|  | #include "cache.h" | 
|  | #include "notes.h" | 
|  | #include "blob.h" | 
|  | #include "tree.h" | 
|  | #include "utf8.h" | 
|  | #include "strbuf.h" | 
|  | #include "tree-walk.h" | 
|  | #include "string-list.h" | 
|  | #include "refs.h" | 
|  |  | 
|  | /* | 
|  | * Use a non-balancing simple 16-tree structure with struct int_node as | 
|  | * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a | 
|  | * 16-array of pointers to its children. | 
|  | * The bottom 2 bits of each pointer is used to identify the pointer type | 
|  | * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL) | 
|  | * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node * | 
|  | * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node * | 
|  | * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node * | 
|  | * | 
|  | * The root node is a statically allocated struct int_node. | 
|  | */ | 
|  | struct int_node { | 
|  | void *a[16]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Leaf nodes come in two variants, note entries and subtree entries, | 
|  | * distinguished by the LSb of the leaf node pointer (see above). | 
|  | * As a note entry, the key is the SHA1 of the referenced object, and the | 
|  | * value is the SHA1 of the note object. | 
|  | * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the | 
|  | * referenced object, using the last byte of the key to store the length of | 
|  | * the prefix. The value is the SHA1 of the tree object containing the notes | 
|  | * subtree. | 
|  | */ | 
|  | struct leaf_node { | 
|  | unsigned char key_sha1[20]; | 
|  | unsigned char val_sha1[20]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A notes tree may contain entries that are not notes, and that do not follow | 
|  | * the naming conventions of notes. There are typically none/few of these, but | 
|  | * we still need to keep track of them. Keep a simple linked list sorted alpha- | 
|  | * betically on the non-note path. The list is populated when parsing tree | 
|  | * objects in load_subtree(), and the non-notes are correctly written back into | 
|  | * the tree objects produced by write_notes_tree(). | 
|  | */ | 
|  | struct non_note { | 
|  | struct non_note *next; /* grounded (last->next == NULL) */ | 
|  | char *path; | 
|  | unsigned int mode; | 
|  | unsigned char sha1[20]; | 
|  | }; | 
|  |  | 
|  | #define PTR_TYPE_NULL     0 | 
|  | #define PTR_TYPE_INTERNAL 1 | 
|  | #define PTR_TYPE_NOTE     2 | 
|  | #define PTR_TYPE_SUBTREE  3 | 
|  |  | 
|  | #define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3) | 
|  | #define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3)) | 
|  | #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type))) | 
|  |  | 
|  | #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f) | 
|  |  | 
|  | #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \ | 
|  | (memcmp(key_sha1, subtree_sha1, subtree_sha1[19])) | 
|  |  | 
|  | struct notes_tree default_notes_tree; | 
|  |  | 
|  | static struct string_list display_notes_refs; | 
|  | static struct notes_tree **display_notes_trees; | 
|  |  | 
|  | static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, | 
|  | struct int_node *node, unsigned int n); | 
|  |  | 
|  | /* | 
|  | * Search the tree until the appropriate location for the given key is found: | 
|  | * 1. Start at the root node, with n = 0 | 
|  | * 2. If a[0] at the current level is a matching subtree entry, unpack that | 
|  | *    subtree entry and remove it; restart search at the current level. | 
|  | * 3. Use the nth nibble of the key as an index into a: | 
|  | *    - If a[n] is an int_node, recurse from #2 into that node and increment n | 
|  | *    - If a matching subtree entry, unpack that subtree entry (and remove it); | 
|  | *      restart search at the current level. | 
|  | *    - Otherwise, we have found one of the following: | 
|  | *      - a subtree entry which does not match the key | 
|  | *      - a note entry which may or may not match the key | 
|  | *      - an unused leaf node (NULL) | 
|  | *      In any case, set *tree and *n, and return pointer to the tree location. | 
|  | */ | 
|  | static void **note_tree_search(struct notes_tree *t, struct int_node **tree, | 
|  | unsigned char *n, const unsigned char *key_sha1) | 
|  | { | 
|  | struct leaf_node *l; | 
|  | unsigned char i; | 
|  | void *p = (*tree)->a[0]; | 
|  |  | 
|  | if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) { | 
|  | l = (struct leaf_node *) CLR_PTR_TYPE(p); | 
|  | if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { | 
|  | /* unpack tree and resume search */ | 
|  | (*tree)->a[0] = NULL; | 
|  | load_subtree(t, l, *tree, *n); | 
|  | free(l); | 
|  | return note_tree_search(t, tree, n, key_sha1); | 
|  | } | 
|  | } | 
|  |  | 
|  | i = GET_NIBBLE(*n, key_sha1); | 
|  | p = (*tree)->a[i]; | 
|  | switch (GET_PTR_TYPE(p)) { | 
|  | case PTR_TYPE_INTERNAL: | 
|  | *tree = CLR_PTR_TYPE(p); | 
|  | (*n)++; | 
|  | return note_tree_search(t, tree, n, key_sha1); | 
|  | case PTR_TYPE_SUBTREE: | 
|  | l = (struct leaf_node *) CLR_PTR_TYPE(p); | 
|  | if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { | 
|  | /* unpack tree and resume search */ | 
|  | (*tree)->a[i] = NULL; | 
|  | load_subtree(t, l, *tree, *n); | 
|  | free(l); | 
|  | return note_tree_search(t, tree, n, key_sha1); | 
|  | } | 
|  | /* fall through */ | 
|  | default: | 
|  | return &((*tree)->a[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To find a leaf_node: | 
|  | * Search to the tree location appropriate for the given key: | 
|  | * If a note entry with matching key, return the note entry, else return NULL. | 
