| /* Extended regular expression matching and search library. | 
 |    Copyright (C) 2002-2007,2009,2010 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |    Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, write to the Free | 
 |    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
 |    02110-1301 USA.  */ | 
 |  | 
 | #include <stdint.h> | 
 |  | 
 | static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, | 
 | 					  size_t length, reg_syntax_t syntax); | 
 | static void re_compile_fastmap_iter (regex_t *bufp, | 
 | 				     const re_dfastate_t *init_state, | 
 | 				     char *fastmap); | 
 | static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len); | 
 | #ifdef RE_ENABLE_I18N | 
 | static void free_charset (re_charset_t *cset); | 
 | #endif /* RE_ENABLE_I18N */ | 
 | static void free_workarea_compile (regex_t *preg); | 
 | static reg_errcode_t create_initial_state (re_dfa_t *dfa); | 
 | #ifdef RE_ENABLE_I18N | 
 | static void optimize_utf8 (re_dfa_t *dfa); | 
 | #endif | 
 | static reg_errcode_t analyze (regex_t *preg); | 
 | static reg_errcode_t preorder (bin_tree_t *root, | 
 | 			       reg_errcode_t (fn (void *, bin_tree_t *)), | 
 | 			       void *extra); | 
 | static reg_errcode_t postorder (bin_tree_t *root, | 
 | 				reg_errcode_t (fn (void *, bin_tree_t *)), | 
 | 				void *extra); | 
 | static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); | 
 | static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); | 
 | static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, | 
 | 				 bin_tree_t *node); | 
 | static reg_errcode_t calc_first (void *extra, bin_tree_t *node); | 
 | static reg_errcode_t calc_next (void *extra, bin_tree_t *node); | 
 | static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); | 
 | static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint); | 
 | static int search_duplicated_node (const re_dfa_t *dfa, int org_node, | 
 | 				   unsigned int constraint); | 
 | static reg_errcode_t calc_eclosure (re_dfa_t *dfa); | 
 | static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, | 
 | 					 int node, int root); | 
 | static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); | 
 | static int fetch_number (re_string_t *input, re_token_t *token, | 
 | 			 reg_syntax_t syntax); | 
 | static int peek_token (re_token_t *token, re_string_t *input, | 
 | 			reg_syntax_t syntax) internal_function; | 
 | static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, | 
 | 			  reg_syntax_t syntax, reg_errcode_t *err); | 
 | static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, | 
 | 				  re_token_t *token, reg_syntax_t syntax, | 
 | 				  int nest, reg_errcode_t *err); | 
 | static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, | 
 | 				 re_token_t *token, reg_syntax_t syntax, | 
 | 				 int nest, reg_errcode_t *err); | 
 | static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, | 
 | 				     re_token_t *token, reg_syntax_t syntax, | 
 | 				     int nest, reg_errcode_t *err); | 
 | static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, | 
 | 				  re_token_t *token, reg_syntax_t syntax, | 
 | 				  int nest, reg_errcode_t *err); | 
 | static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, | 
 | 				 re_dfa_t *dfa, re_token_t *token, | 
 | 				 reg_syntax_t syntax, reg_errcode_t *err); | 
 | static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, | 
 | 				      re_token_t *token, reg_syntax_t syntax, | 
 | 				      reg_errcode_t *err); | 
 | static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, | 
 | 					    re_string_t *regexp, | 
 | 					    re_token_t *token, int token_len, | 
 | 					    re_dfa_t *dfa, | 
 | 					    reg_syntax_t syntax, | 
 | 					    int accept_hyphen); | 
 | static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, | 
 | 					  re_string_t *regexp, | 
 | 					  re_token_t *token); | 
 | #ifdef RE_ENABLE_I18N | 
 | static reg_errcode_t build_equiv_class (bitset_t sbcset, | 
 | 					re_charset_t *mbcset, | 
 | 					int *equiv_class_alloc, | 
 | 					const unsigned char *name); | 
 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, | 
 | 				      bitset_t sbcset, | 
 | 				      re_charset_t *mbcset, | 
 | 				      int *char_class_alloc, | 
 | 				      const char *class_name, | 
 | 				      reg_syntax_t syntax); | 
 | #else  /* not RE_ENABLE_I18N */ | 
 | static reg_errcode_t build_equiv_class (bitset_t sbcset, | 
 | 					const unsigned char *name); | 
 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, | 
 | 				      bitset_t sbcset, | 
 | 				      const char *class_name, | 
 | 				      reg_syntax_t syntax); | 
 | #endif /* not RE_ENABLE_I18N */ | 
 | static bin_tree_t *build_charclass_op (re_dfa_t *dfa, | 
 | 				       RE_TRANSLATE_TYPE trans, | 
 | 				       const char *class_name, | 
 | 				       const char *extra, | 
 | 				       int non_match, reg_errcode_t *err); | 
 | static bin_tree_t *create_tree (re_dfa_t *dfa, | 
