writer_release(&w->block_writer_data); |
| w->block_writer = NULL; |
| writer_clear_index(w); |
| reftable_buf_release(&w->last_key); |
| reftable_buf_release(&w->scratch); |
| } |
| } |
| |
| void reftable_writer_free(struct reftable_writer *w) |
| { |
| writer_release(w); |
| reftable_free(w); |
| } |
| |
| struct obj_index_tree_node { |
| struct reftable_buf hash; |
| uint64_t *offsets; |
| size_t offset_len; |
| size_t offset_cap; |
| }; |
| |
| #define OBJ_INDEX_TREE_NODE_INIT \ |
| { \ |
| .hash = REFTABLE_BUF_INIT \ |
| } |
| |
| static int obj_index_tree_node_compare(const void *a, const void *b) |
| { |
| return reftable_buf_cmp(&((const struct obj_index_tree_node *)a)->hash, |
| &((const struct obj_index_tree_node *)b)->hash); |
| } |
| |
| static int writer_index_hash(struct reftable_writer *w, struct reftable_buf *hash) |
| { |
| uint64_t off = w->next; |
| struct obj_index_tree_node want = { .hash = *hash }; |
| struct obj_index_tree_node *key; |
| struct tree_node *node; |
| |
| node = tree_search(w->obj_index_tree, &want, &obj_index_tree_node_compare); |
| if (!node) { |
| struct obj_index_tree_node empty = OBJ_INDEX_TREE_NODE_INIT; |
| int err; |
| |
| key = reftable_malloc(sizeof(*key)); |
| if (!key) |
| return REFTABLE_OUT_OF_MEMORY_ERROR; |
| |
| *key = empty; |
| |
| reftable_buf_reset(&key->hash); |
| err = reftable_buf_add(&key->hash, hash->buf, hash->len); |
| if (err < 0) |
| return err; |
| tree_insert(&w->obj_index_tree, key, |
| &obj_index_tree_node_compare); |
| } else { |
| key = node->key; |
| } |
| |
| if (key->offset_len > 0 && key->offsets[key->offset_len - 1] == off) |
| return 0; |
| |
| REFTABLE_ALLOC_GROW_OR_NULL(key->offsets, key->offset_len + 1, |
| key->offset_cap); |
| if (!key->offsets) |
| return REFTABLE_OUT_OF_MEMORY_ERROR; |
| key->offsets[key->offset_len++] = off; |
| |
| return 0; |
| } |
| |
| static int writer_add_record(struct reftable_writer *w, |
| struct reftable_record *rec) |
| { |
| int err; |
| |
| err = reftable_record_key(rec, &w->scratch); |
| if (err < 0) |
| goto done; |
| |
| if (reftable_buf_cmp(&w->last_key, &w->scratch) >= 0) { |
| err = REFTABLE_API_ERROR; |
| goto done; |
| } |
| |
| reftable_buf_reset(&w->last_key); |
| err = reftable_buf_add(&w->last_key, w->scratch.buf, w->scratch.len); |
| if (err < 0) |
| goto done; |
| |
| if (!w->block_writer) { |
| err = writer_reinit_block_writer(w, reftable_record_type(rec)); |
| if (err < 0) |
| goto done; |
| } |
| |
| if (block_writer_type(w->block_writer) != reftable_record_type(rec)) |
| return REFTABLE_API_ERROR; |
| |
| /* |
| * Try to add the record to the writer. If this succeeds then we're |
| * done. Otherwise the block writer may have hit the block size limit |
| * and needs to be flushed. |
| */ |
| err = block_writer_add(w->block_writer, rec); |
| if (err == 0) |
| goto done; |
| |
| if (err != REFTABLE_ENTRY_TOO_BIG_ERROR) |
| goto done; |
| /* |
| * The current block is full, so we need to flush and reinitialize the |
| * writer to start writing the next block. |
| */ |
| err = writer_flush_block(w); |
| if (err < 0) |
| goto done; |
| err = writer_reinit_block_writer(w, reftable_record_type(rec)); |
| if (err < 0) |
| goto done; |
| |
| /* |
| * Try to add the record to the writer again. If this still fails then |
| * the record does not fit into the block size. |
| */ |
| err = block_writer_add(w->block_writer, rec); |
| if (err) |
| goto done; |
| |
| done: |
| return err; |
| } |
| |
| int reftable_writer_add_ref(struct reftable_writer *w, |
| struct reftable_ref_record *ref) |
| { |
| struct reftable_record rec = { |
| .type = REFTABLE_BLOCK_TYPE_REF, |
| .u = { |
| .ref = *ref |
| }, |
| }; |
| int err; |
| |
