| #include "cache.h" | 
 | #include "run-command.h" | 
 | #include "exec-cmd.h" | 
 | #include "sigchain.h" | 
 | #include "argv-array.h" | 
 | #include "thread-utils.h" | 
 | #include "strbuf.h" | 
 | #include "string-list.h" | 
 | #include "quote.h" | 
 |  | 
 | void child_process_init(struct child_process *child) | 
 | { | 
 | 	memset(child, 0, sizeof(*child)); | 
 | 	argv_array_init(&child->args); | 
 | 	argv_array_init(&child->env_array); | 
 | } | 
 |  | 
 | void child_process_clear(struct child_process *child) | 
 | { | 
 | 	argv_array_clear(&child->args); | 
 | 	argv_array_clear(&child->env_array); | 
 | } | 
 |  | 
 | struct child_to_clean { | 
 | 	pid_t pid; | 
 | 	struct child_process *process; | 
 | 	struct child_to_clean *next; | 
 | }; | 
 | static struct child_to_clean *children_to_clean; | 
 | static int installed_child_cleanup_handler; | 
 |  | 
 | static void cleanup_children(int sig, int in_signal) | 
 | { | 
 | 	struct child_to_clean *children_to_wait_for = NULL; | 
 |  | 
 | 	while (children_to_clean) { | 
 | 		struct child_to_clean *p = children_to_clean; | 
 | 		children_to_clean = p->next; | 
 |  | 
 | 		if (p->process && !in_signal) { | 
 | 			struct child_process *process = p->process; | 
 | 			if (process->clean_on_exit_handler) { | 
 | 				trace_printf( | 
 | 					"trace: run_command: running exit handler for pid %" | 
 | 					PRIuMAX, (uintmax_t)p->pid | 
 | 				); | 
 | 				process->clean_on_exit_handler(process); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		kill(p->pid, sig); | 
 |  | 
 | 		if (p->process && p->process->wait_after_clean) { | 
 | 			p->next = children_to_wait_for; | 
 | 			children_to_wait_for = p; | 
 | 		} else { | 
 | 			if (!in_signal) | 
 | 				free(p); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (children_to_wait_for) { | 
 | 		struct child_to_clean *p = children_to_wait_for; | 
 | 		children_to_wait_for = p->next; | 
 |  | 
 | 		while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR) | 
 | 			; /* spin waiting for process exit or error */ | 
 |  | 
 | 		if (!in_signal) | 
 | 			free(p); | 
 | 	} | 
 | } | 
 |  | 
 | static void cleanup_children_on_signal(int sig) | 
 | { | 
 | 	cleanup_children(sig, 1); | 
 | 	sigchain_pop(sig); | 
 | 	raise(sig); | 
 | } | 
 |  | 
 | static void cleanup_children_on_exit(void) | 
 | { | 
 | 	cleanup_children(SIGTERM, 0); | 
 | } | 
 |  | 
 | static void mark_child_for_cleanup(pid_t pid, struct child_process *process) | 
 | { | 
 | 	struct child_to_clean *p = xmalloc(sizeof(*p)); | 
 | 	p->pid = pid; | 
 | 	p->process = process; | 
 | 	p->next = children_to_clean; | 
 | 	children_to_clean = p; | 
 |  | 
 | 	if (!installed_child_cleanup_handler) { | 
 | 		atexit(cleanup_children_on_exit); | 
 | 		sigchain_push_common(cleanup_children_on_signal); | 
 | 		installed_child_cleanup_handler = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void clear_child_for_cleanup(pid_t pid) | 
 | { | 
 | 	struct child_to_clean **pp; | 
 |  | 
 | 	for (pp = &children_to_clean; *pp; pp = &(*pp)->next) { | 
 | 		struct child_to_clean *clean_me = *pp; | 
 |  | 
 | 		if (clean_me->pid == pid) { | 
 | 			*pp = clean_me->next; | 
 | 			free(clean_me); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static inline void close_pair(int fd[2]) | 
 | { | 
 | 	close(fd[0]); | 
 | 	close(fd[1]); | 
 | } | 
 |  | 
 | int is_executable(const char *name) | 
 | { | 
 | 	struct stat st; | 
 |  | 
 | 	if (stat(name, &st) || /* stat, not lstat */ | 
 | 	    !S_ISREG(st.st_mode)) | 
 | 		return 0; | 
 |  | 
 | #if defined(GIT_WINDOWS_NATIVE) | 
 | 	/* | 
 | 	 * On Windows there is no executable bit. The file extension | 
 | 	 * indicates whether it can be run as an executable, and Git | 
 | 	 * has special-handling to detect scripts and launch them | 
 | 	 * through the indicated script interpreter. We test for the | 
 | 	 * file extension first because virus scanners may make | 
 | 	 * it quite expensive to open many files. | 
 | 	 */ | 
 | 	if (ends_with(name, ".exe")) | 
 | 		return S_IXUSR; | 
 |  | 
 | { | 
 | 	/* | 
 | 	 * Now that we know it does not have an executable extension, | 
 | 	 * peek into the file instead. | 
 | 	 */ | 
 | 	char buf[3] = { 0 }; | 
 | 	int n; | 
 | 	int fd = open(name, O_RDONLY); | 
 | 	st.st_mode &= ~S_IXUSR; | 
 | 	if (fd >= 0) { | 
 | 		n = read(fd, buf, 2); | 
 | 		if (n == 2) | 
 | 			/* look for a she-bang */ | 
 | 			if (!strcmp(buf, "#!")) | 
 | 				st.st_mode |= S_IXUSR; | 
 | 		close(fd); | 
 | 	} | 
 | } | 
 | #endif | 
 | 	return st.st_mode & S_IXUSR; | 
 | } | 
 |  | 
 | /* | 
 |  * Search $PATH for a command.  This emulates the path search that | 
 |  * execvp would perform, without actually executing the command so it | 
 |  * can be used before fork() to prepare to run a command using | 
 |  * execve() or after execvp() to diagnose why it failed. | 
 |  * | 
 |  * The caller should ensure that file contains no directory | 
 |  * separators. | 
 |  * | 
 |  * Returns the path to the command, as found in $PATH or NULL if the | 
 |  * command could not be found.  The caller inherits ownership of the memory | 
 |  * used to store the resultant path. | 
 |  * | 
 |  * This should not be used on Windows, where the $PATH search rules | 
 |  * are more complicated (e.g., a search for "foo" should find | 
 |  * "foo.exe"). | 
 |  */ | 
 | static char *locate_in_PATH(const char *file) | 
 | { | 
 | 	const char *p = getenv("PATH"); | 
 | 	struct strbuf buf = STRBUF_INIT; | 
 |  | 
 | 	if (!p || !*p) | 
 | 		return NULL; | 
 |  | 
 | 	while (1) { | 
 | 		const char *end = strchrnul(p, ':'); | 
 |  | 
 | 		strbuf_reset(&buf); | 
 |  | 
 | 		/* POSIX specifies an empty entry as the current directory. */ | 
 | 		if (end != p) { | 
 | 			strbuf_add(&buf, p, end - p); | 
 | 			strbuf_addch(&buf, '/'); | 
 | 		} | 
 | 		strbuf_addstr(&buf, file); | 
 |  | 
 | 		if (is_executable(buf.buf)) | 
 | 			return strbuf_detach(&buf, NULL); | 
 |  | 
 | 		if (!*end) | 
 | 			break; | 
 | 		p = end + 1; | 
 | 	} | 
 |  | 
 | 	strbuf_release(&buf); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int exists_in_PATH(const char *file) | 
 | { | 
 | 	char *r = locate_in_PATH(file); | 
 | 	int found = r != NULL; | 
 | 	free(r); | 
 | 	return found; | 
 | } | 
 |  | 
 | int sane_execvp(const char *file, char * const argv[]) | 
 | { | 
 | #ifndef GIT_WINDOWS_NATIVE | 
 | 	/* | 
 | 	 * execvp() doesn't return, so we all we can do is tell trace2 | 
 | 	 * what we are about to do and let it leave a hint in the log | 
 | 	 * (unless of course the execvp() fails). | 