 | 				bin_tree_t *left, bin_tree_t *right, | 
 | 				re_token_type_t type); | 
 | static bin_tree_t *create_token_tree (re_dfa_t *dfa, | 
 | 				      bin_tree_t *left, bin_tree_t *right, | 
 | 				      const re_token_t *token); | 
 | static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); | 
 | static void free_token (re_token_t *node); | 
 | static reg_errcode_t free_tree (void *extra, bin_tree_t *node); | 
 | static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); | 
 |  | 
 | /* This table gives an error message for each of the error codes listed | 
 |    in regex.h.  Obviously the order here has to be same as there. | 
 |    POSIX doesn't require that we do anything for REG_NOERROR, | 
 |    but why not be nice?  */ | 
 |  | 
 | const char __re_error_msgid[] attribute_hidden = | 
 |   { | 
 | #define REG_NOERROR_IDX	0 | 
 |     gettext_noop ("Success")	/* REG_NOERROR */ | 
 |     "\0" | 
 | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") | 
 |     gettext_noop ("No match")	/* REG_NOMATCH */ | 
 |     "\0" | 
 | #define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match") | 
 |     gettext_noop ("Invalid regular expression") /* REG_BADPAT */ | 
 |     "\0" | 
 | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") | 
 |     gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ | 
 |     "\0" | 
 | #define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character") | 
 |     gettext_noop ("Invalid character class name") /* REG_ECTYPE */ | 
 |     "\0" | 
 | #define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name") | 
 |     gettext_noop ("Trailing backslash") /* REG_EESCAPE */ | 
 |     "\0" | 
 | #define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash") | 
 |     gettext_noop ("Invalid back reference") /* REG_ESUBREG */ | 
 |     "\0" | 
 | #define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference") | 
 |     gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */ | 
 |     "\0" | 
 | #define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^") | 
 |     gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ | 
 |     "\0" | 
 | #define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") | 
 |     gettext_noop ("Unmatched \\{") /* REG_EBRACE */ | 
 |     "\0" | 
 | #define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{") | 
 |     gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ | 
 |     "\0" | 
 | #define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") | 
 |     gettext_noop ("Invalid range end")	/* REG_ERANGE */ | 
 |     "\0" | 
 | #define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end") | 
 |     gettext_noop ("Memory exhausted") /* REG_ESPACE */ | 
 |     "\0" | 
 | #define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted") | 
 |     gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ | 
 |     "\0" | 
 | #define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") | 
 |     gettext_noop ("Premature end of regular expression") /* REG_EEND */ | 
 |     "\0" | 
 | #define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression") | 
 |     gettext_noop ("Regular expression too big") /* REG_ESIZE */ | 
 |     "\0" | 
 | #define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big") | 
 |     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ | 
 |   }; | 
 |  | 
 | const size_t __re_error_msgid_idx[] attribute_hidden = | 
 |   { | 
 |     REG_NOERROR_IDX, | 
 |     REG_NOMATCH_IDX, | 
 |     REG_BADPAT_IDX, | 
 |     REG_ECOLLATE_IDX, | 
 |     REG_ECTYPE_IDX, | 
 |     REG_EESCAPE_IDX, | 
 |     REG_ESUBREG_IDX, | 
 |     REG_EBRACK_IDX, | 
 |     REG_EPAREN_IDX, | 
 |     REG_EBRACE_IDX, | 
 |     REG_BADBR_IDX, | 
 |     REG_ERANGE_IDX, | 
 |     REG_ESPACE_IDX, | 
 |     REG_BADRPT_IDX, | 
 |     REG_EEND_IDX, | 
 |     REG_ESIZE_IDX, | 
 |     REG_ERPAREN_IDX | 
 |   }; | 
 |  | 
 | /* Entry points for GNU code.  */ | 
 |  | 
 |  | 
 | #ifdef ZOS_USS | 
 |  | 
 | /* For ZOS USS we must define btowc */ | 
 |  | 
 | wchar_t  | 
 | btowc (int c) | 
 | { | 
 |    wchar_t wtmp[2]; | 
 |    char tmp[2]; | 
 |  | 
 |    tmp[0] = c; | 
 |    tmp[1] = 0; | 
 |  | 
 |    mbtowc (wtmp, tmp, 1); | 
 |    return wtmp[0]; | 
 | } | 
 | #endif | 
 |  | 
 | /* re_compile_pattern is the GNU regular expression compiler: it | 
 |    compiles PATTERN (of length LENGTH) and puts the result in BUFP. | 
 |    Returns 0 if the pattern was valid, otherwise an error string. | 
 |  | 
 |    Assumes the `allocated' (and perhaps `buffer') and `translate' fields | 
 |    are set in BUFP on entry.  */ | 
 |  | 
 | const char * | 
 | re_compile_pattern (const char *pattern, | 
 | 		    size_t length, | 
 | 		    struct re_pattern_buffer *bufp) | 
 | { | 
 |   reg_errcode_t ret; | 
 |  | 
 |   /* And GNU code determines whether or not to get register information | 
 |      by passing null for the REGS argument to re_match, etc., not by | 