| if (!ref->refname || |
| ref->update_index < w->min_update_index || |
| ref->update_index > w->max_update_index) |
| return REFTABLE_API_ERROR; |
| |
| rec.u.ref.update_index -= w->min_update_index; |
| |
| err = writer_add_record(w, &rec); |
| if (err < 0) |
| goto out; |
| |
| if (!w->opts.skip_index_objects && reftable_ref_record_val1(ref)) { |
| reftable_buf_reset(&w->scratch); |
| err = reftable_buf_add(&w->scratch, (char *)reftable_ref_record_val1(ref), |
| hash_size(w->opts.hash_id)); |
| if (err < 0) |
| goto out; |
| |
| err = writer_index_hash(w, &w->scratch); |
| if (err < 0) |
| goto out; |
| } |
| |
| if (!w->opts.skip_index_objects && reftable_ref_record_val2(ref)) { |
| reftable_buf_reset(&w->scratch); |
| err = reftable_buf_add(&w->scratch, reftable_ref_record_val2(ref), |
| hash_size(w->opts.hash_id)); |
| if (err < 0) |
| goto out; |
| |
| err = writer_index_hash(w, &w->scratch); |
| if (err < 0) |
| goto out; |
| } |
| |
| err = 0; |
| |
| out: |
| return err; |
| } |
| |
| int reftable_writer_add_refs(struct reftable_writer *w, |
| struct reftable_ref_record *refs, int n) |
| { |
| int err = 0; |
| int i = 0; |
| QSORT(refs, n, reftable_ref_record_compare_name); |
| for (i = 0; err == 0 && i < n; i++) { |
| err = reftable_writer_add_ref(w, &refs[i]); |
| } |
| return err; |
| } |
| |
| static int reftable_writer_add_log_verbatim(struct reftable_writer *w, |
| struct reftable_log_record *log) |
| { |
| struct reftable_record rec = { |
| .type = REFTABLE_BLOCK_TYPE_LOG, |
| .u = { |
| .log = *log, |
| }, |
| }; |
| if (w->block_writer && |
| block_writer_type(w->block_writer) == REFTABLE_BLOCK_TYPE_REF) { |
| int err = writer_finish_public_section(w); |
| if (err < 0) |
| return err; |
| } |
| |
| w->next -= w->pending_padding; |
| w->pending_padding = 0; |
| return writer_add_record(w, &rec); |
| } |
| |
| int reftable_writer_add_log(struct reftable_writer *w, |
| struct reftable_log_record *log) |
| { |
| char *input_log_message = NULL; |
| struct reftable_buf cleaned_message = REFTABLE_BUF_INIT; |
| int err = 0; |
| |
| if (log->value_type == REFTABLE_LOG_DELETION) |
| return reftable_writer_add_log_verbatim(w, log); |
| |
| /* |
| * Verify only the upper limit of the update_index. Each reflog entry |
| * is tied to a specific update_index. Entries in the reflog can be |
| * replaced by adding a new entry with the same update_index, |
| * effectively canceling the old one. |
| * |
| * Consequently, reflog updates may include update_index values lower |
| * than the writer's min_update_index. |
| */ |
| if (log->update_index > w->max_update_index) |
| return REFTABLE_API_ERROR; |
| |
| if (!log->refname) |
| return REFTABLE_API_ERROR; |
| |
| input_log_message = log->value.update.message; |
| if (!w->opts.exact_log_message && log->value.update.message) { |
| err = reftable_buf_addstr(&cleaned_message, log->value.update.message); |
| if (err < 0) |
| goto done; |
| |
| while (cleaned_message.len && |
| cleaned_message.buf[cleaned_message.len - 1] == '\n') { |
| err = reftable_buf_setlen(&cleaned_message, |
| cleaned_message.len - 1); |
| if (err < 0) |
| goto done; |
| } |
| if (strchr(cleaned_message.buf, '\n')) { |
| /* multiple lines not allowed. */ |
| err = REFTABLE_API_ERROR; |
| goto done; |
| } |
| |
| err = reftable_buf_addstr(&cleaned_message, "\n"); |
| if (err < 0) |
| goto done; |
| |
| log->value.update.message = cleaned_message.buf; |
| } |
| |
| err = reftable_writer_add_log_verbatim(w, log); |
| log->value.update.message = input_log_message; |
| done: |
| reftable_buf_release(&cleaned_message); |
| return err; |
| } |
| |
| int reftable_writer_add_logs(struct reftable_writer *w, |
| struct reftable_log_record *logs, int n) |