 | 	 * | 
 | 	 * we skip this for Windows because the compat layer already | 
 | 	 * has to emulate the execvp() call anyway. | 
 | 	 */ | 
 | 	int exec_id = trace2_exec(file, (const char **)argv); | 
 | #endif | 
 |  | 
 | 	if (!execvp(file, argv)) | 
 | 		return 0; /* cannot happen ;-) */ | 
 |  | 
 | #ifndef GIT_WINDOWS_NATIVE | 
 | 	{ | 
 | 		int ec = errno; | 
 | 		trace2_exec_result(exec_id, ec); | 
 | 		errno = ec; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * When a command can't be found because one of the directories | 
 | 	 * listed in $PATH is unsearchable, execvp reports EACCES, but | 
 | 	 * careful usability testing (read: analysis of occasional bug | 
 | 	 * reports) reveals that "No such file or directory" is more | 
 | 	 * intuitive. | 
 | 	 * | 
 | 	 * We avoid commands with "/", because execvp will not do $PATH | 
 | 	 * lookups in that case. | 
 | 	 * | 
 | 	 * The reassignment of EACCES to errno looks like a no-op below, | 
 | 	 * but we need to protect against exists_in_PATH overwriting errno. | 
 | 	 */ | 
 | 	if (errno == EACCES && !strchr(file, '/')) | 
 | 		errno = exists_in_PATH(file) ? EACCES : ENOENT; | 
 | 	else if (errno == ENOTDIR && !strchr(file, '/')) | 
 | 		errno = ENOENT; | 
 | 	return -1; | 
 | } | 
 |  | 
 | static const char **prepare_shell_cmd(struct argv_array *out, const char **argv) | 
 | { | 
 | 	if (!argv[0]) | 
 | 		BUG("shell command is empty"); | 
 |  | 
 | 	if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) { | 
 | #ifndef GIT_WINDOWS_NATIVE | 
 | 		argv_array_push(out, SHELL_PATH); | 
 | #else | 
 | 		argv_array_push(out, "sh"); | 
 | #endif | 
 | 		argv_array_push(out, "-c"); | 
 |  | 
 | 		/* | 
 | 		 * If we have no extra arguments, we do not even need to | 
 | 		 * bother with the "$@" magic. | 
 | 		 */ | 
 | 		if (!argv[1]) | 
 | 			argv_array_push(out, argv[0]); | 
 | 		else | 
 | 			argv_array_pushf(out, "%s \"$@\"", argv[0]); | 
 | 	} | 
 |  | 
 | 	argv_array_pushv(out, argv); | 
 | 	return out->argv; | 
 | } | 
 |  | 
 | #ifndef GIT_WINDOWS_NATIVE | 
 | static int child_notifier = -1; | 
 |  | 
 | enum child_errcode { | 
 | 	CHILD_ERR_CHDIR, | 
 | 	CHILD_ERR_DUP2, | 
 | 	CHILD_ERR_CLOSE, | 
 | 	CHILD_ERR_SIGPROCMASK, | 
 | 	CHILD_ERR_ENOENT, | 
 | 	CHILD_ERR_SILENT, | 
 | 	CHILD_ERR_ERRNO | 
 | }; | 
 |  | 
 | struct child_err { | 
 | 	enum child_errcode err; | 
 | 	int syserr; /* errno */ | 
 | }; | 
 |  | 
 | static void child_die(enum child_errcode err) | 
 | { | 
 | 	struct child_err buf; | 
 |  | 
 | 	buf.err = err; | 
 | 	buf.syserr = errno; | 
 |  | 
 | 	/* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */ | 
 | 	xwrite(child_notifier, &buf, sizeof(buf)); | 
 | 	_exit(1); | 
 | } | 
 |  | 
 | static void child_dup2(int fd, int to) | 
 | { | 
 | 	if (dup2(fd, to) < 0) | 
 | 		child_die(CHILD_ERR_DUP2); | 
 | } | 
 |  | 
 | static void child_close(int fd) | 
 | { | 
 | 	if (close(fd)) | 
 | 		child_die(CHILD_ERR_CLOSE); | 
 | } | 
 |  | 
 | static void child_close_pair(int fd[2]) | 
 | { | 
 | 	child_close(fd[0]); | 
 | 	child_close(fd[1]); | 
 | } | 
 |  | 
 | /* | 
 |  * parent will make it look like the child spewed a fatal error and died | 
 |  * this is needed to prevent changes to t0061. | 
 |  */ | 
 | static void fake_fatal(const char *err, va_list params) | 
 | { | 
 | 	vreportf("fatal: ", err, params); | 
 | } | 
 |  | 
 | static void child_error_fn(const char *err, va_list params) | 
 | { | 
 | 	const char msg[] = "error() should not be called in child\n"; | 
 | 	xwrite(2, msg, sizeof(msg) - 1); | 
 | } | 
 |  | 
 | static void child_warn_fn(const char *err, va_list params) | 
 | { | 
 | 	const char msg[] = "warn() should not be called in child\n"; | 
 | 	xwrite(2, msg, sizeof(msg) - 1); | 
 | } | 
 |  | 
 | static void NORETURN child_die_fn(const char *err, va_list params) | 
 | { | 
 | 	const char msg[] = "die() should not be called in child\n"; | 
 | 	xwrite(2, msg, sizeof(msg) - 1); | 
 | 	_exit(2); | 
 | } | 
 |  | 
 | /* this runs in the parent process */ | 
 | static void child_err_spew(struct child_process *cmd, struct child_err *cerr) | 
 | { | 
 | 	static void (*old_errfn)(const char *err, va_list params); | 
 |  | 
 | 	old_errfn = get_error_routine(); | 
 | 	set_error_routine(fake_fatal); | 
 | 	errno = cerr->syserr; | 
 |  | 
 | 	switch (cerr->err) { | 
 | 	case CHILD_ERR_CHDIR: | 
 | 		error_errno("exec '%s': cd to '%s' failed", | 
 | 			    cmd->argv[0], cmd->dir); | 
 | 		break; | 
 | 	case CHILD_ERR_DUP2: | 
 | 		error_errno("dup2() in child failed"); | 
 | 		break; | 
 | 	case CHILD_ERR_CLOSE: | 
 | 		error_errno("close() in child failed"); | 
 | 		break; | 
 | 	case CHILD_ERR_SIGPROCMASK: | 
 | 		error_errno("sigprocmask failed restoring signals"); | 
 | 		break; | 
 | 	case CHILD_ERR_ENOENT: | 
 | 		error_errno("cannot run %s", cmd->argv[0]); | 
 | 		break; | 
 | 	case CHILD_ERR_SILENT: | 
 | 		break; | 
 | 	case CHILD_ERR_ERRNO: | 
 | 		error_errno("cannot exec '%s'", cmd->argv[0]); | 
 | 		break; | 
 | 	} | 
 | 	set_error_routine(old_errfn); | 
 | } | 
 |  | 
 | static int prepare_cmd(struct argv_array *out, const struct child_process *cmd) | 
 | { | 
 | 	if (!cmd->argv[0]) | 
 | 		BUG("command is empty"); | 
 |  | 
 | 	/* | 
 | 	 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can | 
 | 	 * attempt to interpret the command with 'sh'. | 
 | 	 */ | 
 | 	argv_array_push(out, SHELL_PATH); | 
 |  | 
 | 	if (cmd->git_cmd) { | 
 | 		prepare_git_cmd(out, cmd->argv); | 
 | 	} else if (cmd->use_shell) { | 
 | 		prepare_shell_cmd(out, cmd->argv); | 
 | 	} else { | 
 | 		argv_array_pushv(out, cmd->argv); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there are no '/' characters in the command then perform a path | 
 | 	 * lookup and use the resolved path as the command to exec.  If there | 
 | 	 * are '/' characters, we have exec attempt to invoke the command | 
 | 	 * directly. | 
 | 	 */ | 
 | 	if (!strchr(out->argv[1], '/')) { | 
 | 		char *program = locate_in_PATH(out->argv[1]); | 
 | 		if (program) { | 
 | 			free((char *)out->argv[1]); | 
 | 			out->argv[1] = program; | 
 | 		} else { | 
 | 			argv_array_clear(out); | 
 | 			errno = ENOENT; | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static char **prep_childenv(const char *const *deltaenv) | 
 | { | 
 | 	extern char **environ; | 
 | 	char **childenv; | 
 | 	struct string_list env = STRING_LIST_INIT_DUP; | 
 | 	struct strbuf key = STRBUF_INIT; | 
 | 	const char *const *p; | 
 | 	int i; | 
 |  | 
 | 	/* Construct a sorted string list consisting of the current environ */ | 