 |      setting no_sub, unless RE_NO_SUB is set.  */ | 
 |   bufp->no_sub = !!(re_syntax_options & RE_NO_SUB); | 
 |  | 
 |   /* Match anchors at newline.  */ | 
 |   bufp->newline_anchor = 1; | 
 |  | 
 |   ret = re_compile_internal (bufp, pattern, length, re_syntax_options); | 
 |  | 
 |   if (!ret) | 
 |     return NULL; | 
 |   return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__re_compile_pattern, re_compile_pattern) | 
 | #endif | 
 |  | 
 | /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can | 
 |    also be assigned to arbitrarily: each pattern buffer stores its own | 
 |    syntax, so it can be changed between regex compilations.  */ | 
 | /* This has no initializer because initialized variables in Emacs | 
 |    become read-only after dumping.  */ | 
 | reg_syntax_t re_syntax_options; | 
 |  | 
 |  | 
 | /* Specify the precise syntax of regexps for compilation.  This provides | 
 |    for compatibility for various utilities which historically have | 
 |    different, incompatible syntaxes. | 
 |  | 
 |    The argument SYNTAX is a bit mask comprised of the various bits | 
 |    defined in regex.h.  We return the old syntax.  */ | 
 |  | 
 | reg_syntax_t | 
 | re_set_syntax (reg_syntax_t syntax) | 
 | { | 
 |   reg_syntax_t ret = re_syntax_options; | 
 |  | 
 |   re_syntax_options = syntax; | 
 |   return ret; | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__re_set_syntax, re_set_syntax) | 
 | #endif | 
 |  | 
 | int | 
 | re_compile_fastmap (struct re_pattern_buffer *bufp) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | 
 |   char *fastmap = bufp->fastmap; | 
 |  | 
 |   memset (fastmap, '\0', sizeof (char) * SBC_MAX); | 
 |   re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); | 
 |   if (dfa->init_state != dfa->init_state_word) | 
 |     re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); | 
 |   if (dfa->init_state != dfa->init_state_nl) | 
 |     re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); | 
 |   if (dfa->init_state != dfa->init_state_begbuf) | 
 |     re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); | 
 |   bufp->fastmap_accurate = 1; | 
 |   return 0; | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__re_compile_fastmap, re_compile_fastmap) | 
 | #endif | 
 |  | 
 | static inline void | 
 | __attribute ((always_inline)) | 
 | re_set_fastmap (char *fastmap, int icase, int ch) | 
 | { | 
 |   fastmap[ch] = 1; | 
 |   if (icase) | 
 |     fastmap[tolower (ch)] = 1; | 
 | } | 
 |  | 
 | /* Helper function for re_compile_fastmap. | 
 |    Compile fastmap for the initial_state INIT_STATE.  */ | 
 |  | 
 | static void | 
 | re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, | 
 | 			 char *fastmap) | 
 | { | 
 |   volatile re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | 
 |   int node_cnt; | 
 |   int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE)); | 
 |   for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) | 
 |     { | 
 |       int node = init_state->nodes.elems[node_cnt]; | 
 |       re_token_type_t type = dfa->nodes[node].type; | 
 |  | 
 |       if (type == CHARACTER) | 
 | 	{ | 
 | 	  re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); | 
 | #ifdef RE_ENABLE_I18N | 
 | 	  if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) | 
 | 	    { | 
 | 	      unsigned char *buf = re_malloc (unsigned char, dfa->mb_cur_max), *p; | 
 | 	      wchar_t wc; | 
 | 	      mbstate_t state; | 
 |  | 
 | 	      p = buf; | 
 | 	      *p++ = dfa->nodes[node].opr.c; | 
 | 	      while (++node < dfa->nodes_len | 
 | 		     && dfa->nodes[node].type == CHARACTER | 
 | 		     && dfa->nodes[node].mb_partial) | 
 | 		*p++ = dfa->nodes[node].opr.c; | 
 | 	      memset (&state, '\0', sizeof (state)); | 
 | 	      if (__mbrtowc (&wc, (const char *) buf, p - buf, | 
 | 			     &state) == p - buf | 
 | 		  && (__wcrtomb ((char *) buf, towlower (wc), &state) | 
 | 		      != (size_t) -1)) | 
 | 		re_set_fastmap (fastmap, 0, buf[0]); | 
 | 	      re_free (buf); | 
 | 	    } | 
 | #endif | 
 | 	} | 
 |       else if (type == SIMPLE_BRACKET) | 
 | 	{ | 
 | 	  int i, ch; | 
 | 	  for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | 
 | 	    { | 
 | 	      int j; | 
 | 	      bitset_word_t w = dfa->nodes[node].opr.sbcset[i]; | 
 | 	      for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | 
 | 		if (w & ((bitset_word_t) 1 << j)) | 
 | 		  re_set_fastmap (fastmap, icase, ch); | 
 | 	    } | 
 | 	} | 
 | #ifdef RE_ENABLE_I18N | 
 |       else if (type == COMPLEX_BRACKET) | 
 | 	{ | 
 | 	  re_charset_t *cset = dfa->nodes[node].opr.mbcset; | 
 | 	  int i; | 
 |  | 
 | # ifdef _LIBC | 
 | 	  /* See if we have to try all bytes which start multiple collation | 
 | 	     elements. | 
 | 	     e.g. In da_DK, we want to catch 'a' since "aa" is a valid | 
 | 		  collation element, and don't catch 'b' since 'b' is | 
 | 		  the only collation element which starts from 'b' (and | 
 | 		  it is caught by SIMPLE_BRACKET).  */ | 
