| /* |
| * Based on: Jonker, R., & Volgenant, A. (1987). <i>A shortest augmenting path |
| * algorithm for dense and sparse linear assignment problems</i>. Computing, |
| * 38(4), 325-340. |
| */ |
| #include "cache.h" |
| #include "linear-assignment.h" |
| |
| #define COST(column, row) cost[(column) + column_count * (row)] |
| |
| /* |
| * The parameter `cost` is the cost matrix: the cost to assign column j to row |
| * i is `cost[j + column_count * i]. |
| */ |
| void compute_assignment(int column_count, int row_count, int *cost, |
| int *column2row, int *row2column) |
| { |
| int *v, *d; |
| int *free_row, free_count = 0, saved_free_count, *pred, *col; |
| int i, j, phase; |
| |
| if (column_count < 2) { |
| memset(column2row, 0, sizeof(int) * column_count); |
| memset(row2column, 0, sizeof(int) * row_count); |
| return; |
| } |
| |
| memset(column2row, -1, sizeof(int) * column_count); |
| memset(row2column, -1, sizeof(int) * row_count); |
| ALLOC_ARRAY(v, column_count); |
| |
| /* column reduction */ |
| for (j = column_count - 1; j >= 0; j--) { |
| int i1 = 0; |
| |
| for (i = 1; i < row_count; i++) |
| if (COST(j, i1) > COST(j, i)) |
| i1 = i; |
| v[j] = COST(j, i1); |
| if (row2column[i1] == -1) { |
| /* row i1 unassigned */ |
| row2column[i1] = j; |
| column2row[j] = i1; |
| } else { |
| if (row2column[i1] >= 0) |
| row2column[i1] = -2 - row2column[i1]; |
| column2row[j] = -1; |
| } |
| } |
| |
| /* reduction transfer */ |
| ALLOC_ARRAY(free_row, row_count); |
| for (i = 0; i < row_count; i++) { |
| int j1 = row2column[i]; |
| if (j1 == -1) |
| free_row[free_count++] = i; |
| else if (j1 < -1) |
| row2column[i] = -2 - j1; |
| else { |
| int min = COST(!j1, i) - v[!j1]; |
| for (j = 1; j < column_count; j++) |
| if (j != j1 && min > COST(j, i) - v[j]) |
| min = COST(j, i) - v[j]; |
| v[j1] -= min; |
| } |
| } |
| |
| if (free_count == |
| (column_count < row_count ? row_count - column_count : 0)) { |
| free(v); |
| free(free_row); |
| return; |
| } |
| |
| /* augmenting row reduction */ |
| for (phase = 0; phase < 2; phase++) { |
| int k = 0; |
| |
| saved_free_count = free_count; |
| free_count = 0; |
| while (k < saved_free_count) { |
| int u1, u2; |
| int j1 = 0, j2, i0; |
| |
| i = free_row[k++]; |
| u1 = COST(j1, i) - v[j1]; |
| j2 = -1; |
| u2 = INT_MAX; |
| for (j = 1; j < column_count; j++) { |
| int c = COST(j, i) - v[j]; |
| if (u2 > c) { |
| if (u1 < c) { |
| u2 = c; |
| j2 = j; |
| } else { |
| u2 = u1; |
| u1 = c; |
| j2 = j1; |
| j1 = j; |
| } |
| } |
| } |
| if (j2 < 0) { |
| j2 = j1; |
| u2 = u1; |
| } |
| |
| i0 = column2row[j1]; |
| if (u1 < u2) |
| v[j1] -= u2 - u1; |
| else if (i0 >= 0) { |
| j1 = j2; |
| i0 = column2row[j1]; |
| } |
| |
| if (i0 >= 0) { |
| if (u1 < u2) |
| free_row[--k] = i0; |
| else |
| free_row[free_count++] = i0; |
| } |
| row2column[i] = j1; |
| column2row[j1] = i; |
| } |
| } |
| |
| /* augmentation */ |
| saved_free_count = free_count; |
| ALLOC_ARRAY(d, column_count); |
| ALLOC_ARRAY(pred, column_count); |
| ALLOC_ARRAY(col, column_count); |
| for (free_count = 0; free_count < saved_free_count; free_count++) { |
| int i1 = free_row[free_count], low = 0, up = 0, last, k; |
| int min, c, u1; |
| |
| for (j = 0; j < column_count; j++) { |
| d[j] = COST(j, i1) - v[j]; |
| pred[j] = i1; |
| col[j] = j; |
| } |
| |
| j = -1; |
| do { |
| last = low; |
| min = d[col[up++]]; |
| for (k = up; k < column_count; k++) { |
| j = col[k]; |
| c = d[j]; |
| if (c <= min) { |
| if (c < min) { |
| up = low; |
| min = c; |
| } |
| col[k] = col[up]; |
| col[up++] = j; |
| } |
| } |
| for (k = low; k < up; k++) |
| if (column2row[col[k]] == -1) |
| goto update; |
| |
| /* scan a row */ |
| do { |
| int j1 = col[low++]; |
| |
| i = column2row[j1]; |
| u1 = COST(j1, i) - v[j1] - min; |
| for (k = up; k < column_count; k++) { |
| j = col[k]; |
| c = COST(j, i) - v[j] - u1; |
| if (c < d[j]) { |
| d[j] = c; |
| pred[j] = i; |
| if (c == min) { |
| if (column2row[j] == -1) |
| goto update; |
| col[k] = col[up]; |
| col[up++] = j; |
| } |
| } |
| } |
| } while (low != up); |
| } while (low == up); |
| |
| update: |
| /* updating of the column pieces */ |
| for (k = 0; k < last; k++) { |
| int j1 = col[k]; |
| v[j1] += d[j1] - min; |
| } |
| |
| /* augmentation */ |
| do { |
| if (j < 0) |
| BUG("negative j: %d", j); |
| i = pred[j]; |
| column2row[j] = i; |
| SWAP(j, row2column[i]); |
| } while (i1 != i); |
| } |
| |
| free(col); |
| free(pred); |
| free(d); |
| free(v); |
| free(free_row); |
| } |