 | 	for (p = (const char *const *) environ; p && *p; p++) { | 
 | 		const char *equals = strchr(*p, '='); | 
 |  | 
 | 		if (equals) { | 
 | 			strbuf_reset(&key); | 
 | 			strbuf_add(&key, *p, equals - *p); | 
 | 			string_list_append(&env, key.buf)->util = (void *) *p; | 
 | 		} else { | 
 | 			string_list_append(&env, *p)->util = (void *) *p; | 
 | 		} | 
 | 	} | 
 | 	string_list_sort(&env); | 
 |  | 
 | 	/* Merge in 'deltaenv' with the current environ */ | 
 | 	for (p = deltaenv; p && *p; p++) { | 
 | 		const char *equals = strchr(*p, '='); | 
 |  | 
 | 		if (equals) { | 
 | 			/* ('key=value'), insert or replace entry */ | 
 | 			strbuf_reset(&key); | 
 | 			strbuf_add(&key, *p, equals - *p); | 
 | 			string_list_insert(&env, key.buf)->util = (void *) *p; | 
 | 		} else { | 
 | 			/* otherwise ('key') remove existing entry */ | 
 | 			string_list_remove(&env, *p, 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Create an array of 'char *' to be used as the childenv */ | 
 | 	ALLOC_ARRAY(childenv, env.nr + 1); | 
 | 	for (i = 0; i < env.nr; i++) | 
 | 		childenv[i] = env.items[i].util; | 
 | 	childenv[env.nr] = NULL; | 
 |  | 
 | 	string_list_clear(&env, 0); | 
 | 	strbuf_release(&key); | 
 | 	return childenv; | 
 | } | 
 |  | 
 | struct atfork_state { | 
 | #ifndef NO_PTHREADS | 
 | 	int cs; | 
 | #endif | 
 | 	sigset_t old; | 
 | }; | 
 |  | 
 | #define CHECK_BUG(err, msg) \ | 
 | 	do { \ | 
 | 		int e = (err); \ | 
 | 		if (e) \ | 
 | 			BUG("%s: %s", msg, strerror(e)); \ | 
 | 	} while(0) | 
 |  | 
 | static void atfork_prepare(struct atfork_state *as) | 
 | { | 
 | 	sigset_t all; | 
 |  | 
 | 	if (sigfillset(&all)) | 
 | 		die_errno("sigfillset"); | 
 | #ifdef NO_PTHREADS | 
 | 	if (sigprocmask(SIG_SETMASK, &all, &as->old)) | 
 | 		die_errno("sigprocmask"); | 
 | #else | 
 | 	CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old), | 
 | 		"blocking all signals"); | 
 | 	CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs), | 
 | 		"disabling cancellation"); | 
 | #endif | 
 | } | 
 |  | 
 | static void atfork_parent(struct atfork_state *as) | 
 | { | 
 | #ifdef NO_PTHREADS | 
 | 	if (sigprocmask(SIG_SETMASK, &as->old, NULL)) | 
 | 		die_errno("sigprocmask"); | 
 | #else | 
 | 	CHECK_BUG(pthread_setcancelstate(as->cs, NULL), | 
 | 		"re-enabling cancellation"); | 
 | 	CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL), | 
 | 		"restoring signal mask"); | 
 | #endif | 
 | } | 
 | #endif /* GIT_WINDOWS_NATIVE */ | 
 |  | 
 | static inline void set_cloexec(int fd) | 
 | { | 
 | 	int flags = fcntl(fd, F_GETFD); | 
 | 	if (flags >= 0) | 
 | 		fcntl(fd, F_SETFD, flags | FD_CLOEXEC); | 
 | } | 
 |  | 
 | static int wait_or_whine(pid_t pid, const char *argv0, int in_signal) | 
 | { | 
 | 	int status, code = -1; | 
 | 	pid_t waiting; | 
 | 	int failed_errno = 0; | 
 |  | 
 | 	while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR) | 
 | 		;	/* nothing */ | 
 | 	if (in_signal) | 
 | 		return 0; | 
 |  | 
 | 	if (waiting < 0) { | 
 | 		failed_errno = errno; | 
 | 		error_errno("waitpid for %s failed", argv0); | 
 | 	} else if (waiting != pid) { | 
 | 		error("waitpid is confused (%s)", argv0); | 
 | 	} else if (WIFSIGNALED(status)) { | 
 | 		code = WTERMSIG(status); | 
 | 		if (code != SIGINT && code != SIGQUIT && code != SIGPIPE) | 
 | 			error("%s died of signal %d", argv0, code); | 
 | 		/* | 
 | 		 * This return value is chosen so that code & 0xff | 
 | 		 * mimics the exit code that a POSIX shell would report for | 
 | 		 * a program that died from this signal. | 
 | 		 */ | 
 | 		code += 128; | 
 | 	} else if (WIFEXITED(status)) { | 
 | 		code = WEXITSTATUS(status); | 
 | 	} else { | 
 | 		error("waitpid is confused (%s)", argv0); | 
 | 	} | 
 |  | 
 | 	clear_child_for_cleanup(pid); | 
 |  | 
 | 	errno = failed_errno; | 
 | 	return code; | 
 | } | 
 |  | 
 | static void trace_add_env(struct strbuf *dst, const char *const *deltaenv) | 
 | { | 
 | 	struct string_list envs = STRING_LIST_INIT_DUP; | 
 | 	const char *const *e; | 
 | 	int i; | 
 | 	int printed_unset = 0; | 
 |  | 
 | 	/* Last one wins, see run-command.c:prep_childenv() for context */ | 
 | 	for (e = deltaenv; e && *e; e++) { | 
 | 		struct strbuf key = STRBUF_INIT; | 
 | 		char *equals = strchr(*e, '='); | 
 |  | 
 | 		if (equals) { | 
 | 			strbuf_add(&key, *e, equals - *e); | 
 | 			string_list_insert(&envs, key.buf)->util = equals + 1; | 
 | 		} else { | 
 | 			string_list_insert(&envs, *e)->util = NULL; | 
 | 		} | 
 | 		strbuf_release(&key); | 
 | 	} | 
 |  | 
 | 	/* "unset X Y...;" */ | 
 | 	for (i = 0; i < envs.nr; i++) { | 
 | 		const char *var = envs.items[i].string; | 
 | 		const char *val = envs.items[i].util; | 
 |  | 
 | 		if (val || !getenv(var)) | 
 | 			continue; | 
 |  | 
 | 		if (!printed_unset) { | 
 | 			strbuf_addstr(dst, " unset"); | 
 | 			printed_unset = 1; | 
 | 		} | 
 | 		strbuf_addf(dst, " %s", var); | 
 | 	} | 
 | 	if (printed_unset) | 
 | 		strbuf_addch(dst, ';'); | 
 |  | 
 | 	/* ... followed by "A=B C=D ..." */ | 
 | 	for (i = 0; i < envs.nr; i++) { | 
 | 		const char *var = envs.items[i].string; | 
 | 		const char *val = envs.items[i].util; | 
 | 		const char *oldval; | 
 |  | 
 | 		if (!val) | 
 | 			continue; | 
 |  | 
 | 		oldval = getenv(var); | 
 | 		if (oldval && !strcmp(val, oldval)) | 
 | 			continue; | 
 |  | 
 | 		strbuf_addf(dst, " %s=", var); | 
 | 		sq_quote_buf_pretty(dst, val); | 
 | 	} | 
 | 	string_list_clear(&envs, 0); | 
 | } | 
 |  | 
 | static void trace_run_command(const struct child_process *cp) | 
 | { | 
 | 	struct strbuf buf = STRBUF_INIT; | 
 |  | 
 | 	if (!trace_want(&trace_default_key)) | 
 | 		return; | 
 |  | 
 | 	strbuf_addstr(&buf, "trace: run_command:"); | 
 | 	if (cp->dir) { | 
 | 		strbuf_addstr(&buf, " cd "); | 
 | 		sq_quote_buf_pretty(&buf, cp->dir); | 
 | 		strbuf_addch(&buf, ';'); | 
 | 	} | 
 | 	/* | 
 | 	 * The caller is responsible for initializing cp->env from | 
 | 	 * cp->env_array if needed. We only check one place. | 
 | 	 */ | 
 | 	if (cp->env) | 
 | 		trace_add_env(&buf, cp->env); | 
 | 	if (cp->git_cmd) | 
 | 		strbuf_addstr(&buf, " git"); | 
 | 	sq_quote_argv_pretty(&buf, cp->argv); | 
 |  | 
 | 	trace_printf("%s", buf.buf); | 
 | 	strbuf_release(&buf); | 
 | } | 
 |  | 
 | int start_command(struct child_process *cmd) | 
 | { | 
 | 	int need_in, need_out, need_err; | 
 | 	int fdin[2], fdout[2], fderr[2]; | 
 | 	int failed_errno; | 
 | 	char *str; | 
 |  | 
 | 	if (!cmd->argv) | 
 | 		cmd->argv = cmd->args.argv; | 
 | 	if (!cmd->env) | 