|  | */ | 
|  | static struct leaf_node *note_tree_find(struct notes_tree *t, | 
|  | struct int_node *tree, unsigned char n, | 
|  | const unsigned char *key_sha1) | 
|  | { | 
|  | void **p = note_tree_search(t, &tree, &n, key_sha1); | 
|  | if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) { | 
|  | struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p); | 
|  | if (!hashcmp(key_sha1, l->key_sha1)) | 
|  | return l; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How to consolidate an int_node: | 
|  | * If there are > 1 non-NULL entries, give up and return non-zero. | 
|  | * Otherwise replace the int_node at the given index in the given parent node | 
|  | * with the only entry (or a NULL entry if no entries) from the given tree, | 
|  | * and return 0. | 
|  | */ | 
|  | static int note_tree_consolidate(struct int_node *tree, | 
|  | struct int_node *parent, unsigned char index) | 
|  | { | 
|  | unsigned int i; | 
|  | void *p = NULL; | 
|  |  | 
|  | assert(tree && parent); | 
|  | assert(CLR_PTR_TYPE(parent->a[index]) == tree); | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) { | 
|  | if (p) /* more than one entry */ | 
|  | return -2; | 
|  | p = tree->a[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* replace tree with p in parent[index] */ | 
|  | parent->a[index] = p; | 
|  | free(tree); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To remove a leaf_node: | 
|  | * Search to the tree location appropriate for the given leaf_node's key: | 
|  | * - If location does not hold a matching entry, abort and do nothing. | 
|  | * - Copy the matching entry's value into the given entry. | 
|  | * - Replace the matching leaf_node with a NULL entry (and free the leaf_node). | 
|  | * - Consolidate int_nodes repeatedly, while walking up the tree towards root. | 
|  | */ | 
|  | static void note_tree_remove(struct notes_tree *t, | 
|  | struct int_node *tree, unsigned char n, | 
|  | struct leaf_node *entry) | 
|  | { | 
|  | struct leaf_node *l; | 
|  | struct int_node *parent_stack[20]; | 
|  | unsigned char i, j; | 
|  | void **p = note_tree_search(t, &tree, &n, entry->key_sha1); | 
|  |  | 
|  | assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ | 
|  | if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE) | 
|  | return; /* type mismatch, nothing to remove */ | 
|  | l = (struct leaf_node *) CLR_PTR_TYPE(*p); | 
|  | if (hashcmp(l->key_sha1, entry->key_sha1)) | 
|  | return; /* key mismatch, nothing to remove */ | 
|  |  | 
|  | /* we have found a matching entry */ | 
|  | hashcpy(entry->val_sha1, l->val_sha1); | 
|  | free(l); | 
|  | *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL); | 
|  |  | 
|  | /* consolidate this tree level, and parent levels, if possible */ | 
|  | if (!n) | 
|  | return; /* cannot consolidate top level */ | 
|  | /* first, build stack of ancestors between root and current node */ | 
|  | parent_stack[0] = t->root; | 
|  | for (i = 0; i < n; i++) { | 
|  | j = GET_NIBBLE(i, entry->key_sha1); | 
|  | parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]); | 
|  | } | 
|  | assert(i == n && parent_stack[i] == tree); | 
|  | /* next, unwind stack until note_tree_consolidate() is done */ | 
|  | while (i > 0 && | 
|  | !note_tree_consolidate(parent_stack[i], parent_stack[i - 1], | 
|  | GET_NIBBLE(i - 1, entry->key_sha1))) | 
|  | i--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To insert a leaf_node: | 
|  | * Search to the tree location appropriate for the given leaf_node's key: | 
|  | * - If location is unused (NULL), store the tweaked pointer directly there | 
|  | * - If location holds a note entry that matches the note-to-be-inserted, then | 
|  | *   combine the two notes (by calling the given combine_notes function). | 
|  | * - If location holds a note entry that matches the subtree-to-be-inserted, | 
|  | *   then unpack the subtree-to-be-inserted into the location. | 
|  | * - If location holds a matching subtree entry, unpack the subtree at that | 
|  | *   location, and restart the insert operation from that level. | 
|  | * - Else, create a new int_node, holding both the node-at-location and the | 
|  | *   node-to-be-inserted, and store the new int_node into the location. | 
|  | */ | 
|  | static int note_tree_insert(struct notes_tree *t, struct int_node *tree, | 
|  | unsigned char n, struct leaf_node *entry, unsigned char type, | 
|  | combine_notes_fn combine_notes) | 
|  | { | 
|  | struct int_node *new_node; | 
|  | struct leaf_node *l; | 
|  | void **p = note_tree_search(t, &tree, &n, entry->key_sha1); | 
|  | int ret = 0; | 
|  |  | 
|  | assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ | 
|  | l = (struct leaf_node *) CLR_PTR_TYPE(*p); | 
|  | switch (GET_PTR_TYPE(*p)) { | 
|  | case PTR_TYPE_NULL: | 
|  | assert(!*p); | 
|  | if (is_null_sha1(entry->val_sha1)) | 
|  | free(entry); | 
|  | else | 
|  | *p = SET_PTR_TYPE(entry, type); | 
|  | return 0; | 
|  | case PTR_TYPE_NOTE: | 
|  | switch (type) { | 
|  | case PTR_TYPE_NOTE: | 
|  | if (!hashcmp(l->key_sha1, entry->key_sha1)) { | 
|  | /* skip concatenation if l == entry */ | 
|  | if (!hashcmp(l->val_sha1, entry->val_sha1)) | 
|  | return 0; | 
|  |  | 
|  | ret = combine_notes(l->val_sha1, | 
|  | entry->val_sha1); | 
|  | if (!ret && is_null_sha1(l->val_sha1)) | 
|  | note_tree_remove(t, tree, n, entry); | 
|  | free(entry); | 
|  | return ret; | 
|  | } | 
|  | break; | 
|  | case PTR_TYPE_SUBTREE: | 
|  | if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1, | 
|  | entry->key_sha1)) { | 
|  | /* unpack 'entry' */ | 