 | 	      if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0 | 
 | 		  && (cset->ncoll_syms || cset->nranges)) | 
 | 		{ | 
 | 		  const int32_t *table = (const int32_t *) | 
 | 		    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | 
 | 		  for (i = 0; i < SBC_MAX; ++i) | 
 | 		    if (table[i] < 0) | 
 | 		      re_set_fastmap (fastmap, icase, i); | 
 | 		} | 
 | # endif /* _LIBC */ | 
 |  | 
 | 	  /* See if we have to start the match at all multibyte characters, | 
 | 	     i.e. where we would not find an invalid sequence.  This only | 
 | 	     applies to multibyte character sets; for single byte character | 
 | 	     sets, the SIMPLE_BRACKET again suffices.  */ | 
 | 	  if (dfa->mb_cur_max > 1 | 
 | 	      && (cset->nchar_classes || cset->non_match || cset->nranges | 
 | # ifdef _LIBC | 
 | 		  || cset->nequiv_classes | 
 | # endif /* _LIBC */ | 
 | 		 )) | 
 | 	    { | 
 | 	      unsigned char c = 0; | 
 | 	      do | 
 | 		{ | 
 | 		  mbstate_t mbs; | 
 | 		  memset (&mbs, 0, sizeof (mbs)); | 
 | 		  if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2) | 
 | 		    re_set_fastmap (fastmap, false, (int) c); | 
 | 		} | 
 | 	      while (++c != 0); | 
 | 	    } | 
 |  | 
 | 	  else | 
 | 	    { | 
 | 	      /* ... Else catch all bytes which can start the mbchars.  */ | 
 | 	      for (i = 0; i < cset->nmbchars; ++i) | 
 | 		{ | 
 | 		  char buf[256]; | 
 | 		  mbstate_t state; | 
 | 		  memset (&state, '\0', sizeof (state)); | 
 | 		  if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) | 
 | 		    re_set_fastmap (fastmap, icase, *(unsigned char *) buf); | 
 | 		  if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) | 
 | 		    { | 
 | 		      if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) | 
 | 			  != (size_t) -1) | 
 | 			re_set_fastmap (fastmap, false, *(unsigned char *) buf); | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	} | 
 | #endif /* RE_ENABLE_I18N */ | 
 |       else if (type == OP_PERIOD | 
 | #ifdef RE_ENABLE_I18N | 
 | 	       || type == OP_UTF8_PERIOD | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 	       || type == END_OF_RE) | 
 | 	{ | 
 | 	  memset (fastmap, '\1', sizeof (char) * SBC_MAX); | 
 | 	  if (type == END_OF_RE) | 
 | 	    bufp->can_be_null = 1; | 
 | 	  return; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | /* Entry point for POSIX code.  */ | 
 | /* regcomp takes a regular expression as a string and compiles it. | 
 |  | 
 |    PREG is a regex_t *.  We do not expect any fields to be initialized, | 
 |    since POSIX says we shouldn't.  Thus, we set | 
 |  | 
 |      `buffer' to the compiled pattern; | 
 |      `used' to the length of the compiled pattern; | 
 |      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | 
 |        REG_EXTENDED bit in CFLAGS is set; otherwise, to | 
 |        RE_SYNTAX_POSIX_BASIC; | 
 |      `newline_anchor' to REG_NEWLINE being set in CFLAGS; | 
 |      `fastmap' to an allocated space for the fastmap; | 
 |      `fastmap_accurate' to zero; | 
 |      `re_nsub' to the number of subexpressions in PATTERN. | 
 |  | 
 |    PATTERN is the address of the pattern string. | 
 |  | 
 |    CFLAGS is a series of bits which affect compilation. | 
 |  | 
 |      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | 
 |      use POSIX basic syntax. | 
 |  | 
 |      If REG_NEWLINE is set, then . and [^...] don't match newline. | 
 |      Also, regexec will try a match beginning after every newline. | 
 |  | 
 |      If REG_ICASE is set, then we considers upper- and lowercase | 
 |      versions of letters to be equivalent when matching. | 
 |  | 
 |      If REG_NOSUB is set, then when PREG is passed to regexec, that | 
 |      routine will report only success or failure, and nothing about the | 
 |      registers. | 
 |  | 
 |    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for | 
 |    the return codes and their meanings.)  */ | 
 |  | 
 | int | 
 | regcomp (regex_t *__restrict preg, | 
 | 	 const char *__restrict pattern, | 
 | 	 int cflags) | 
 | { | 
 |   reg_errcode_t ret; | 
 |   reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED | 
 | 			 : RE_SYNTAX_POSIX_BASIC); | 
 |  | 
 |   preg->buffer = NULL; | 
 |   preg->allocated = 0; | 
 |   preg->used = 0; | 
 |  | 
 |   /* Try to allocate space for the fastmap.  */ | 
 |   preg->fastmap = re_malloc (char, SBC_MAX); | 
 |   if (BE (preg->fastmap == NULL, 0)) | 
 |     return REG_ESPACE; | 
 |  | 
 |   syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; | 
 |  | 
 |   /* If REG_NEWLINE is set, newlines are treated differently.  */ | 
 |   if (cflags & REG_NEWLINE) | 
 |     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */ | 
 |       syntax &= ~RE_DOT_NEWLINE; | 
 |       syntax |= RE_HAT_LISTS_NOT_NEWLINE; | 
 |       /* It also changes the matching behavior.  */ | 
 |       preg->newline_anchor = 1; | 
 |     } | 
 |   else | 
 |     preg->newline_anchor = 0; | 