 | 		cmd->env = cmd->env_array.argv; | 
 |  | 
 | 	/* | 
 | 	 * In case of errors we must keep the promise to close FDs | 
 | 	 * that have been passed in via ->in and ->out. | 
 | 	 */ | 
 |  | 
 | 	need_in = !cmd->no_stdin && cmd->in < 0; | 
 | 	if (need_in) { | 
 | 		if (pipe(fdin) < 0) { | 
 | 			failed_errno = errno; | 
 | 			if (cmd->out > 0) | 
 | 				close(cmd->out); | 
 | 			str = "standard input"; | 
 | 			goto fail_pipe; | 
 | 		} | 
 | 		cmd->in = fdin[1]; | 
 | 	} | 
 |  | 
 | 	need_out = !cmd->no_stdout | 
 | 		&& !cmd->stdout_to_stderr | 
 | 		&& cmd->out < 0; | 
 | 	if (need_out) { | 
 | 		if (pipe(fdout) < 0) { | 
 | 			failed_errno = errno; | 
 | 			if (need_in) | 
 | 				close_pair(fdin); | 
 | 			else if (cmd->in) | 
 | 				close(cmd->in); | 
 | 			str = "standard output"; | 
 | 			goto fail_pipe; | 
 | 		} | 
 | 		cmd->out = fdout[0]; | 
 | 	} | 
 |  | 
 | 	need_err = !cmd->no_stderr && cmd->err < 0; | 
 | 	if (need_err) { | 
 | 		if (pipe(fderr) < 0) { | 
 | 			failed_errno = errno; | 
 | 			if (need_in) | 
 | 				close_pair(fdin); | 
 | 			else if (cmd->in) | 
 | 				close(cmd->in); | 
 | 			if (need_out) | 
 | 				close_pair(fdout); | 
 | 			else if (cmd->out) | 
 | 				close(cmd->out); | 
 | 			str = "standard error"; | 
 | fail_pipe: | 
 | 			error("cannot create %s pipe for %s: %s", | 
 | 				str, cmd->argv[0], strerror(failed_errno)); | 
 | 			child_process_clear(cmd); | 
 | 			errno = failed_errno; | 
 | 			return -1; | 
 | 		} | 
 | 		cmd->err = fderr[0]; | 
 | 	} | 
 |  | 
 | 	trace2_child_start(cmd); | 
 | 	trace_run_command(cmd); | 
 |  | 
 | 	fflush(NULL); | 
 |  | 
 | #ifndef GIT_WINDOWS_NATIVE | 
 | { | 
 | 	int notify_pipe[2]; | 
 | 	int null_fd = -1; | 
 | 	char **childenv; | 
 | 	struct argv_array argv = ARGV_ARRAY_INIT; | 
 | 	struct child_err cerr; | 
 | 	struct atfork_state as; | 
 |  | 
 | 	if (prepare_cmd(&argv, cmd) < 0) { | 
 | 		failed_errno = errno; | 
 | 		cmd->pid = -1; | 
 | 		if (!cmd->silent_exec_failure) | 
 | 			error_errno("cannot run %s", cmd->argv[0]); | 
 | 		goto end_of_spawn; | 
 | 	} | 
 |  | 
 | 	if (pipe(notify_pipe)) | 
 | 		notify_pipe[0] = notify_pipe[1] = -1; | 
 |  | 
 | 	if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) { | 
 | 		null_fd = open("/dev/null", O_RDWR | O_CLOEXEC); | 
 | 		if (null_fd < 0) | 
 | 			die_errno(_("open /dev/null failed")); | 
 | 		set_cloexec(null_fd); | 
 | 	} | 
 |  | 
 | 	childenv = prep_childenv(cmd->env); | 
 | 	atfork_prepare(&as); | 
 |  | 
 | 	/* | 
 | 	 * NOTE: In order to prevent deadlocking when using threads special | 
 | 	 * care should be taken with the function calls made in between the | 
 | 	 * fork() and exec() calls.  No calls should be made to functions which | 
 | 	 * require acquiring a lock (e.g. malloc) as the lock could have been | 
 | 	 * held by another thread at the time of forking, causing the lock to | 
 | 	 * never be released in the child process.  This means only | 
 | 	 * Async-Signal-Safe functions are permitted in the child. | 
 | 	 */ | 
 | 	cmd->pid = fork(); | 
 | 	failed_errno = errno; | 
 | 	if (!cmd->pid) { | 
 | 		int sig; | 
 | 		/* | 
 | 		 * Ensure the default die/error/warn routines do not get | 
 | 		 * called, they can take stdio locks and malloc. | 
 | 		 */ | 
 | 		set_die_routine(child_die_fn); | 
 | 		set_error_routine(child_error_fn); | 
 | 		set_warn_routine(child_warn_fn); | 
 |  | 
 | 		close(notify_pipe[0]); | 
 | 		set_cloexec(notify_pipe[1]); | 
 | 		child_notifier = notify_pipe[1]; | 
 |  | 
 | 		if (cmd->no_stdin) | 
 | 			child_dup2(null_fd, 0); | 
 | 		else if (need_in) { | 
 | 			child_dup2(fdin[0], 0); | 
 | 			child_close_pair(fdin); | 
 | 		} else if (cmd->in) { | 
 | 			child_dup2(cmd->in, 0); | 
 | 			child_close(cmd->in); | 
 | 		} | 
 |  | 
 | 		if (cmd->no_stderr) | 
 | 			child_dup2(null_fd, 2); | 
 | 		else if (need_err) { | 
 | 			child_dup2(fderr[1], 2); | 
 | 			child_close_pair(fderr); | 
 | 		} else if (cmd->err > 1) { | 
 | 			child_dup2(cmd->err, 2); | 
 | 			child_close(cmd->err); | 
 | 		} | 
 |  | 
 | 		if (cmd->no_stdout) | 
 | 			child_dup2(null_fd, 1); | 
 | 		else if (cmd->stdout_to_stderr) | 
 | 			child_dup2(2, 1); | 
 | 		else if (need_out) { | 
 | 			child_dup2(fdout[1], 1); | 
 | 			child_close_pair(fdout); | 
 | 		} else if (cmd->out > 1) { | 
 | 			child_dup2(cmd->out, 1); | 
 | 			child_close(cmd->out); | 
 | 		} | 
 |  | 
 | 		if (cmd->dir && chdir(cmd->dir)) | 
 | 			child_die(CHILD_ERR_CHDIR); | 
 |  | 
 | 		/* | 
 | 		 * restore default signal handlers here, in case | 
 | 		 * we catch a signal right before execve below | 
 | 		 */ | 
 | 		for (sig = 1; sig < NSIG; sig++) { | 
 | 			/* ignored signals get reset to SIG_DFL on execve */ | 
 | 			if (signal(sig, SIG_DFL) == SIG_IGN) | 
 | 				signal(sig, SIG_IGN); | 
 | 		} | 
 |  | 
 | 		if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0) | 
 | 			child_die(CHILD_ERR_SIGPROCMASK); | 
 |  | 
 | 		/* | 
 | 		 * Attempt to exec using the command and arguments starting at | 
 | 		 * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will | 
 | 		 * be used in the event exec failed with ENOEXEC at which point | 
 | 		 * we will try to interpret the command using 'sh'. | 
 | 		 */ | 
 | 		execve(argv.argv[1], (char *const *) argv.argv + 1, | 
 | 		       (char *const *) childenv); | 
 | 		if (errno == ENOEXEC) | 
 | 			execve(argv.argv[0], (char *const *) argv.argv, | 
 | 			       (char *const *) childenv); | 
 |  | 
 | 		if (errno == ENOENT) { | 
 | 			if (cmd->silent_exec_failure) | 
 | 				child_die(CHILD_ERR_SILENT); | 
 | 			child_die(CHILD_ERR_ENOENT); | 
 | 		} else { | 
 | 			child_die(CHILD_ERR_ERRNO); | 
 | 		} | 
 | 	} | 
 | 	atfork_parent(&as); | 
 | 	if (cmd->pid < 0) | 
 | 		error_errno("cannot fork() for %s", cmd->argv[0]); | 
 | 	else if (cmd->clean_on_exit) | 
 | 		mark_child_for_cleanup(cmd->pid, cmd); | 
 |  | 
 | 	/* | 
 | 	 * Wait for child's exec. If the exec succeeds (or if fork() | 
 | 	 * failed), EOF is seen immediately by the parent. Otherwise, the | 
 | 	 * child process sends a child_err struct. | 
 | 	 * Note that use of this infrastructure is completely advisory, | 
 | 	 * therefore, we keep error checks minimal. | 
 | 	 */ | 
 | 	close(notify_pipe[1]); | 
 | 	if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) { | 
 | 		/* | 
 | 		 * At this point we know that fork() succeeded, but exec() | 
 | 		 * failed. Errors have been reported to our stderr. | 
 | 		 */ | 
 | 		wait_or_whine(cmd->pid, cmd->argv[0], 0); | 
 | 		child_err_spew(cmd, &cerr); | 
 | 		failed_errno = errno; | 