|  | load_subtree(t, entry, tree, n); | 
|  | free(entry); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case PTR_TYPE_SUBTREE: | 
|  | if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) { | 
|  | /* unpack 'l' and restart insert */ | 
|  | *p = NULL; | 
|  | load_subtree(t, l, tree, n); | 
|  | free(l); | 
|  | return note_tree_insert(t, tree, n, entry, type, | 
|  | combine_notes); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* non-matching leaf_node */ | 
|  | assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE || | 
|  | GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE); | 
|  | if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */ | 
|  | free(entry); | 
|  | return 0; | 
|  | } | 
|  | new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1); | 
|  | ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p), | 
|  | combine_notes); | 
|  | if (ret) | 
|  | return ret; | 
|  | *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL); | 
|  | return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes); | 
|  | } | 
|  |  | 
|  | /* Free the entire notes data contained in the given tree */ | 
|  | static void note_tree_free(struct int_node *tree) | 
|  | { | 
|  | unsigned int i; | 
|  | for (i = 0; i < 16; i++) { | 
|  | void *p = tree->a[i]; | 
|  | switch (GET_PTR_TYPE(p)) { | 
|  | case PTR_TYPE_INTERNAL: | 
|  | note_tree_free(CLR_PTR_TYPE(p)); | 
|  | /* fall through */ | 
|  | case PTR_TYPE_NOTE: | 
|  | case PTR_TYPE_SUBTREE: | 
|  | free(CLR_PTR_TYPE(p)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a partial SHA1 hex string to the corresponding partial SHA1 value. | 
|  | * - hex      - Partial SHA1 segment in ASCII hex format | 
|  | * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40 | 
|  | * - sha1     - Partial SHA1 value is written here | 
|  | * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20 | 
|  | * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)). | 
|  | * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2). | 
|  | * Pads sha1 with NULs up to sha1_len (not included in returned length). | 
|  | */ | 
|  | static int get_sha1_hex_segment(const char *hex, unsigned int hex_len, | 
|  | unsigned char *sha1, unsigned int sha1_len) | 
|  | { | 
|  | unsigned int i, len = hex_len >> 1; | 
|  | if (hex_len % 2 != 0 || len > sha1_len) | 
|  | return -1; | 
|  | for (i = 0; i < len; i++) { | 
|  | unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]); | 
|  | if (val & ~0xff) | 
|  | return -1; | 
|  | *sha1++ = val; | 
|  | hex += 2; | 
|  | } | 
|  | for (; i < sha1_len; i++) | 
|  | *sha1++ = 0; | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static int non_note_cmp(const struct non_note *a, const struct non_note *b) | 
|  | { | 
|  | return strcmp(a->path, b->path); | 
|  | } | 
|  |  | 
|  | static void add_non_note(struct notes_tree *t, const char *path, | 
|  | unsigned int mode, const unsigned char *sha1) | 
|  | { | 
|  | struct non_note *p = t->prev_non_note, *n; | 
|  | n = (struct non_note *) xmalloc(sizeof(struct non_note)); | 
|  | n->next = NULL; | 
|  | n->path = xstrdup(path); | 
|  | n->mode = mode; | 
|  | hashcpy(n->sha1, sha1); | 
|  | t->prev_non_note = n; | 
|  |  | 
|  | if (!t->first_non_note) { | 
|  | t->first_non_note = n; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (non_note_cmp(p, n) < 0) | 
|  | ; /* do nothing  */ | 
|  | else if (non_note_cmp(t->first_non_note, n) <= 0) | 
|  | p = t->first_non_note; | 
|  | else { | 
|  | /* n sorts before t->first_non_note */ | 
|  | n->next = t->first_non_note; | 
|  | t->first_non_note = n; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* n sorts equal or after p */ | 
|  | while (p->next && non_note_cmp(p->next, n) <= 0) | 
|  | p = p->next; | 
|  |  | 
|  | if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */ | 
|  | assert(strcmp(p->path, n->path) == 0); | 
|  | p->mode = n->mode; | 
|  | hashcpy(p->sha1, n->sha1); | 
|  | free(n); | 
|  | t->prev_non_note = p; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* n sorts between p and p->next */ | 
|  | n->next = p->next; | 
|  | p->next = n; | 
|  | } | 
|  |  | 
|  | static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, | 
|  | struct int_node *node, unsigned int n) | 
|  | { | 
|  | unsigned char object_sha1[20]; | 
|  | unsigned int prefix_len; | 
|  | void *buf; | 
|  | struct tree_desc desc; | 
|  | struct name_entry entry; | 
|  | int len, path_len; | 
|  | unsigned char type; | 
|  | struct leaf_node *l; | 
|  |  | 
|  | buf = fill_tree_descriptor(&desc, subtree->val_sha1); | 
|  | if (!buf) | 
|  | die("Could not read %s for notes-index", | 
|  | sha1_to_hex(subtree->val_sha1)); | 
|  |  | 
|  | prefix_len = subtree->key_sha1[19]; | 
|  | assert(prefix_len * 2 >= n); | 
|  | memcpy(object_sha1, subtree->key_sha1, prefix_len); | 
|  | while (tree_entry(&desc, &entry)) { | 
|  | path_len = strlen(entry.path); | 
|  | len = get_sha1_hex_segment(entry.path, path_len, | 
|  | object_sha1 + prefix_len, 20 - prefix_len); | 
|  | if (len < 0) | 
|  | goto handle_non_note; /* entry.path is not a SHA1 */ | 
|  | len += prefix_len; | 
|  |  | 
|  | /* | 
|  | * If object SHA1 is complete (len == 20), assume note object | 
|  | * If object SHA1 is incomplete (len < 20), and current | 
|  | * component consists of 2 hex chars, assume note subtree | 
|  | */ | 
|  | if (len <= 20) { | 
|  | type = PTR_TYPE_NOTE; | 
|  | l = (struct leaf_node *) | 
|  | xcalloc(sizeof(struct leaf_node), 1); | 
|  | hashcpy(l->key_sha1, object_sha1); | 
|  | hashcpy(l->val_sha1, entry.sha1); | 
|  | if (len < 20) { | 