 |   preg->no_sub = !!(cflags & REG_NOSUB); | 
 |   preg->translate = NULL; | 
 |  | 
 |   ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); | 
 |  | 
 |   /* POSIX doesn't distinguish between an unmatched open-group and an | 
 |      unmatched close-group: both are REG_EPAREN.  */ | 
 |   if (ret == REG_ERPAREN) | 
 |     ret = REG_EPAREN; | 
 |  | 
 |   /* We have already checked preg->fastmap != NULL.  */ | 
 |   if (BE (ret == REG_NOERROR, 1)) | 
 |     /* Compute the fastmap now, since regexec cannot modify the pattern | 
 |        buffer.  This function never fails in this implementation.  */ | 
 |     (void) re_compile_fastmap (preg); | 
 |   else | 
 |     { | 
 |       /* Some error occurred while compiling the expression.  */ | 
 |       re_free (preg->fastmap); | 
 |       preg->fastmap = NULL; | 
 |     } | 
 |  | 
 |   return (int) ret; | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__regcomp, regcomp) | 
 | #endif | 
 |  | 
 | /* Returns a message corresponding to an error code, ERRCODE, returned | 
 |    from either regcomp or regexec.   We don't use PREG here.  */ | 
 |  | 
 | size_t | 
 | regerror(int errcode, const regex_t *__restrict preg, | 
 | 	 char *__restrict errbuf, size_t errbuf_size) | 
 | { | 
 |   const char *msg; | 
 |   size_t msg_size; | 
 |  | 
 |   if (BE (errcode < 0 | 
 | 	  || errcode >= (int) (sizeof (__re_error_msgid_idx) | 
 | 			       / sizeof (__re_error_msgid_idx[0])), 0)) | 
 |     /* Only error codes returned by the rest of the code should be passed | 
 |        to this routine.  If we are given anything else, or if other regex | 
 |        code generates an invalid error code, then the program has a bug. | 
 |        Dump core so we can fix it.  */ | 
 |     abort (); | 
 |  | 
 |   msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); | 
 |  | 
 |   msg_size = strlen (msg) + 1; /* Includes the null.  */ | 
 |  | 
 |   if (BE (errbuf_size != 0, 1)) | 
 |     { | 
 |       if (BE (msg_size > errbuf_size, 0)) | 
 | 	{ | 
 | 	  memcpy (errbuf, msg, errbuf_size - 1); | 
 | 	  errbuf[errbuf_size - 1] = 0; | 
 | 	} | 
 |       else | 
 | 	memcpy (errbuf, msg, msg_size); | 
 |     } | 
 |  | 
 |   return msg_size; | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__regerror, regerror) | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 | /* This static array is used for the map to single-byte characters when | 
 |    UTF-8 is used.  Otherwise we would allocate memory just to initialize | 
 |    it the same all the time.  UTF-8 is the preferred encoding so this is | 
 |    a worthwhile optimization.  */ | 
 | #if __GNUC__ >= 3 | 
 | static const bitset_t utf8_sb_map = { | 
 |   /* Set the first 128 bits.  */ | 
 |   [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX | 
 | }; | 
 | #else /* ! (__GNUC__ >= 3) */ | 
 | static bitset_t utf8_sb_map; | 
 | #endif /* __GNUC__ >= 3 */ | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 |  | 
 | static void | 
 | free_dfa_content (re_dfa_t *dfa) | 
 | { | 
 |   int i, j; | 
 |  | 
 |   if (dfa->nodes) | 
 |     for (i = 0; i < dfa->nodes_len; ++i) | 
 |       free_token (dfa->nodes + i); | 
 |   re_free (dfa->nexts); | 
 |   for (i = 0; i < dfa->nodes_len; ++i) | 
 |     { | 
 |       if (dfa->eclosures != NULL) | 
 | 	re_node_set_free (dfa->eclosures + i); | 
 |       if (dfa->inveclosures != NULL) | 
 | 	re_node_set_free (dfa->inveclosures + i); | 
 |       if (dfa->edests != NULL) | 
 | 	re_node_set_free (dfa->edests + i); | 
 |     } | 
 |   re_free (dfa->edests); | 
 |   re_free (dfa->eclosures); | 
 |   re_free (dfa->inveclosures); | 
 |   re_free (dfa->nodes); | 
 |  | 
 |   if (dfa->state_table) | 
 |     for (i = 0; i <= dfa->state_hash_mask; ++i) | 
 |       { | 
 | 	struct re_state_table_entry *entry = dfa->state_table + i; | 
 | 	for (j = 0; j < entry->num; ++j) | 
 | 	  { | 
 | 	    re_dfastate_t *state = entry->array[j]; | 
 | 	    free_state (state); | 
 | 	  } | 
 | 	re_free (entry->array); | 
 |       } | 
 |   re_free (dfa->state_table); | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (dfa->sb_char != utf8_sb_map) | 
 |     re_free (dfa->sb_char); | 
 | #endif | 
 |   re_free (dfa->subexp_map); | 
 | #ifdef DEBUG | 
 |   re_free (dfa->re_str); | 
 | #endif | 
 |  | 
 |   re_free (dfa); | 
 | } | 
 |  | 
 |  | 
 | /* Free dynamically allocated space used by PREG.  */ | 
 |  | 
 | void | 
 | regfree (regex_t *preg) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   if (BE (dfa != NULL, 1)) | 
 |     free_dfa_content (dfa); | 
 |   preg->buffer = NULL; | 
 |   preg->allocated = 0; | 
 |  | 
 |   re_free (preg->fastmap); | 
 |   preg->fastmap = NULL; | 
 |  | 
 |   re_free (preg->translate); | 
 |   preg->translate = NULL; | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__regfree, regfree) | 
 | #endif | 
 |  | 
 | /* Entry points compatible with 4.2 BSD regex library.  We don't define | 
 |    them unless specifically requested.  */ | 
 |  | 