| { |
| int err = 0; |
| int i = 0; |
| QSORT(logs, n, reftable_log_record_compare_key); |
| |
| for (i = 0; err == 0 && i < n; i++) { |
| err = reftable_writer_add_log(w, &logs[i]); |
| } |
| return err; |
| } |
| |
| static int writer_finish_section(struct reftable_writer *w) |
| { |
| struct reftable_block_stats *bstats = NULL; |
| uint8_t typ = block_writer_type(w->block_writer); |
| uint64_t index_start = 0; |
| int max_level = 0; |
| size_t threshold = w->opts.unpadded ? 1 : 3; |
| int before_blocks = w->stats.idx_stats.blocks; |
| int err; |
| |
| err = writer_flush_block(w); |
| if (err < 0) |
| return err; |
| |
| /* |
| * When the section we are about to index has a lot of blocks then the |
| * index itself may span across multiple blocks, as well. This would |
| * require a linear scan over index blocks only to find the desired |
| * indexed block, which is inefficient. Instead, we write a multi-level |
| * index where index records of level N+1 will refer to index blocks of |
| * level N. This isn't constant time, either, but at least logarithmic. |
| * |
| * This loop handles writing this multi-level index. Note that we write |
| * the lowest-level index pointing to the indexed blocks first. We then |
| * continue writing additional index levels until the current level has |
| * less blocks than the threshold so that the highest level will be at |
| * the end of the index section. |
| * |
| * Readers are thus required to start reading the index section from |
| * its end, which is why we set `index_start` to the beginning of the |
| * last index section. |
| */ |
| while (w->index_len > threshold) { |
| struct reftable_index_record *idx = NULL; |
| size_t i, idx_len; |
| |
| max_level++; |
| index_start = w->next; |
| err = writer_reinit_block_writer(w, REFTABLE_BLOCK_TYPE_INDEX); |
| if (err < 0) |
| return err; |
| |
| idx = w->index; |
| idx_len = w->index_len; |
| |
| w->index = NULL; |
| w->index_len = 0; |
| w->index_cap = 0; |
| for (i = 0; i < idx_len; i++) { |
| struct reftable_record rec = { |
| .type = REFTABLE_BLOCK_TYPE_INDEX, |
| .u = { |
| .idx = idx[i], |
| }, |
| }; |
| |
| err = writer_add_record(w, &rec); |
| if (err < 0) |
| return err; |
| } |
| |
| err = writer_flush_block(w); |
| if (err < 0) |
| return err; |
| |
| for (i = 0; i < idx_len; i++) |
| reftable_buf_release(&idx[i].last_key); |
| reftable_free(idx); |
| } |
| |
| /* |
| * The index may still contain a number of index blocks lower than the |
| * threshold. Clear it so that these entries don't leak into the next |
| * index section. |
| */ |
| writer_clear_index(w); |
| |
| bstats = writer_reftable_block_stats(w, typ); |
| bstats->index_blocks = w->stats.idx_stats.blocks - before_blocks; |
| bstats->index_offset = index_start; |
| bstats->max_index_level = max_level; |
| |
| /* Reinit lastKey, as the next section can start with any key. */ |
| reftable_buf_reset(&w->last_key); |
| |
| return 0; |
| } |
| |
| struct common_prefix_arg { |
| struct reftable_buf *last; |
| size_t max; |
| }; |
| |
| static void update_common(void *void_arg, void *key) |
| { |
| struct common_prefix_arg *arg = void_arg; |
| struct obj_index_tree_node *entry = key; |
| if (arg->last) { |
| size_t n = common_prefix_size(&entry->hash, arg->last); |
| if (n > arg->max) |
| arg->max = n; |
| } |
| arg->last = &entry->hash; |
| } |
| |
| struct write_record_arg { |
| struct reftable_writer *w; |
| int err; |
| }; |
| |
| static void write_object_record(void *void_arg, void *key) |
| { |
| struct write_record_arg *arg = void_arg; |
| struct obj_index_tree_node *entry = key; |
| struct reftable_record |
| rec = { .type = REFTABLE_BLOCK_TYPE_OBJ, |
| .u.obj = { |