 | 		cmd->pid = -1; | 
 | 	} | 
 | 	close(notify_pipe[0]); | 
 |  | 
 | 	if (null_fd >= 0) | 
 | 		close(null_fd); | 
 | 	argv_array_clear(&argv); | 
 | 	free(childenv); | 
 | } | 
 | end_of_spawn: | 
 |  | 
 | #else | 
 | { | 
 | 	int fhin = 0, fhout = 1, fherr = 2; | 
 | 	const char **sargv = cmd->argv; | 
 | 	struct argv_array nargv = ARGV_ARRAY_INIT; | 
 |  | 
 | 	if (cmd->no_stdin) | 
 | 		fhin = open("/dev/null", O_RDWR); | 
 | 	else if (need_in) | 
 | 		fhin = dup(fdin[0]); | 
 | 	else if (cmd->in) | 
 | 		fhin = dup(cmd->in); | 
 |  | 
 | 	if (cmd->no_stderr) | 
 | 		fherr = open("/dev/null", O_RDWR); | 
 | 	else if (need_err) | 
 | 		fherr = dup(fderr[1]); | 
 | 	else if (cmd->err > 2) | 
 | 		fherr = dup(cmd->err); | 
 |  | 
 | 	if (cmd->no_stdout) | 
 | 		fhout = open("/dev/null", O_RDWR); | 
 | 	else if (cmd->stdout_to_stderr) | 
 | 		fhout = dup(fherr); | 
 | 	else if (need_out) | 
 | 		fhout = dup(fdout[1]); | 
 | 	else if (cmd->out > 1) | 
 | 		fhout = dup(cmd->out); | 
 |  | 
 | 	if (cmd->git_cmd) | 
 | 		cmd->argv = prepare_git_cmd(&nargv, cmd->argv); | 
 | 	else if (cmd->use_shell) | 
 | 		cmd->argv = prepare_shell_cmd(&nargv, cmd->argv); | 
 |  | 
 | 	cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env, | 
 | 			cmd->dir, fhin, fhout, fherr); | 
 | 	failed_errno = errno; | 
 | 	if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT)) | 
 | 		error_errno("cannot spawn %s", cmd->argv[0]); | 
 | 	if (cmd->clean_on_exit && cmd->pid >= 0) | 
 | 		mark_child_for_cleanup(cmd->pid, cmd); | 
 |  | 
 | 	argv_array_clear(&nargv); | 
 | 	cmd->argv = sargv; | 
 | 	if (fhin != 0) | 
 | 		close(fhin); | 
 | 	if (fhout != 1) | 
 | 		close(fhout); | 
 | 	if (fherr != 2) | 
 | 		close(fherr); | 
 | } | 
 | #endif | 
 |  | 
 | 	if (cmd->pid < 0) { | 
 | 		trace2_child_exit(cmd, -1); | 
 |  | 
 | 		if (need_in) | 
 | 			close_pair(fdin); | 
 | 		else if (cmd->in) | 
 | 			close(cmd->in); | 
 | 		if (need_out) | 
 | 			close_pair(fdout); | 
 | 		else if (cmd->out) | 
 | 			close(cmd->out); | 
 | 		if (need_err) | 
 | 			close_pair(fderr); | 
 | 		else if (cmd->err) | 
 | 			close(cmd->err); | 
 | 		child_process_clear(cmd); | 
 | 		errno = failed_errno; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (need_in) | 
 | 		close(fdin[0]); | 
 | 	else if (cmd->in) | 
 | 		close(cmd->in); | 
 |  | 
 | 	if (need_out) | 
 | 		close(fdout[1]); | 
 | 	else if (cmd->out) | 
 | 		close(cmd->out); | 
 |  | 
 | 	if (need_err) | 
 | 		close(fderr[1]); | 
 | 	else if (cmd->err) | 
 | 		close(cmd->err); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int finish_command(struct child_process *cmd) | 
 | { | 
 | 	int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0); | 
 | 	trace2_child_exit(cmd, ret); | 
 | 	child_process_clear(cmd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int finish_command_in_signal(struct child_process *cmd) | 
 | { | 
 | 	int ret = wait_or_whine(cmd->pid, cmd->argv[0], 1); | 
 | 	trace2_child_exit(cmd, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | int run_command(struct child_process *cmd) | 
 | { | 
 | 	int code; | 
 |  | 
 | 	if (cmd->out < 0 || cmd->err < 0) | 
 | 		BUG("run_command with a pipe can cause deadlock"); | 
 |  | 
 | 	code = start_command(cmd); | 
 | 	if (code) | 
 | 		return code; | 
 | 	return finish_command(cmd); | 
 | } | 
 |  | 
 | int run_command_v_opt(const char **argv, int opt) | 
 | { | 
 | 	return run_command_v_opt_cd_env(argv, opt, NULL, NULL); | 
 | } | 
 |  | 
 | int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class) | 
 | { | 
 | 	return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class); | 
 | } | 
 |  | 
 | int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env) | 
 | { | 
 | 	return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL); | 
 | } | 
 |  | 
 | int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir, | 
 | 				 const char *const *env, const char *tr2_class) | 
 | { | 
 | 	struct child_process cmd = CHILD_PROCESS_INIT; | 
 | 	cmd.argv = argv; | 
 | 	cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0; | 
 | 	cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0; | 
 | 	cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0; | 
 | 	cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0; | 
 | 	cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0; | 
 | 	cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0; | 
 | 	cmd.dir = dir; | 
 | 	cmd.env = env; | 
 | 	cmd.trace2_child_class = tr2_class; | 
 | 	return run_command(&cmd); | 
 | } | 
 |  | 
 | #ifndef NO_PTHREADS | 
 | static pthread_t main_thread; | 
 | static int main_thread_set; | 
 | static pthread_key_t async_key; | 
 | static pthread_key_t async_die_counter; | 
 |  | 
 | static void *run_thread(void *data) | 
 | { | 
 | 	struct async *async = data; | 
 | 	intptr_t ret; | 
 |  | 
 | 	if (async->isolate_sigpipe) { | 
 | 		sigset_t mask; | 
 | 		sigemptyset(&mask); | 
 | 		sigaddset(&mask, SIGPIPE); | 
 | 		if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) { | 
 | 			ret = error("unable to block SIGPIPE in async thread"); | 
 | 			return (void *)ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pthread_setspecific(async_key, async); | 
 | 	ret = async->proc(async->proc_in, async->proc_out, async->data); | 
 | 	return (void *)ret; | 
 | } | 
 |  | 
 | static NORETURN void die_async(const char *err, va_list params) | 
 | { | 
 | 	vreportf("fatal: ", err, params); | 
 |  | 
 | 	if (in_async()) { | 
 | 		struct async *async = pthread_getspecific(async_key); | 
 | 		if (async->proc_in >= 0) | 
 | 			close(async->proc_in); | 
 | 		if (async->proc_out >= 0) | 
 | 			close(async->proc_out); | 
 | 		pthread_exit((void *)128); | 
 | 	} | 
 |  | 
 | 	exit(128); | 
 | } | 
 |  | 
 | static int async_die_is_recursing(void) | 
 | { | 
 | 	void *ret = pthread_getspecific(async_die_counter); | 
 | 	pthread_setspecific(async_die_counter, (void *)1); | 
 | 	return ret != NULL; | 
 | } | 
 |  | 
 | int in_async(void) | 
 | { | 
 | 	if (!main_thread_set) | 
 | 		return 0; /* no asyncs started yet */ | 
 | 	return !pthread_equal(main_thread, pthread_self()); | 
 | } | 
 |  | 
 | static void NORETURN async_exit(int code) | 
 | { | 
 | 	pthread_exit((void *)(intptr_t)code); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static struct { | 
 | 	void (**handlers)(void); | 
 | 	size_t nr; | 
 | 	size_t alloc; | 
 | } git_atexit_hdlrs; | 
 |  | 
 | static int git_atexit_installed; | 
 |  | 
 | static void git_atexit_dispatch(void) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	for (i=git_atexit_hdlrs.nr ; i ; i--) | 