|  | if (!S_ISDIR(entry.mode) || path_len != 2) | 
|  | goto handle_non_note; /* not subtree */ | 
|  | l->key_sha1[19] = (unsigned char) len; | 
|  | type = PTR_TYPE_SUBTREE; | 
|  | } | 
|  | if (note_tree_insert(t, node, n, l, type, | 
|  | combine_notes_concatenate)) | 
|  | die("Failed to load %s %s into notes tree " | 
|  | "from %s", | 
|  | type == PTR_TYPE_NOTE ? "note" : "subtree", | 
|  | sha1_to_hex(l->key_sha1), t->ref); | 
|  | } | 
|  | continue; | 
|  |  | 
|  | handle_non_note: | 
|  | /* | 
|  | * Determine full path for this non-note entry: | 
|  | * The filename is already found in entry.path, but the | 
|  | * directory part of the path must be deduced from the subtree | 
|  | * containing this entry. We assume here that the overall notes | 
|  | * tree follows a strict byte-based progressive fanout | 
|  | * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not | 
|  | * e.g. 4/36 fanout). This means that if a non-note is found at | 
|  | * path "dead/beef", the following code will register it as | 
|  | * being found on "de/ad/beef". | 
|  | * On the other hand, if you use such non-obvious non-note | 
|  | * paths in the middle of a notes tree, you deserve what's | 
|  | * coming to you ;). Note that for non-notes that are not | 
|  | * SHA1-like at the top level, there will be no problems. | 
|  | * | 
|  | * To conclude, it is strongly advised to make sure non-notes | 
|  | * have at least one non-hex character in the top-level path | 
|  | * component. | 
|  | */ | 
|  | { | 
|  | char non_note_path[PATH_MAX]; | 
|  | char *p = non_note_path; | 
|  | const char *q = sha1_to_hex(subtree->key_sha1); | 
|  | int i; | 
|  | for (i = 0; i < prefix_len; i++) { | 
|  | *p++ = *q++; | 
|  | *p++ = *q++; | 
|  | *p++ = '/'; | 
|  | } | 
|  | strcpy(p, entry.path); | 
|  | add_non_note(t, non_note_path, entry.mode, entry.sha1); | 
|  | } | 
|  | } | 
|  | free(buf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine optimal on-disk fanout for this part of the notes tree | 
|  | * | 
|  | * Given a (sub)tree and the level in the internal tree structure, determine | 
|  | * whether or not the given existing fanout should be expanded for this | 
|  | * (sub)tree. | 
|  | * | 
|  | * Values of the 'fanout' variable: | 
|  | * - 0: No fanout (all notes are stored directly in the root notes tree) | 
|  | * - 1: 2/38 fanout | 
|  | * - 2: 2/2/36 fanout | 
|  | * - 3: 2/2/2/34 fanout | 
|  | * etc. | 
|  | */ | 
|  | static unsigned char determine_fanout(struct int_node *tree, unsigned char n, | 
|  | unsigned char fanout) | 
|  | { | 
|  | /* | 
|  | * The following is a simple heuristic that works well in practice: | 
|  | * For each even-numbered 16-tree level (remember that each on-disk | 
|  | * fanout level corresponds to _two_ 16-tree levels), peek at all 16 | 
|  | * entries at that tree level. If all of them are either int_nodes or | 
|  | * subtree entries, then there are likely plenty of notes below this | 
|  | * level, so we return an incremented fanout. | 
|  | */ | 
|  | unsigned int i; | 
|  | if ((n % 2) || (n > 2 * fanout)) | 
|  | return fanout; | 
|  | for (i = 0; i < 16; i++) { | 
|  | switch (GET_PTR_TYPE(tree->a[i])) { | 
|  | case PTR_TYPE_SUBTREE: | 
|  | case PTR_TYPE_INTERNAL: | 
|  | continue; | 
|  | default: | 
|  | return fanout; | 
|  | } | 
|  | } | 
|  | return fanout + 1; | 
|  | } | 
|  |  | 
|  | static void construct_path_with_fanout(const unsigned char *sha1, | 
|  | unsigned char fanout, char *path) | 
|  | { | 
|  | unsigned int i = 0, j = 0; | 
|  | const char *hex_sha1 = sha1_to_hex(sha1); | 
|  | assert(fanout < 20); | 
|  | while (fanout) { | 
|  | path[i++] = hex_sha1[j++]; | 
|  | path[i++] = hex_sha1[j++]; | 
|  | path[i++] = '/'; | 
|  | fanout--; | 
|  | } | 
|  | strcpy(path + i, hex_sha1 + j); | 
|  | } | 
|  |  | 
|  | static int for_each_note_helper(struct notes_tree *t, struct int_node *tree, | 
|  | unsigned char n, unsigned char fanout, int flags, | 
|  | each_note_fn fn, void *cb_data) | 
|  | { | 
|  | unsigned int i; | 
|  | void *p; | 
|  | int ret = 0; | 
|  | struct leaf_node *l; | 
|  | static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */ | 
|  |  | 
|  | fanout = determine_fanout(tree, n, fanout); | 
|  | for (i = 0; i < 16; i++) { | 
|  | redo: | 
|  | p = tree->a[i]; | 
|  | switch (GET_PTR_TYPE(p)) { | 
|  | case PTR_TYPE_INTERNAL: | 
|  | /* recurse into int_node */ | 
|  | ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1, | 
|  | fanout, flags, fn, cb_data); | 
|  | break; | 
|  | case PTR_TYPE_SUBTREE: | 
|  | l = (struct leaf_node *) CLR_PTR_TYPE(p); | 
|  | /* | 
|  | * Subtree entries in the note tree represent parts of | 
|  | * the note tree that have not yet been explored. There | 
|  | * is a direct relationship between subtree entries at | 
|  | * level 'n' in the tree, and the 'fanout' variable: | 
|  | * Subtree entries at level 'n <= 2 * fanout' should be | 
|  | * preserved, since they correspond exactly to a fanout | 
|  | * directory in the on-disk structure. However, subtree | 
|  | * entries at level 'n > 2 * fanout' should NOT be | 
|  | * preserved, but rather consolidated into the above | 
|  | * notes tree level. We achieve this by unconditionally | 
|  | * unpacking subtree entries that exist below the | 
|  | * threshold level at 'n = 2 * fanout'. | 
|  | */ | 
|  | if (n <= 2 * fanout && | 
|  | flags & FOR_EACH_NOTE_YIELD_SUBTREES) { | 
|  | /* invoke callback with subtree */ | 
|  | unsigned int path_len = | 
|  | l->key_sha1[19] * 2 + fanout; | 
|  | assert(path_len < 40 + 19); | 
|  | construct_path_with_fanout(l->key_sha1, fanout, | 