 | #if defined _REGEX_RE_COMP || defined _LIBC | 
 |  | 
 | /* BSD has one and only one pattern buffer.  */ | 
 | static struct re_pattern_buffer re_comp_buf; | 
 |  | 
 | char * | 
 | # ifdef _LIBC | 
 | /* Make these definitions weak in libc, so POSIX programs can redefine | 
 |    these names if they don't use our functions, and still use | 
 |    regcomp/regexec above without link errors.  */ | 
 | weak_function | 
 | # endif | 
 | re_comp (s) | 
 |      const char *s; | 
 | { | 
 |   reg_errcode_t ret; | 
 |   char *fastmap; | 
 |  | 
 |   if (!s) | 
 |     { | 
 |       if (!re_comp_buf.buffer) | 
 | 	return gettext ("No previous regular expression"); | 
 |       return 0; | 
 |     } | 
 |  | 
 |   if (re_comp_buf.buffer) | 
 |     { | 
 |       fastmap = re_comp_buf.fastmap; | 
 |       re_comp_buf.fastmap = NULL; | 
 |       __regfree (&re_comp_buf); | 
 |       memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); | 
 |       re_comp_buf.fastmap = fastmap; | 
 |     } | 
 |  | 
 |   if (re_comp_buf.fastmap == NULL) | 
 |     { | 
 |       re_comp_buf.fastmap = (char *) malloc (SBC_MAX); | 
 |       if (re_comp_buf.fastmap == NULL) | 
 | 	return (char *) gettext (__re_error_msgid | 
 | 				 + __re_error_msgid_idx[(int) REG_ESPACE]); | 
 |     } | 
 |  | 
 |   /* Since `re_exec' always passes NULL for the `regs' argument, we | 
 |      don't need to initialize the pattern buffer fields which affect it.  */ | 
 |  | 
 |   /* Match anchors at newlines.  */ | 
 |   re_comp_buf.newline_anchor = 1; | 
 |  | 
 |   ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); | 
 |  | 
 |   if (!ret) | 
 |     return NULL; | 
 |  | 
 |   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */ | 
 |   return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | 
 | } | 
 |  | 
 | #ifdef _LIBC | 
 | libc_freeres_fn (free_mem) | 
 | { | 
 |   __regfree (&re_comp_buf); | 
 | } | 
 | #endif | 
 |  | 
 | #endif /* _REGEX_RE_COMP */ | 
 |  | 
 | /* Internal entry point. | 
 |    Compile the regular expression PATTERN, whose length is LENGTH. | 
 |    SYNTAX indicate regular expression's syntax.  */ | 
 |  | 
 | static reg_errcode_t | 
 | re_compile_internal (regex_t *preg, const char * pattern, size_t length, | 
 | 		     reg_syntax_t syntax) | 
 | { | 
 |   reg_errcode_t err = REG_NOERROR; | 
 |   re_dfa_t *dfa; | 
 |   re_string_t regexp; | 
 |  | 
 |   /* Initialize the pattern buffer.  */ | 
 |   preg->fastmap_accurate = 0; | 
 |   preg->syntax = syntax; | 
 |   preg->not_bol = preg->not_eol = 0; | 
 |   preg->used = 0; | 
 |   preg->re_nsub = 0; | 
 |   preg->can_be_null = 0; | 
 |   preg->regs_allocated = REGS_UNALLOCATED; | 
 |  | 
 |   /* Initialize the dfa.  */ | 
 |   dfa = (re_dfa_t *) preg->buffer; | 
 |   if (BE (preg->allocated < sizeof (re_dfa_t), 0)) | 
 |     { | 
 |       /* If zero allocated, but buffer is non-null, try to realloc | 
 | 	 enough space.  This loses if buffer's address is bogus, but | 
 | 	 that is the user's responsibility.  If ->buffer is NULL this | 
 | 	 is a simple allocation.  */ | 
 |       dfa = re_realloc (preg->buffer, re_dfa_t, 1); | 
 |       if (dfa == NULL) | 
 | 	return REG_ESPACE; | 
 |       preg->allocated = sizeof (re_dfa_t); | 
 |       preg->buffer = (unsigned char *) dfa; | 
 |     } | 
 |   preg->used = sizeof (re_dfa_t); | 
 |  | 
 |   err = init_dfa (dfa, length); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     { | 
 |       free_dfa_content (dfa); | 
 |       preg->buffer = NULL; | 
 |       preg->allocated = 0; | 
 |       return err; | 
 |     } | 
 | #ifdef DEBUG | 
 |   /* Note: length+1 will not overflow since it is checked in init_dfa.  */ | 
 |   dfa->re_str = re_malloc (char, length + 1); | 
 |   strncpy (dfa->re_str, pattern, length + 1); | 
 | #endif | 
 |  | 
 |   __libc_lock_init (dfa->lock); | 
 |  | 
 |   err = re_string_construct (®exp, pattern, length, preg->translate, | 
 | 			     syntax & RE_ICASE, dfa); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     { | 
 |     re_compile_internal_free_return: | 
 |       free_workarea_compile (preg); | 
 |       re_string_destruct (®exp); | 
 |       free_dfa_content (dfa); | 
 |       preg->buffer = NULL; | 
 |       preg->allocated = 0; | 
 |       return err; | 
 |     } | 
 |  | 
 |   /* Parse the regular expression, and build a structure tree.  */ | 
 |   preg->re_nsub = 0; | 
 |   dfa->str_tree = parse (®exp, preg, syntax, &err); | 
 |   if (BE (dfa->str_tree == NULL, 0)) | 
 |     goto re_compile_internal_free_return; | 
 |  | 
 |   /* Analyze the tree and create the nfa.  */ | 
 |   err = analyze (preg); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     goto re_compile_internal_free_return; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   /* If possible, do searching in single byte encoding to speed things up.  */ | 
 |   if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL) | 
 |     optimize_utf8 (dfa); | 
 | #endif | 
 |  | 