 | 		git_atexit_hdlrs.handlers[i-1](); | 
 | } | 
 |  | 
 | static void git_atexit_clear(void) | 
 | { | 
 | 	free(git_atexit_hdlrs.handlers); | 
 | 	memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs)); | 
 | 	git_atexit_installed = 0; | 
 | } | 
 |  | 
 | #undef atexit | 
 | int git_atexit(void (*handler)(void)) | 
 | { | 
 | 	ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc); | 
 | 	git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler; | 
 | 	if (!git_atexit_installed) { | 
 | 		if (atexit(&git_atexit_dispatch)) | 
 | 			return -1; | 
 | 		git_atexit_installed = 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #define atexit git_atexit | 
 |  | 
 | static int process_is_async; | 
 | int in_async(void) | 
 | { | 
 | 	return process_is_async; | 
 | } | 
 |  | 
 | static void NORETURN async_exit(int code) | 
 | { | 
 | 	exit(code); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | void check_pipe(int err) | 
 | { | 
 | 	if (err == EPIPE) { | 
 | 		if (in_async()) | 
 | 			async_exit(141); | 
 |  | 
 | 		signal(SIGPIPE, SIG_DFL); | 
 | 		raise(SIGPIPE); | 
 | 		/* Should never happen, but just in case... */ | 
 | 		exit(141); | 
 | 	} | 
 | } | 
 |  | 
 | int start_async(struct async *async) | 
 | { | 
 | 	int need_in, need_out; | 
 | 	int fdin[2], fdout[2]; | 
 | 	int proc_in, proc_out; | 
 |  | 
 | 	need_in = async->in < 0; | 
 | 	if (need_in) { | 
 | 		if (pipe(fdin) < 0) { | 
 | 			if (async->out > 0) | 
 | 				close(async->out); | 
 | 			return error_errno("cannot create pipe"); | 
 | 		} | 
 | 		async->in = fdin[1]; | 
 | 	} | 
 |  | 
 | 	need_out = async->out < 0; | 
 | 	if (need_out) { | 
 | 		if (pipe(fdout) < 0) { | 
 | 			if (need_in) | 
 | 				close_pair(fdin); | 
 | 			else if (async->in) | 
 | 				close(async->in); | 
 | 			return error_errno("cannot create pipe"); | 
 | 		} | 
 | 		async->out = fdout[0]; | 
 | 	} | 
 |  | 
 | 	if (need_in) | 
 | 		proc_in = fdin[0]; | 
 | 	else if (async->in) | 
 | 		proc_in = async->in; | 
 | 	else | 
 | 		proc_in = -1; | 
 |  | 
 | 	if (need_out) | 
 | 		proc_out = fdout[1]; | 
 | 	else if (async->out) | 
 | 		proc_out = async->out; | 
 | 	else | 
 | 		proc_out = -1; | 
 |  | 
 | #ifdef NO_PTHREADS | 
 | 	/* Flush stdio before fork() to avoid cloning buffers */ | 
 | 	fflush(NULL); | 
 |  | 
 | 	async->pid = fork(); | 
 | 	if (async->pid < 0) { | 
 | 		error_errno("fork (async) failed"); | 
 | 		goto error; | 
 | 	} | 
 | 	if (!async->pid) { | 
 | 		if (need_in) | 
 | 			close(fdin[1]); | 
 | 		if (need_out) | 
 | 			close(fdout[0]); | 
 | 		git_atexit_clear(); | 
 | 		process_is_async = 1; | 
 | 		exit(!!async->proc(proc_in, proc_out, async->data)); | 
 | 	} | 
 |  | 
 | 	mark_child_for_cleanup(async->pid, NULL); | 
 |  | 
 | 	if (need_in) | 
 | 		close(fdin[0]); | 
 | 	else if (async->in) | 
 | 		close(async->in); | 
 |  | 
 | 	if (need_out) | 
 | 		close(fdout[1]); | 
 | 	else if (async->out) | 
 | 		close(async->out); | 
 | #else | 
 | 	if (!main_thread_set) { | 
 | 		/* | 
 | 		 * We assume that the first time that start_async is called | 
 | 		 * it is from the main thread. | 
 | 		 */ | 
 | 		main_thread_set = 1; | 
 | 		main_thread = pthread_self(); | 
 | 		pthread_key_create(&async_key, NULL); | 
 | 		pthread_key_create(&async_die_counter, NULL); | 
 | 		set_die_routine(die_async); | 
 | 		set_die_is_recursing_routine(async_die_is_recursing); | 
 | 	} | 
 |  | 
 | 	if (proc_in >= 0) | 
 | 		set_cloexec(proc_in); | 
 | 	if (proc_out >= 0) | 
 | 		set_cloexec(proc_out); | 
 | 	async->proc_in = proc_in; | 
 | 	async->proc_out = proc_out; | 
 | 	{ | 
 | 		int err = pthread_create(&async->tid, NULL, run_thread, async); | 
 | 		if (err) { | 
 | 			error(_("cannot create async thread: %s"), strerror(err)); | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	if (need_in) | 
 | 		close_pair(fdin); | 
 | 	else if (async->in) | 
 | 		close(async->in); | 
 |  | 
 | 	if (need_out) | 
 | 		close_pair(fdout); | 
 | 	else if (async->out) | 
 | 		close(async->out); | 
 | 	return -1; | 
 | } | 
 |  | 
 | int finish_async(struct async *async) | 
 | { | 
 | #ifdef NO_PTHREADS | 
 | 	return wait_or_whine(async->pid, "child process", 0); | 
 | #else | 
 | 	void *ret = (void *)(intptr_t)(-1); | 
 |  | 
 | 	if (pthread_join(async->tid, &ret)) | 
 | 		error("pthread_join failed"); | 
 | 	return (int)(intptr_t)ret; | 
 | #endif | 
 | } | 
 |  | 
 | int async_with_fork(void) | 
 | { | 
 | #ifdef NO_PTHREADS | 
 | 	return 1; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | const char *find_hook(const char *name) | 
 | { | 
 | 	static struct strbuf path = STRBUF_INIT; | 
 |  | 
 | 	strbuf_reset(&path); | 
 | 	strbuf_git_path(&path, "hooks/%s", name); | 
 | 	if (access(path.buf, X_OK) < 0) { | 
 | 		int err = errno; | 
 |  | 
 | #ifdef STRIP_EXTENSION | 
 | 		strbuf_addstr(&path, STRIP_EXTENSION); | 
 | 		if (access(path.buf, X_OK) >= 0) | 
 | 			return path.buf; | 
 | 		if (errno == EACCES) | 
 | 			err = errno; | 
 | #endif | 
 |  | 
 | 		if (err == EACCES && advice_ignored_hook) { | 
 | 			static struct string_list advise_given = STRING_LIST_INIT_DUP; | 
 |  | 
 | 			if (!string_list_lookup(&advise_given, name)) { | 
 | 				string_list_insert(&advise_given, name); | 
 | 				advise(_("The '%s' hook was ignored because " | 
 | 					 "it's not set as executable.\n" | 
 | 					 "You can disable this warning with " | 
 | 					 "`git config advice.ignoredHook false`."), | 
 | 				       path.buf); | 
 | 			} | 
 | 		} | 
 | 		return NULL; | 
 | 	} | 
 | 	return path.buf; | 
 | } | 
 |  | 
 | int run_hook_ve(const char *const *env, const char *name, va_list args) | 
 | { | 
 | 	struct child_process hook = CHILD_PROCESS_INIT; | 
 | 	const char *p; | 
 |  | 
 | 	p = find_hook(name); | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	argv_array_push(&hook.args, p); | 
 | 	while ((p = va_arg(args, const char *))) | 
 | 		argv_array_push(&hook.args, p); | 
 | 	hook.env = env; | 
 | 	hook.no_stdin = 1; | 
 | 	hook.stdout_to_stderr = 1; | 
 | 	hook.trace2_hook_name = name; | 
 |  | 
 | 	return run_command(&hook); | 
 | } | 
 |  | 
 | int run_hook_le(const char *const *env, const char *name, ...) | 
 | { | 
 | 	va_list args; | 
 | 	int ret; | 
 |  | 
 | 	va_start(args, name); | 
 | 	ret = run_hook_ve(env, name, args); | 
 | 	va_end(args); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct io_pump { | 
 | 	/* initialized by caller */ | 
 | 	int fd; | 
 | 	int type; /* POLLOUT or POLLIN */ | 
 | 	union { | 
 | 		struct { | 