|  | path); | 
|  | /* Create trailing slash, if needed */ | 
|  | if (path[path_len - 1] != '/') | 
|  | path[path_len++] = '/'; | 
|  | path[path_len] = '\0'; | 
|  | ret = fn(l->key_sha1, l->val_sha1, path, | 
|  | cb_data); | 
|  | } | 
|  | if (n > fanout * 2 || | 
|  | !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) { | 
|  | /* unpack subtree and resume traversal */ | 
|  | tree->a[i] = NULL; | 
|  | load_subtree(t, l, tree, n); | 
|  | free(l); | 
|  | goto redo; | 
|  | } | 
|  | break; | 
|  | case PTR_TYPE_NOTE: | 
|  | l = (struct leaf_node *) CLR_PTR_TYPE(p); | 
|  | construct_path_with_fanout(l->key_sha1, fanout, path); | 
|  | ret = fn(l->key_sha1, l->val_sha1, path, cb_data); | 
|  | break; | 
|  | } | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct tree_write_stack { | 
|  | struct tree_write_stack *next; | 
|  | struct strbuf buf; | 
|  | char path[2]; /* path to subtree in next, if any */ | 
|  | }; | 
|  |  | 
|  | static inline int matches_tree_write_stack(struct tree_write_stack *tws, | 
|  | const char *full_path) | 
|  | { | 
|  | return  full_path[0] == tws->path[0] && | 
|  | full_path[1] == tws->path[1] && | 
|  | full_path[2] == '/'; | 
|  | } | 
|  |  | 
|  | static void write_tree_entry(struct strbuf *buf, unsigned int mode, | 
|  | const char *path, unsigned int path_len, const | 
|  | unsigned char *sha1) | 
|  | { | 
|  | strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0'); | 
|  | strbuf_add(buf, sha1, 20); | 
|  | } | 
|  |  | 
|  | static void tree_write_stack_init_subtree(struct tree_write_stack *tws, | 
|  | const char *path) | 
|  | { | 
|  | struct tree_write_stack *n; | 
|  | assert(!tws->next); | 
|  | assert(tws->path[0] == '\0' && tws->path[1] == '\0'); | 
|  | n = (struct tree_write_stack *) | 
|  | xmalloc(sizeof(struct tree_write_stack)); | 
|  | n->next = NULL; | 
|  | strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */ | 
|  | n->path[0] = n->path[1] = '\0'; | 
|  | tws->next = n; | 
|  | tws->path[0] = path[0]; | 
|  | tws->path[1] = path[1]; | 
|  | } | 
|  |  | 
|  | static int tree_write_stack_finish_subtree(struct tree_write_stack *tws) | 
|  | { | 
|  | int ret; | 
|  | struct tree_write_stack *n = tws->next; | 
|  | unsigned char s[20]; | 
|  | if (n) { | 
|  | ret = tree_write_stack_finish_subtree(n); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s); | 
|  | if (ret) | 
|  | return ret; | 
|  | strbuf_release(&n->buf); | 
|  | free(n); | 
|  | tws->next = NULL; | 
|  | write_tree_entry(&tws->buf, 040000, tws->path, 2, s); | 
|  | tws->path[0] = tws->path[1] = '\0'; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_each_note_helper(struct tree_write_stack *tws, | 
|  | const char *path, unsigned int mode, | 
|  | const unsigned char *sha1) | 
|  | { | 
|  | size_t path_len = strlen(path); | 
|  | unsigned int n = 0; | 
|  | int ret; | 
|  |  | 
|  | /* Determine common part of tree write stack */ | 
|  | while (tws && 3 * n < path_len && | 
|  | matches_tree_write_stack(tws, path + 3 * n)) { | 
|  | n++; | 
|  | tws = tws->next; | 
|  | } | 
|  |  | 
|  | /* tws point to last matching tree_write_stack entry */ | 
|  | ret = tree_write_stack_finish_subtree(tws); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Start subtrees needed to satisfy path */ | 
|  | while (3 * n + 2 < path_len && path[3 * n + 2] == '/') { | 
|  | tree_write_stack_init_subtree(tws, path + 3 * n); | 
|  | n++; | 
|  | tws = tws->next; | 
|  | } | 
|  |  | 
|  | /* There should be no more directory components in the given path */ | 
|  | assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL); | 
|  |  | 
|  | /* Finally add given entry to the current tree object */ | 
|  | write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n), | 
|  | sha1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct write_each_note_data { | 
|  | struct tree_write_stack *root; | 
|  | struct non_note *next_non_note; | 
|  | }; | 
|  |  | 
|  | static int write_each_non_note_until(const char *note_path, | 
|  | struct write_each_note_data *d) | 
|  | { | 
|  | struct non_note *n = d->next_non_note; | 
|  | int cmp = 0, ret; | 
|  | while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) { | 
|  | if (note_path && cmp == 0) | 
|  | ; /* do nothing, prefer note to non-note */ | 
|  | else { | 
|  | ret = write_each_note_helper(d->root, n->path, n->mode, | 
|  | n->sha1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | n = n->next; | 
|  | } | 
|  | d->next_non_note = n; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_each_note(const unsigned char *object_sha1, | 
|  | const unsigned char *note_sha1, char *note_path, | 
|  | void *cb_data) | 
|  | { | 
|  | struct write_each_note_data *d = | 
|  | (struct write_each_note_data *) cb_data; | 
|  | size_t note_path_len = strlen(note_path); | 
|  | unsigned int mode = 0100644; | 
|  |  | 
|  | if (note_path[note_path_len - 1] == '/') { | 
|  | /* subtree entry */ | 
|  | note_path_len--; | 
|  | note_path[note_path_len] = '\0'; | 
|  | mode = 040000; | 
|  | } | 
|  | assert(note_path_len <= 40 + 19); | 
|  |  | 
|  | /* Weave non-note entries into note entries */ | 
|  | return  write_each_non_note_until(note_path, d) || | 
|  | write_each_note_helper(d->root, note_path, mode, note_sha1); | 
|  | } | 
|  |  | 
|  | struct note_delete_list { | 
|  | struct note_delete_list *next; | 
|  | const unsigned char *sha1; | 
|  | }; | 
|  |  | 
|  | static int prune_notes_helper(const unsigned char *object_sha1, | 
|  | const unsigned char *note_sha1, char *note_path, | 
|  | void *cb_data) | 
|  | { | 