| .hash_prefix = (uint8_t *)entry->hash.buf, |
| .hash_prefix_len = arg->w->stats.object_id_len, |
| .offsets = entry->offsets, |
| .offset_len = entry->offset_len, |
| } }; |
| if (arg->err < 0) |
| goto done; |
| |
| /* |
| * Try to add the record to the writer. If this succeeds then we're |
| * done. Otherwise the block writer may have hit the block size limit |
| * and needs to be flushed. |
| */ |
| arg->err = block_writer_add(arg->w->block_writer, &rec); |
| if (arg->err == 0) |
| goto done; |
| |
| if (arg->err != REFTABLE_ENTRY_TOO_BIG_ERROR) |
| goto done; |
| |
| /* |
| * The current block is full, so we need to flush and reinitialize the |
| * writer to start writing the next block. |
| */ |
| arg->err = writer_flush_block(arg->w); |
| if (arg->err < 0) |
| goto done; |
| |
| arg->err = writer_reinit_block_writer(arg->w, REFTABLE_BLOCK_TYPE_OBJ); |
| if (arg->err < 0) |
| goto done; |
| |
| /* |
| * If this still fails then we may need to reset record's offset |
| * length to reduce the data size to be written. |
| */ |
| arg->err = block_writer_add(arg->w->block_writer, &rec); |
| if (arg->err == 0) |
| goto done; |
| |
| if (arg->err != REFTABLE_ENTRY_TOO_BIG_ERROR) |
| goto done; |
| |
| rec.u.obj.offset_len = 0; |
| arg->err = block_writer_add(arg->w->block_writer, &rec); |
| |
| /* Should be able to write into a fresh block. */ |
| assert(arg->err == 0); |
| |
| done:; |
| } |
| |
| static void object_record_free(void *void_arg REFTABLE_UNUSED, void *key) |
| { |
| struct obj_index_tree_node *entry = key; |
| |
| REFTABLE_FREE_AND_NULL(entry->offsets); |
| reftable_buf_release(&entry->hash); |
| reftable_free(entry); |
| } |
| |
| static int writer_dump_object_index(struct reftable_writer *w) |
| { |
| struct write_record_arg closure = { .w = w }; |
| struct common_prefix_arg common = { |
| .max = 1, /* obj_id_len should be >= 2. */ |
| }; |
| int err; |
| |
| if (w->obj_index_tree) |
| infix_walk(w->obj_index_tree, &update_common, &common); |
| w->stats.object_id_len = common.max + 1; |
| |
| err = writer_reinit_block_writer(w, REFTABLE_BLOCK_TYPE_OBJ); |
| if (err < 0) |
| return err; |
| |
| if (w->obj_index_tree) |
| infix_walk(w->obj_index_tree, &write_object_record, &closure); |
| |
| if (closure.err < 0) |
| return closure.err; |
| return writer_finish_section(w); |
| } |
| |
| static int writer_finish_public_section(struct reftable_writer *w) |
| { |
| uint8_t typ = 0; |
| int err = 0; |
| |
| if (!w->block_writer) |
| return 0; |
| |
| typ = block_writer_type(w->block_writer); |
| err = writer_finish_section(w); |
| if (err < 0) |
| return err; |
| if (typ == REFTABLE_BLOCK_TYPE_REF && !w->opts.skip_index_objects && |
| w->stats.ref_stats.index_blocks > 0) { |
| err = writer_dump_object_index(w); |
| if (err < 0) |
| return err; |
| } |
| |
| if (w->obj_index_tree) { |
| infix_walk(w->obj_index_tree, &object_record_free, NULL); |
| tree_free(w->obj_index_tree); |
| w->obj_index_tree = NULL; |
| } |
| |
| w->block_writer = NULL; |
| return 0; |
| } |
| |
| int reftable_writer_close(struct reftable_writer *w) |
| { |
| uint8_t footer[72]; |
| uint8_t *p = footer; |
| int err = writer_finish_public_section(w); |
| int empty_table = w->next == 0; |
| if (err != 0) |
| goto done; |
| w->pending_padding = 0; |
| if (empty_table) { |
| /* Empty tables need a header anyway. */ |
| uint8_t header[28]; |
| int n = writer_write_header(w, header); |
| err = padded_write(w, header, n, 0); |
| if (err < 0) |
| goto done; |
| } |
| |
| p += writer_write_header(w, footer); |
| reftable_put_be64(p, w->stats.ref_stats.index_offset); |
| p += 8; |
| reftable_put_be64(p, (w->stats.obj_stats.offset) << 5 | w->stats.object_id_len); |
| p += 8; |