 | 			const char *buf; | 
 | 			size_t len; | 
 | 		} out; | 
 | 		struct { | 
 | 			struct strbuf *buf; | 
 | 			size_t hint; | 
 | 		} in; | 
 | 	} u; | 
 |  | 
 | 	/* returned by pump_io */ | 
 | 	int error; /* 0 for success, otherwise errno */ | 
 |  | 
 | 	/* internal use */ | 
 | 	struct pollfd *pfd; | 
 | }; | 
 |  | 
 | static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd) | 
 | { | 
 | 	int pollsize = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		struct io_pump *io = &slots[i]; | 
 | 		if (io->fd < 0) | 
 | 			continue; | 
 | 		pfd[pollsize].fd = io->fd; | 
 | 		pfd[pollsize].events = io->type; | 
 | 		io->pfd = &pfd[pollsize++]; | 
 | 	} | 
 |  | 
 | 	if (!pollsize) | 
 | 		return 0; | 
 |  | 
 | 	if (poll(pfd, pollsize, -1) < 0) { | 
 | 		if (errno == EINTR) | 
 | 			return 1; | 
 | 		die_errno("poll failed"); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		struct io_pump *io = &slots[i]; | 
 |  | 
 | 		if (io->fd < 0) | 
 | 			continue; | 
 |  | 
 | 		if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL))) | 
 | 			continue; | 
 |  | 
 | 		if (io->type == POLLOUT) { | 
 | 			ssize_t len = xwrite(io->fd, | 
 | 					     io->u.out.buf, io->u.out.len); | 
 | 			if (len < 0) { | 
 | 				io->error = errno; | 
 | 				close(io->fd); | 
 | 				io->fd = -1; | 
 | 			} else { | 
 | 				io->u.out.buf += len; | 
 | 				io->u.out.len -= len; | 
 | 				if (!io->u.out.len) { | 
 | 					close(io->fd); | 
 | 					io->fd = -1; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (io->type == POLLIN) { | 
 | 			ssize_t len = strbuf_read_once(io->u.in.buf, | 
 | 						       io->fd, io->u.in.hint); | 
 | 			if (len < 0) | 
 | 				io->error = errno; | 
 | 			if (len <= 0) { | 
 | 				close(io->fd); | 
 | 				io->fd = -1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int pump_io(struct io_pump *slots, int nr) | 
 | { | 
 | 	struct pollfd *pfd; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) | 
 | 		slots[i].error = 0; | 
 |  | 
 | 	ALLOC_ARRAY(pfd, nr); | 
 | 	while (pump_io_round(slots, nr, pfd)) | 
 | 		; /* nothing */ | 
 | 	free(pfd); | 
 |  | 
 | 	/* There may be multiple errno values, so just pick the first. */ | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		if (slots[i].error) { | 
 | 			errno = slots[i].error; | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | int pipe_command(struct child_process *cmd, | 
 | 		 const char *in, size_t in_len, | 
 | 		 struct strbuf *out, size_t out_hint, | 
 | 		 struct strbuf *err, size_t err_hint) | 
 | { | 
 | 	struct io_pump io[3]; | 
 | 	int nr = 0; | 
 |  | 
 | 	if (in) | 
 | 		cmd->in = -1; | 
 | 	if (out) | 
 | 		cmd->out = -1; | 
 | 	if (err) | 
 | 		cmd->err = -1; | 
 |  | 
 | 	if (start_command(cmd) < 0) | 
 | 		return -1; | 
 |  | 
 | 	if (in) { | 
 | 		io[nr].fd = cmd->in; | 
 | 		io[nr].type = POLLOUT; | 
 | 		io[nr].u.out.buf = in; | 
 | 		io[nr].u.out.len = in_len; | 
 | 		nr++; | 
 | 	} | 
 | 	if (out) { | 
 | 		io[nr].fd = cmd->out; | 
 | 		io[nr].type = POLLIN; | 
 | 		io[nr].u.in.buf = out; | 
 | 		io[nr].u.in.hint = out_hint; | 
 | 		nr++; | 
 | 	} | 
 | 	if (err) { | 
 | 		io[nr].fd = cmd->err; | 
 | 		io[nr].type = POLLIN; | 
 | 		io[nr].u.in.buf = err; | 
 | 		io[nr].u.in.hint = err_hint; | 
 | 		nr++; | 
 | 	} | 
 |  | 
 | 	if (pump_io(io, nr) < 0) { | 
 | 		finish_command(cmd); /* throw away exit code */ | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	return finish_command(cmd); | 
 | } | 
 |  | 
 | enum child_state { | 
 | 	GIT_CP_FREE, | 
 | 	GIT_CP_WORKING, | 
 | 	GIT_CP_WAIT_CLEANUP, | 
 | }; | 
 |  | 
 | struct parallel_processes { | 
 | 	void *data; | 
 |  | 
 | 	int max_processes; | 
 | 	int nr_processes; | 
 |  | 
 | 	get_next_task_fn get_next_task; | 
 | 	start_failure_fn start_failure; | 
 | 	task_finished_fn task_finished; | 
 |  | 
 | 	struct { | 
 | 		enum child_state state; | 
 | 		struct child_process process; | 
 | 		struct strbuf err; | 
 | 		void *data; | 
 | 	} *children; | 
 | 	/* | 
 | 	 * The struct pollfd is logically part of *children, | 
 | 	 * but the system call expects it as its own array. | 
 | 	 */ | 
 | 	struct pollfd *pfd; | 
 |  | 
 | 	unsigned shutdown : 1; | 
 |  | 
 | 	int output_owner; | 
 | 	struct strbuf buffered_output; /* of finished children */ | 
 | }; | 
 |  | 
 | static int default_start_failure(struct strbuf *out, | 
 | 				 void *pp_cb, | 
 | 				 void *pp_task_cb) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int default_task_finished(int result, | 
 | 				 struct strbuf *out, | 
 | 				 void *pp_cb, | 
 | 				 void *pp_task_cb) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kill_children(struct parallel_processes *pp, int signo) | 
 | { | 
 | 	int i, n = pp->max_processes; | 
 |  | 
 | 	for (i = 0; i < n; i++) | 
 | 		if (pp->children[i].state == GIT_CP_WORKING) | 
 | 			kill(pp->children[i].process.pid, signo); | 
 | } | 
 |  | 
 | static struct parallel_processes *pp_for_signal; | 
 |  | 
 | static void handle_children_on_signal(int signo) | 
 | { | 
 | 	kill_children(pp_for_signal, signo); | 
 | 	sigchain_pop(signo); | 
 | 	raise(signo); | 
 | } | 
 |  | 
 | static void pp_init(struct parallel_processes *pp, | 
 | 		    int n, | 
 | 		    get_next_task_fn get_next_task, | 
 | 		    start_failure_fn start_failure, | 
 | 		    task_finished_fn task_finished, | 
 | 		    void *data) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (n < 1) | 
 | 		n = online_cpus(); | 
 |  | 
 | 	pp->max_processes = n; | 
 |  | 
 | 	trace_printf("run_processes_parallel: preparing to run up to %d tasks", n); | 
 |  | 
 | 	pp->data = data; | 
 | 	if (!get_next_task) | 
 | 		BUG("you need to specify a get_next_task function"); | 
 | 	pp->get_next_task = get_next_task; | 
 |  | 
 | 	pp->start_failure = start_failure ? start_failure : default_start_failure; | 
 | 	pp->task_finished = task_finished ? task_finished : default_task_finished; | 
 |  | 
 | 	pp->nr_processes = 0; | 
 | 	pp->output_owner = 0; | 
 | 	pp->shutdown = 0; | 
 | 	pp->children = xcalloc(n, sizeof(*pp->children)); | 
 | 	pp->pfd = xcalloc(n, sizeof(*pp->pfd)); | 
 | 	strbuf_init(&pp->buffered_output, 0); | 
 |  | 
 | 	for (i = 0; i < n; i++) { | 
 | 		strbuf_init(&pp->children[i].err, 0); | 
 | 		child_process_init(&pp->children[i].process); | 
 | 		pp->pfd[i].events = POLLIN | POLLHUP; | 
 | 		pp->pfd[i].fd = -1; | 
 | 	} | 
 |  | 
 | 	pp_for_signal = pp; | 
 | 	sigchain_push_common(handle_children_on_signal); | 
 | } | 
 |  | 
 | static void pp_cleanup(struct parallel_processes *pp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	trace_printf("run_processes_parallel: done"); | 