|  | struct note_delete_list **l = (struct note_delete_list **) cb_data; | 
|  | struct note_delete_list *n; | 
|  |  | 
|  | if (has_sha1_file(object_sha1)) | 
|  | return 0; /* nothing to do for this note */ | 
|  |  | 
|  | /* failed to find object => prune this note */ | 
|  | n = (struct note_delete_list *) xmalloc(sizeof(*n)); | 
|  | n->next = *l; | 
|  | n->sha1 = object_sha1; | 
|  | *l = n; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int combine_notes_concatenate(unsigned char *cur_sha1, | 
|  | const unsigned char *new_sha1) | 
|  | { | 
|  | char *cur_msg = NULL, *new_msg = NULL, *buf; | 
|  | unsigned long cur_len, new_len, buf_len; | 
|  | enum object_type cur_type, new_type; | 
|  | int ret; | 
|  |  | 
|  | /* read in both note blob objects */ | 
|  | if (!is_null_sha1(new_sha1)) | 
|  | new_msg = read_sha1_file(new_sha1, &new_type, &new_len); | 
|  | if (!new_msg || !new_len || new_type != OBJ_BLOB) { | 
|  | free(new_msg); | 
|  | return 0; | 
|  | } | 
|  | if (!is_null_sha1(cur_sha1)) | 
|  | cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len); | 
|  | if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) { | 
|  | free(cur_msg); | 
|  | free(new_msg); | 
|  | hashcpy(cur_sha1, new_sha1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* we will separate the notes by two newlines anyway */ | 
|  | if (cur_msg[cur_len - 1] == '\n') | 
|  | cur_len--; | 
|  |  | 
|  | /* concatenate cur_msg and new_msg into buf */ | 
|  | buf_len = cur_len + 2 + new_len; | 
|  | buf = (char *) xmalloc(buf_len); | 
|  | memcpy(buf, cur_msg, cur_len); | 
|  | buf[cur_len] = '\n'; | 
|  | buf[cur_len + 1] = '\n'; | 
|  | memcpy(buf + cur_len + 2, new_msg, new_len); | 
|  | free(cur_msg); | 
|  | free(new_msg); | 
|  |  | 
|  | /* create a new blob object from buf */ | 
|  | ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1); | 
|  | free(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int combine_notes_overwrite(unsigned char *cur_sha1, | 
|  | const unsigned char *new_sha1) | 
|  | { | 
|  | hashcpy(cur_sha1, new_sha1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int combine_notes_ignore(unsigned char *cur_sha1, | 
|  | const unsigned char *new_sha1) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add the lines from the named object to list, with trailing | 
|  | * newlines removed. | 
|  | */ | 
|  | static int string_list_add_note_lines(struct string_list *list, | 
|  | const unsigned char *sha1) | 
|  | { | 
|  | char *data; | 
|  | unsigned long len; | 
|  | enum object_type t; | 
|  |  | 
|  | if (is_null_sha1(sha1)) | 
|  | return 0; | 
|  |  | 
|  | /* read_sha1_file NUL-terminates */ | 
|  | data = read_sha1_file(sha1, &t, &len); | 
|  | if (t != OBJ_BLOB || !data || !len) { | 
|  | free(data); | 
|  | return t != OBJ_BLOB || !data; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the last line of the file is EOL-terminated, this will | 
|  | * add an empty string to the list.  But it will be removed | 
|  | * later, along with any empty strings that came from empty | 
|  | * lines within the file. | 
|  | */ | 
|  | string_list_split(list, data, '\n', -1); | 
|  | free(data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int string_list_join_lines_helper(struct string_list_item *item, | 
|  | void *cb_data) | 
|  | { | 
|  | struct strbuf *buf = cb_data; | 
|  | strbuf_addstr(buf, item->string); | 
|  | strbuf_addch(buf, '\n'); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int combine_notes_cat_sort_uniq(unsigned char *cur_sha1, | 
|  | const unsigned char *new_sha1) | 
|  | { | 
|  | struct string_list sort_uniq_list = STRING_LIST_INIT_DUP; | 
|  | struct strbuf buf = STRBUF_INIT; | 
|  | int ret = 1; | 
|  |  | 
|  | /* read both note blob objects into unique_lines */ | 
|  | if (string_list_add_note_lines(&sort_uniq_list, cur_sha1)) | 
|  | goto out; | 
|  | if (string_list_add_note_lines(&sort_uniq_list, new_sha1)) | 
|  | goto out; | 
|  | string_list_remove_empty_items(&sort_uniq_list, 0); | 
|  | sort_string_list(&sort_uniq_list); | 
|  | string_list_remove_duplicates(&sort_uniq_list, 0); | 
|  |  | 
|  | /* create a new blob object from sort_uniq_list */ | 
|  | if (for_each_string_list(&sort_uniq_list, | 
|  | string_list_join_lines_helper, &buf)) | 
|  | goto out; | 
|  |  | 
|  | ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1); | 
|  |  | 
|  | out: | 
|  | strbuf_release(&buf); | 
|  | string_list_clear(&sort_uniq_list, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int string_list_add_one_ref(const char *refname, const unsigned char *sha1, | 
|  | int flag, void *cb) | 
|  | { | 
|  | struct string_list *refs = cb; | 
|  | if (!unsorted_string_list_has_string(refs, refname)) | 
|  | string_list_append(refs, refname); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The list argument must have strdup_strings set on it. | 
|  | */ | 
|  | void string_list_add_refs_by_glob(struct string_list *list, const char *glob) | 
|  | { | 
|  | assert(list->strdup_strings); | 
|  | if (has_glob_specials(glob)) { | 
|  | for_each_glob_ref(string_list_add_one_ref, glob, list); | 
|  | } else { | 
|  | unsigned char sha1[20]; | 
|  | if (get_sha1(glob, sha1)) | 
|  | warning("notes ref %s is invalid", glob); | 
|  | if (!unsorted_string_list_has_string(list, glob)) | 
|  | string_list_append(list, glob); | 
|  | } | 
|  | } | 
|  |  | 
|  | void string_list_add_refs_from_colon_sep(struct string_list *list, | 
|  | const char *globs) | 
|  | { | 
|  | struct string_list split = STRING_LIST_INIT_NODUP; | 
|  | char *globs_copy = xstrdup(globs); | 
|  | int i; | 
|  |  | 