 |   /* Then create the initial state of the dfa.  */ | 
 |   err = create_initial_state (dfa); | 
 |  | 
 |   /* Release work areas.  */ | 
 |   free_workarea_compile (preg); | 
 |   re_string_destruct (®exp); | 
 |  | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     { | 
 |       free_dfa_content (dfa); | 
 |       preg->buffer = NULL; | 
 |       preg->allocated = 0; | 
 |     } | 
 |  | 
 |   return err; | 
 | } | 
 |  | 
 | /* Initialize DFA.  We use the length of the regular expression PAT_LEN | 
 |    as the initial length of some arrays.  */ | 
 |  | 
 | static reg_errcode_t | 
 | init_dfa (re_dfa_t *dfa, size_t pat_len) | 
 | { | 
 |   unsigned int table_size; | 
 | #ifndef _LIBC | 
 |   char *codeset_name; | 
 | #endif | 
 |  | 
 |   memset (dfa, '\0', sizeof (re_dfa_t)); | 
 |  | 
 |   /* Force allocation of str_tree_storage the first time.  */ | 
 |   dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | 
 |  | 
 |   /* Avoid overflows.  */ | 
 |   if (pat_len == SIZE_MAX) | 
 |     return REG_ESPACE; | 
 |  | 
 |   dfa->nodes_alloc = pat_len + 1; | 
 |   dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); | 
 |  | 
 |   /*  table_size = 2 ^ ceil(log pat_len) */ | 
 |   for (table_size = 1; ; table_size <<= 1) | 
 |     if (table_size > pat_len) | 
 |       break; | 
 |  | 
 |   dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size); | 
 |   dfa->state_hash_mask = table_size - 1; | 
 |  | 
 |   dfa->mb_cur_max = MB_CUR_MAX; | 
 | #ifdef _LIBC | 
 |   if (dfa->mb_cur_max == 6 | 
 |       && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) | 
 |     dfa->is_utf8 = 1; | 
 |   dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) | 
 | 		       != 0); | 
 | #else | 
 | # ifdef HAVE_LANGINFO_CODESET | 
 |   codeset_name = nl_langinfo (CODESET); | 
 | # else | 
 |   codeset_name = getenv ("LC_ALL"); | 
 |   if (codeset_name == NULL || codeset_name[0] == '\0') | 
 |     codeset_name = getenv ("LC_CTYPE"); | 
 |   if (codeset_name == NULL || codeset_name[0] == '\0') | 
 |     codeset_name = getenv ("LANG"); | 
 |   if (codeset_name == NULL) | 
 |     codeset_name = ""; | 
 |   else if (strchr (codeset_name, '.') !=  NULL) | 
 |     codeset_name = strchr (codeset_name, '.') + 1; | 
 | # endif | 
 |  | 
 |   /* strcasecmp isn't a standard interface. brute force check */ | 
 | #if 0 | 
 |   if (strcasecmp (codeset_name, "UTF-8") == 0 | 
 |       || strcasecmp (codeset_name, "UTF8") == 0) | 
 |     dfa->is_utf8 = 1; | 
 | #else | 
 |   if (   (codeset_name[0] == 'U' || codeset_name[0] == 'u') | 
 |       && (codeset_name[1] == 'T' || codeset_name[1] == 't') | 
 |       && (codeset_name[2] == 'F' || codeset_name[2] == 'f') | 
 |       && (codeset_name[3] == '-' | 
 |           ? codeset_name[4] == '8' && codeset_name[5] == '\0' | 
 |           : codeset_name[3] == '8' && codeset_name[4] == '\0')) | 
 |     dfa->is_utf8 = 1; | 
 | #endif | 
 |  | 
 |   /* We check exhaustively in the loop below if this charset is a | 
 |      superset of ASCII.  */ | 
 |   dfa->map_notascii = 0; | 
 | #endif | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (dfa->mb_cur_max > 1) | 
 |     { | 
 |       if (dfa->is_utf8) | 
 |         { | 
 | #if !defined(__GNUC__) || __GNUC__ < 3 | 
 | 	  static short utf8_sb_map_inited = 0; | 
 |  | 
 | 	  if (! utf8_sb_map_inited) | 
 | 	    { | 
 | 		int i; | 
 |  | 
 | 	  	utf8_sb_map_inited = 0; | 
 | 		for (i = 0; i <= 0x80 / BITSET_WORD_BITS - 1; i++) | 
 | 		  utf8_sb_map[i] = BITSET_WORD_MAX; | 
 | 	    } | 
 | #endif | 
 | 	  dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  int i, j, ch; | 
 |  | 
 | 	  dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | 
 | 	  if (BE (dfa->sb_char == NULL, 0)) | 
 | 	    return REG_ESPACE; | 
 |  | 
 | 	  /* Set the bits corresponding to single byte chars.  */ | 
 | 	  for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | 
 | 	    for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | 
 | 	      { | 
 | 		wint_t wch = __btowc (ch); | 
 | 		if (wch != WEOF) | 
 | 		  dfa->sb_char[i] |= (bitset_word_t) 1 << j; | 
 | # ifndef _LIBC | 
 | 		if (isascii (ch) && wch != ch) | 
 | 		  dfa->map_notascii = 1; | 
 | # endif | 
 | 	      } | 
 | 	} | 
 |     } | 
 | #endif | 
 |  | 
 |   if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) | 
 |     return REG_ESPACE; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Initialize WORD_CHAR table, which indicate which character is | 
 |    "word".  In this case "word" means that it is the word construction | 
 |    character used by some operators like "\<", "\>", etc.  */ | 
 |  | 
 | static void | 
 | internal_function | 
 | init_word_char (re_dfa_t *dfa) | 
 | { | 
 |   int i, j, ch; | 
 |   dfa->word_ops_used = 1; | 
 |   for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | 
 |     for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | 
 |       if (isalnum (ch) || ch == '_') | 
 | 	dfa->word_char[i] |= (bitset_word_t) 1 << j; | 