| reftable_put_be64(p, w->stats.obj_stats.index_offset); |
| p += 8; |
| |
| reftable_put_be64(p, w->stats.log_stats.offset); |
| p += 8; |
| reftable_put_be64(p, w->stats.log_stats.index_offset); |
| p += 8; |
| |
| reftable_put_be32(p, crc32(0, footer, p - footer)); |
| p += 4; |
| |
| err = w->flush(w->write_arg); |
| if (err < 0) { |
| err = REFTABLE_IO_ERROR; |
| goto done; |
| } |
| |
| err = padded_write(w, footer, footer_size(writer_version(w)), 0); |
| if (err < 0) |
| goto done; |
| |
| if (empty_table) { |
| err = REFTABLE_EMPTY_TABLE_ERROR; |
| goto done; |
| } |
| |
| done: |
| writer_release(w); |
| return err; |
| } |
| |
| static void writer_clear_index(struct reftable_writer *w) |
| { |
| for (size_t i = 0; w->index && i < w->index_len; i++) |
| reftable_buf_release(&w->index[i].last_key); |
| REFTABLE_FREE_AND_NULL(w->index); |
| w->index_len = 0; |
| w->index_cap = 0; |
| } |
| |
| static int writer_flush_nonempty_block(struct reftable_writer *w) |
| { |
| struct reftable_index_record index_record = { |
| .last_key = REFTABLE_BUF_INIT, |
| }; |
| uint8_t typ = block_writer_type(w->block_writer); |
| struct reftable_block_stats *bstats; |
| int raw_bytes, padding = 0, err; |
| uint64_t block_typ_off; |
| |
| /* |
| * Finish the current block. This will cause the block writer to emit |
| * restart points and potentially compress records in case we are |
| * writing a log block. |
| * |
| * Note that this is still happening in memory. |
| */ |
| raw_bytes = block_writer_finish(w->block_writer); |
| if (raw_bytes < 0) |
| return raw_bytes; |
| |
| /* |
| * By default, all records except for log records are padded to the |
| * block size. |
| */ |
| if (!w->opts.unpadded && typ != REFTABLE_BLOCK_TYPE_LOG) |
| padding = w->opts.block_size - raw_bytes; |
| |
| bstats = writer_reftable_block_stats(w, typ); |
| block_typ_off = (bstats->blocks == 0) ? w->next : 0; |
| if (block_typ_off > 0) |
| bstats->offset = block_typ_off; |
| bstats->entries += w->block_writer->entries; |
| bstats->restarts += w->block_writer->restart_len; |
| bstats->blocks++; |
| w->stats.blocks++; |
| |
| /* |
| * If this is the first block we're writing to the table then we need |
| * to also write the reftable header. |
| */ |
| if (!w->next) |
| writer_write_header(w, w->block); |
| |
| err = padded_write(w, w->block, raw_bytes, padding); |
| if (err < 0) |
| return err; |
| |
| /* |
| * Add an index record for every block that we're writing. If we end up |
| * having more than a threshold of index records we will end up writing |
| * an index section in `writer_finish_section()`. Each index record |
| * contains the last record key of the block it is indexing as well as |
| * the offset of that block. |
| * |
| * Note that this also applies when flushing index blocks, in which |
| * case we will end up with a multi-level index. |
| */ |
| REFTABLE_ALLOC_GROW_OR_NULL(w->index, w->index_len + 1, w->index_cap); |
| if (!w->index) |
| return REFTABLE_OUT_OF_MEMORY_ERROR; |
| |
| index_record.offset = w->next; |
| reftable_buf_reset(&index_record.last_key); |
| err = reftable_buf_add(&index_record.last_key, w->block_writer->last_key.buf, |
| w->block_writer->last_key.len); |
| if (err < 0) |
| return err; |
| w->index[w->index_len] = index_record; |
| w->index_len++; |
| |
| w->next += padding + raw_bytes; |
| w->block_writer = NULL; |
| |
| return 0; |
| } |
| |
| static int writer_flush_block(struct reftable_writer *w) |
| { |
| if (!w->block_writer) |
| return 0; |
| if (w->block_writer->entries == 0) |
| return 0; |
| return writer_flush_nonempty_block(w); |
| } |
| |
| const struct reftable_stats *reftable_writer_stats(struct reftable_writer *w) |
| { |
| return &w->stats; |
| } |