|  | string_list_split_in_place(&split, globs_copy, ':', -1); | 
|  | string_list_remove_empty_items(&split, 0); | 
|  |  | 
|  | for (i = 0; i < split.nr; i++) | 
|  | string_list_add_refs_by_glob(list, split.items[i].string); | 
|  |  | 
|  | string_list_clear(&split, 0); | 
|  | free(globs_copy); | 
|  | } | 
|  |  | 
|  | static int notes_display_config(const char *k, const char *v, void *cb) | 
|  | { | 
|  | int *load_refs = cb; | 
|  |  | 
|  | if (*load_refs && !strcmp(k, "notes.displayref")) { | 
|  | if (!v) | 
|  | config_error_nonbool(k); | 
|  | string_list_add_refs_by_glob(&display_notes_refs, v); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const char *default_notes_ref(void) | 
|  | { | 
|  | const char *notes_ref = NULL; | 
|  | if (!notes_ref) | 
|  | notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT); | 
|  | if (!notes_ref) | 
|  | notes_ref = notes_ref_name; /* value of core.notesRef config */ | 
|  | if (!notes_ref) | 
|  | notes_ref = GIT_NOTES_DEFAULT_REF; | 
|  | return notes_ref; | 
|  | } | 
|  |  | 
|  | void init_notes(struct notes_tree *t, const char *notes_ref, | 
|  | combine_notes_fn combine_notes, int flags) | 
|  | { | 
|  | unsigned char sha1[20], object_sha1[20]; | 
|  | unsigned mode; | 
|  | struct leaf_node root_tree; | 
|  |  | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | assert(!t->initialized); | 
|  |  | 
|  | if (!notes_ref) | 
|  | notes_ref = default_notes_ref(); | 
|  |  | 
|  | if (!combine_notes) | 
|  | combine_notes = combine_notes_concatenate; | 
|  |  | 
|  | t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1); | 
|  | t->first_non_note = NULL; | 
|  | t->prev_non_note = NULL; | 
|  | t->ref = notes_ref ? xstrdup(notes_ref) : NULL; | 
|  | t->combine_notes = combine_notes; | 
|  | t->initialized = 1; | 
|  | t->dirty = 0; | 
|  |  | 
|  | if (flags & NOTES_INIT_EMPTY || !notes_ref || | 
|  | read_ref(notes_ref, object_sha1)) | 
|  | return; | 
|  | if (get_tree_entry(object_sha1, "", sha1, &mode)) | 
|  | die("Failed to read notes tree referenced by %s (%s)", | 
|  | notes_ref, sha1_to_hex(object_sha1)); | 
|  |  | 
|  | hashclr(root_tree.key_sha1); | 
|  | hashcpy(root_tree.val_sha1, sha1); | 
|  | load_subtree(t, &root_tree, t->root, 0); | 
|  | } | 
|  |  | 
|  | struct notes_tree **load_notes_trees(struct string_list *refs) | 
|  | { | 
|  | struct string_list_item *item; | 
|  | int counter = 0; | 
|  | struct notes_tree **trees; | 
|  | trees = xmalloc((refs->nr+1) * sizeof(struct notes_tree *)); | 
|  | for_each_string_list_item(item, refs) { | 
|  | struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree)); | 
|  | init_notes(t, item->string, combine_notes_ignore, 0); | 
|  | trees[counter++] = t; | 
|  | } | 
|  | trees[counter] = NULL; | 
|  | return trees; | 
|  | } | 
|  |  | 
|  | void init_display_notes(struct display_notes_opt *opt) | 
|  | { | 
|  | char *display_ref_env; | 
|  | int load_config_refs = 0; | 
|  | display_notes_refs.strdup_strings = 1; | 
|  |  | 
|  | assert(!display_notes_trees); | 
|  |  | 
|  | if (!opt || opt->use_default_notes > 0 || | 
|  | (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) { | 
|  | string_list_append(&display_notes_refs, default_notes_ref()); | 
|  | display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT); | 
|  | if (display_ref_env) { | 
|  | string_list_add_refs_from_colon_sep(&display_notes_refs, | 
|  | display_ref_env); | 
|  | load_config_refs = 0; | 
|  | } else | 
|  | load_config_refs = 1; | 
|  | } | 
|  |  | 
|  | git_config(notes_display_config, &load_config_refs); | 
|  |  | 
|  | if (opt) { | 
|  | struct string_list_item *item; | 
|  | for_each_string_list_item(item, &opt->extra_notes_refs) | 
|  | string_list_add_refs_by_glob(&display_notes_refs, | 
|  | item->string); | 
|  | } | 
|  |  | 
|  | display_notes_trees = load_notes_trees(&display_notes_refs); | 
|  | string_list_clear(&display_notes_refs, 0); | 
|  | } | 
|  |  | 
|  | int add_note(struct notes_tree *t, const unsigned char *object_sha1, | 
|  | const unsigned char *note_sha1, combine_notes_fn combine_notes) | 
|  | { | 
|  | struct leaf_node *l; | 
|  |  | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | assert(t->initialized); | 
|  | t->dirty = 1; | 
|  | if (!combine_notes) | 
|  | combine_notes = t->combine_notes; | 
|  | l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node)); | 
|  | hashcpy(l->key_sha1, object_sha1); | 
|  | hashcpy(l->val_sha1, note_sha1); | 
|  | return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes); | 
|  | } | 
|  |  | 
|  | int remove_note(struct notes_tree *t, const unsigned char *object_sha1) | 
|  | { | 
|  | struct leaf_node l; | 
|  |  | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | assert(t->initialized); | 
|  | hashcpy(l.key_sha1, object_sha1); | 
|  | hashclr(l.val_sha1); | 
|  | note_tree_remove(t, t->root, 0, &l); | 
|  | if (is_null_sha1(l.val_sha1)) /* no note was removed */ | 
|  | return 1; | 
|  | t->dirty = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const unsigned char *get_note(struct notes_tree *t, | 
|  | const unsigned char *object_sha1) | 
|  | { | 
|  | struct leaf_node *found; | 
|  |  | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | assert(t->initialized); | 
|  | found = note_tree_find(t, t->root, 0, object_sha1); | 
|  | return found ? found->val_sha1 : NULL; | 
|  | } | 
|  |  | 
|  | int for_each_note(struct notes_tree *t, int flags, each_note_fn fn, | 
|  | void *cb_data) | 
|  | { | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | assert(t->initialized); | 
|  | return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data); | 