 | 	for (i = 0; i < pp->max_processes; i++) { | 
 | 		strbuf_release(&pp->children[i].err); | 
 | 		child_process_clear(&pp->children[i].process); | 
 | 	} | 
 |  | 
 | 	free(pp->children); | 
 | 	free(pp->pfd); | 
 |  | 
 | 	/* | 
 | 	 * When get_next_task added messages to the buffer in its last | 
 | 	 * iteration, the buffered output is non empty. | 
 | 	 */ | 
 | 	strbuf_write(&pp->buffered_output, stderr); | 
 | 	strbuf_release(&pp->buffered_output); | 
 |  | 
 | 	sigchain_pop_common(); | 
 | } | 
 |  | 
 | /* returns | 
 |  *  0 if a new task was started. | 
 |  *  1 if no new jobs was started (get_next_task ran out of work, non critical | 
 |  *    problem with starting a new command) | 
 |  * <0 no new job was started, user wishes to shutdown early. Use negative code | 
 |  *    to signal the children. | 
 |  */ | 
 | static int pp_start_one(struct parallel_processes *pp) | 
 | { | 
 | 	int i, code; | 
 |  | 
 | 	for (i = 0; i < pp->max_processes; i++) | 
 | 		if (pp->children[i].state == GIT_CP_FREE) | 
 | 			break; | 
 | 	if (i == pp->max_processes) | 
 | 		BUG("bookkeeping is hard"); | 
 |  | 
 | 	code = pp->get_next_task(&pp->children[i].process, | 
 | 				 &pp->children[i].err, | 
 | 				 pp->data, | 
 | 				 &pp->children[i].data); | 
 | 	if (!code) { | 
 | 		strbuf_addbuf(&pp->buffered_output, &pp->children[i].err); | 
 | 		strbuf_reset(&pp->children[i].err); | 
 | 		return 1; | 
 | 	} | 
 | 	pp->children[i].process.err = -1; | 
 | 	pp->children[i].process.stdout_to_stderr = 1; | 
 | 	pp->children[i].process.no_stdin = 1; | 
 |  | 
 | 	if (start_command(&pp->children[i].process)) { | 
 | 		code = pp->start_failure(&pp->children[i].err, | 
 | 					 pp->data, | 
 | 					 pp->children[i].data); | 
 | 		strbuf_addbuf(&pp->buffered_output, &pp->children[i].err); | 
 | 		strbuf_reset(&pp->children[i].err); | 
 | 		if (code) | 
 | 			pp->shutdown = 1; | 
 | 		return code; | 
 | 	} | 
 |  | 
 | 	pp->nr_processes++; | 
 | 	pp->children[i].state = GIT_CP_WORKING; | 
 | 	pp->pfd[i].fd = pp->children[i].process.err; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) { | 
 | 		if (errno == EINTR) | 
 | 			continue; | 
 | 		pp_cleanup(pp); | 
 | 		die_errno("poll"); | 
 | 	} | 
 |  | 
 | 	/* Buffer output from all pipes. */ | 
 | 	for (i = 0; i < pp->max_processes; i++) { | 
 | 		if (pp->children[i].state == GIT_CP_WORKING && | 
 | 		    pp->pfd[i].revents & (POLLIN | POLLHUP)) { | 
 | 			int n = strbuf_read_once(&pp->children[i].err, | 
 | 						 pp->children[i].process.err, 0); | 
 | 			if (n == 0) { | 
 | 				close(pp->children[i].process.err); | 
 | 				pp->children[i].state = GIT_CP_WAIT_CLEANUP; | 
 | 			} else if (n < 0) | 
 | 				if (errno != EAGAIN) | 
 | 					die_errno("read"); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void pp_output(struct parallel_processes *pp) | 
 | { | 
 | 	int i = pp->output_owner; | 
 | 	if (pp->children[i].state == GIT_CP_WORKING && | 
 | 	    pp->children[i].err.len) { | 
 | 		strbuf_write(&pp->children[i].err, stderr); | 
 | 		strbuf_reset(&pp->children[i].err); | 
 | 	} | 
 | } | 
 |  | 
 | static int pp_collect_finished(struct parallel_processes *pp) | 
 | { | 
 | 	int i, code; | 
 | 	int n = pp->max_processes; | 
 | 	int result = 0; | 
 |  | 
 | 	while (pp->nr_processes > 0) { | 
 | 		for (i = 0; i < pp->max_processes; i++) | 
 | 			if (pp->children[i].state == GIT_CP_WAIT_CLEANUP) | 
 | 				break; | 
 | 		if (i == pp->max_processes) | 
 | 			break; | 
 |  | 
 | 		code = finish_command(&pp->children[i].process); | 
 |  | 
 | 		code = pp->task_finished(code, | 
 | 					 &pp->children[i].err, pp->data, | 
 | 					 pp->children[i].data); | 
 |  | 
 | 		if (code) | 
 | 			result = code; | 
 | 		if (code < 0) | 
 | 			break; | 
 |  | 
 | 		pp->nr_processes--; | 
 | 		pp->children[i].state = GIT_CP_FREE; | 
 | 		pp->pfd[i].fd = -1; | 
 | 		child_process_init(&pp->children[i].process); | 
 |  | 
 | 		if (i != pp->output_owner) { | 
 | 			strbuf_addbuf(&pp->buffered_output, &pp->children[i].err); | 
 | 			strbuf_reset(&pp->children[i].err); | 
 | 		} else { | 
 | 			strbuf_write(&pp->children[i].err, stderr); | 
 | 			strbuf_reset(&pp->children[i].err); | 
 |  | 
 | 			/* Output all other finished child processes */ | 
 | 			strbuf_write(&pp->buffered_output, stderr); | 
 | 			strbuf_reset(&pp->buffered_output); | 
 |  | 
 | 			/* | 
 | 			 * Pick next process to output live. | 
 | 			 * NEEDSWORK: | 
 | 			 * For now we pick it randomly by doing a round | 
 | 			 * robin. Later we may want to pick the one with | 
 | 			 * the most output or the longest or shortest | 
 | 			 * running process time. | 
 | 			 */ | 
 | 			for (i = 0; i < n; i++) | 
 | 				if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING) | 
 | 					break; | 
 | 			pp->output_owner = (pp->output_owner + i) % n; | 
 | 		} | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | int run_processes_parallel(int n, | 
 | 			   get_next_task_fn get_next_task, | 
 | 			   start_failure_fn start_failure, | 
 | 			   task_finished_fn task_finished, | 
 | 			   void *pp_cb) | 
 | { | 
 | 	int i, code; | 
 | 	int output_timeout = 100; | 
 | 	int spawn_cap = 4; | 
 | 	struct parallel_processes pp; | 
 |  | 
 | 	pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb); | 
 | 	while (1) { | 
 | 		for (i = 0; | 
 | 		    i < spawn_cap && !pp.shutdown && | 
 | 		    pp.nr_processes < pp.max_processes; | 
 | 		    i++) { | 
 | 			code = pp_start_one(&pp); | 
 | 			if (!code) | 
 | 				continue; | 
 | 			if (code < 0) { | 
 | 				pp.shutdown = 1; | 
 | 				kill_children(&pp, -code); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		if (!pp.nr_processes) | 
 | 			break; | 
 | 		pp_buffer_stderr(&pp, output_timeout); | 
 | 		pp_output(&pp); | 
 | 		code = pp_collect_finished(&pp); | 
 | 		if (code) { | 
 | 			pp.shutdown = 1; | 
 | 			if (code < 0) | 
 | 				kill_children(&pp, -code); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pp_cleanup(&pp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task, | 
 | 			       start_failure_fn start_failure, | 
 | 			       task_finished_fn task_finished, void *pp_cb, | 
 | 			       const char *tr2_category, const char *tr2_label) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d", | 
 | 				   ((n < 1) ? online_cpus() : n)); | 
 |  | 
 | 	result = run_processes_parallel(n, get_next_task, start_failure, | 
 | 					task_finished, pp_cb); | 
 |  | 
 | 	trace2_region_leave(tr2_category, tr2_label, NULL); | 
 |  | 
 | 	return result; | 
 | } |