|  | } | 
|  |  | 
|  | int write_notes_tree(struct notes_tree *t, unsigned char *result) | 
|  | { | 
|  | struct tree_write_stack root; | 
|  | struct write_each_note_data cb_data; | 
|  | int ret; | 
|  |  | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | assert(t->initialized); | 
|  |  | 
|  | /* Prepare for traversal of current notes tree */ | 
|  | root.next = NULL; /* last forward entry in list is grounded */ | 
|  | strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */ | 
|  | root.path[0] = root.path[1] = '\0'; | 
|  | cb_data.root = &root; | 
|  | cb_data.next_non_note = t->first_non_note; | 
|  |  | 
|  | /* Write tree objects representing current notes tree */ | 
|  | ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES | | 
|  | FOR_EACH_NOTE_YIELD_SUBTREES, | 
|  | write_each_note, &cb_data) || | 
|  | write_each_non_note_until(NULL, &cb_data) || | 
|  | tree_write_stack_finish_subtree(&root) || | 
|  | write_sha1_file(root.buf.buf, root.buf.len, tree_type, result); | 
|  | strbuf_release(&root.buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void prune_notes(struct notes_tree *t, int flags) | 
|  | { | 
|  | struct note_delete_list *l = NULL; | 
|  |  | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | assert(t->initialized); | 
|  |  | 
|  | for_each_note(t, 0, prune_notes_helper, &l); | 
|  |  | 
|  | while (l) { | 
|  | if (flags & NOTES_PRUNE_VERBOSE) | 
|  | printf("%s\n", sha1_to_hex(l->sha1)); | 
|  | if (!(flags & NOTES_PRUNE_DRYRUN)) | 
|  | remove_note(t, l->sha1); | 
|  | l = l->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | void free_notes(struct notes_tree *t) | 
|  | { | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | if (t->root) | 
|  | note_tree_free(t->root); | 
|  | free(t->root); | 
|  | while (t->first_non_note) { | 
|  | t->prev_non_note = t->first_non_note->next; | 
|  | free(t->first_non_note->path); | 
|  | free(t->first_non_note); | 
|  | t->first_non_note = t->prev_non_note; | 
|  | } | 
|  | free(t->ref); | 
|  | memset(t, 0, sizeof(struct notes_tree)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill the given strbuf with the notes associated with the given object. | 
|  | * | 
|  | * If the given notes_tree structure is not initialized, it will be auto- | 
|  | * initialized to the default value (see documentation for init_notes() above). | 
|  | * If the given notes_tree is NULL, the internal/default notes_tree will be | 
|  | * used instead. | 
|  | * | 
|  | * (raw != 0) gives the %N userformat; otherwise, the note message is given | 
|  | * for human consumption. | 
|  | */ | 
|  | static void format_note(struct notes_tree *t, const unsigned char *object_sha1, | 
|  | struct strbuf *sb, const char *output_encoding, int raw) | 
|  | { | 
|  | static const char utf8[] = "utf-8"; | 
|  | const unsigned char *sha1; | 
|  | char *msg, *msg_p; | 
|  | unsigned long linelen, msglen; | 
|  | enum object_type type; | 
|  |  | 
|  | if (!t) | 
|  | t = &default_notes_tree; | 
|  | if (!t->initialized) | 
|  | init_notes(t, NULL, NULL, 0); | 
|  |  | 
|  | sha1 = get_note(t, object_sha1); | 
|  | if (!sha1) | 
|  | return; | 
|  |  | 
|  | if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen || | 
|  | type != OBJ_BLOB) { | 
|  | free(msg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (output_encoding && *output_encoding && | 
|  | !is_encoding_utf8(output_encoding)) { | 
|  | char *reencoded = reencode_string(msg, output_encoding, utf8); | 
|  | if (reencoded) { | 
|  | free(msg); | 
|  | msg = reencoded; | 
|  | msglen = strlen(msg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* we will end the annotation by a newline anyway */ | 
|  | if (msglen && msg[msglen - 1] == '\n') | 
|  | msglen--; | 
|  |  | 
|  | if (!raw) { | 
|  | const char *ref = t->ref; | 
|  | if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) { | 
|  | strbuf_addstr(sb, "\nNotes:\n"); | 
|  | } else { | 
|  | if (!prefixcmp(ref, "refs/")) | 
|  | ref += 5; | 
|  | if (!prefixcmp(ref, "notes/")) | 
|  | ref += 6; | 
|  | strbuf_addf(sb, "\nNotes (%s):\n", ref); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) { | 
|  | linelen = strchrnul(msg_p, '\n') - msg_p; | 
|  |  | 
|  | if (!raw) | 
|  | strbuf_addstr(sb, "    "); | 
|  | strbuf_add(sb, msg_p, linelen); | 
|  | strbuf_addch(sb, '\n'); | 
|  | } | 
|  |  | 
|  | free(msg); | 
|  | } | 
|  |  | 
|  | void format_display_notes(const unsigned char *object_sha1, | 
|  | struct strbuf *sb, const char *output_encoding, int raw) | 
|  | { | 
|  | int i; | 
|  | assert(display_notes_trees); | 
|  | for (i = 0; display_notes_trees[i]; i++) | 
|  | format_note(display_notes_trees[i], object_sha1, sb, | 
|  | output_encoding, raw); | 
|  | } | 
|  |  | 
|  | int copy_note(struct notes_tree *t, | 
|  | const unsigned char *from_obj, const unsigned char *to_obj, | 
|  | int force, combine_notes_fn combine_notes) | 
|  | { | 
|  | const unsigned char *note = get_note(t, from_obj); | 
|  | const unsigned char *existing_note = get_note(t, to_obj); | 
|  |  | 
|  | if (!force && existing_note) | 
|  | return 1; | 
|  |  | 
|  | if (note) | 
|  | return add_note(t, to_obj, note, combine_notes); | 
|  | else if (existing_note) | 
|  | return add_note(t, to_obj, null_sha1, combine_notes); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void expand_notes_ref(struct strbuf *sb) | 
|  | { | 
|  | if (!prefixcmp(sb->buf, "refs/notes/")) | 
|  | return; /* we're happy */ | 
|  | else if (!prefixcmp(sb->buf, "notes/")) | 
|  | strbuf_insert(sb, 0, "refs/", 5); | 
|  | else | 
|  | strbuf_insert(sb, 0, "refs/notes/", 11); | 
|  | } |