 | } | 
 |  | 
 | /* Free the work area which are only used while compiling.  */ | 
 |  | 
 | static void | 
 | free_workarea_compile (regex_t *preg) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   bin_tree_storage_t *storage, *next; | 
 |   for (storage = dfa->str_tree_storage; storage; storage = next) | 
 |     { | 
 |       next = storage->next; | 
 |       re_free (storage); | 
 |     } | 
 |   dfa->str_tree_storage = NULL; | 
 |   dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | 
 |   dfa->str_tree = NULL; | 
 |   re_free (dfa->org_indices); | 
 |   dfa->org_indices = NULL; | 
 | } | 
 |  | 
 | /* Create initial states for all contexts.  */ | 
 |  | 
 | static reg_errcode_t | 
 | create_initial_state (re_dfa_t *dfa) | 
 | { | 
 |   int first, i; | 
 |   reg_errcode_t err; | 
 |   re_node_set init_nodes; | 
 |  | 
 |   /* Initial states have the epsilon closure of the node which is | 
 |      the first node of the regular expression.  */ | 
 |   first = dfa->str_tree->first->node_idx; | 
 |   dfa->init_node = first; | 
 |   err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     return err; | 
 |  | 
 |   /* The back-references which are in initial states can epsilon transit, | 
 |      since in this case all of the subexpressions can be null. | 
 |      Then we add epsilon closures of the nodes which are the next nodes of | 
 |      the back-references.  */ | 
 |   if (dfa->nbackref > 0) | 
 |     for (i = 0; i < init_nodes.nelem; ++i) | 
 |       { | 
 | 	int node_idx = init_nodes.elems[i]; | 
 | 	re_token_type_t type = dfa->nodes[node_idx].type; | 
 |  | 
 | 	int clexp_idx; | 
 | 	if (type != OP_BACK_REF) | 
 | 	  continue; | 
 | 	for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) | 
 | 	  { | 
 | 	    re_token_t *clexp_node; | 
 | 	    clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; | 
 | 	    if (clexp_node->type == OP_CLOSE_SUBEXP | 
 | 		&& clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) | 
 | 	      break; | 
 | 	  } | 
 | 	if (clexp_idx == init_nodes.nelem) | 
 | 	  continue; | 
 |  | 
 | 	if (type == OP_BACK_REF) | 
 | 	  { | 
 | 	    int dest_idx = dfa->edests[node_idx].elems[0]; | 
 | 	    if (!re_node_set_contains (&init_nodes, dest_idx)) | 
 | 	      { | 
 | 		reg_errcode_t err = re_node_set_merge (&init_nodes, | 
 | 						       dfa->eclosures | 
 | 						       + dest_idx); | 
 | 		if (err != REG_NOERROR) | 
 | 		  return err; | 
 | 		i = 0; | 
 | 	      } | 
 | 	  } | 
 |       } | 
 |  | 
 |   /* It must be the first time to invoke acquire_state.  */ | 
 |   dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); | 
 |   /* We don't check ERR here, since the initial state must not be NULL.  */ | 
 |   if (BE (dfa->init_state == NULL, 0)) | 
 |     return err; | 
 |   if (dfa->init_state->has_constraint) | 
 |     { | 
 |       dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, | 
 | 						       CONTEXT_WORD); | 
 |       dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, | 
 | 						     CONTEXT_NEWLINE); | 
 |       dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, | 
 | 							 &init_nodes, | 
 | 							 CONTEXT_NEWLINE | 
 | 							 | CONTEXT_BEGBUF); | 
 |       if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL | 
 | 	      || dfa->init_state_begbuf == NULL, 0)) | 
 | 	return err; | 
 |     } | 
 |   else | 
 |     dfa->init_state_word = dfa->init_state_nl | 
 |       = dfa->init_state_begbuf = dfa->init_state; | 
 |  | 
 |   re_node_set_free (&init_nodes); | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 | /* If it is possible to do searching in single byte encoding instead of UTF-8 | 
 |    to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change | 
 |    DFA nodes where needed.  */ | 
 |  | 
 | static void | 
 | optimize_utf8 (re_dfa_t *dfa) | 
 | { | 
 |   int node, i, mb_chars = 0, has_period = 0; | 
 |  | 
 |   for (node = 0; node < dfa->nodes_len; ++node) | 
 |     switch (dfa->nodes[node].type) | 
 |       { | 
 |       case CHARACTER: | 
 | 	if (dfa->nodes[node].opr.c >= 0x80) | 
 | 	  mb_chars = 1; | 
 | 	break; | 
 |       case ANCHOR: | 
 | 	switch (dfa->nodes[node].opr.ctx_type) | 
 | 	  { | 
 | 	  case LINE_FIRST: | 
 | 	  case LINE_LAST: | 
 | 	  case BUF_FIRST: | 
 | 	  case BUF_LAST: | 
 | 	    break; | 
 | 	  default: | 
 | 	    /* Word anchors etc. cannot be handled.  It's okay to test | 
 | 	       opr.ctx_type since constraints (for all DFA nodes) are | 
 | 	       created by ORing one or more opr.ctx_type values.  */ | 
 | 	    return; | 
 | 	  } | 
 | 	break; | 
 |       case OP_PERIOD: | 
 | 	has_period = 1; | 
 | 	break; | 
 |       case OP_BACK_REF: | 
 |       case OP_ALT: | 
 |       case END_OF_RE: | 
 |       case OP_DUP_ASTERISK: | 
 |       case OP_OPEN_SUBEXP: | 
 |       case OP_CLOSE_SUBEXP: | 
 | 	break; | 
 |       case COMPLEX_BRACKET: | 
 | 	return; | 
 |       case SIMPLE_BRACKET: | 
 | 	/* Just double check.  The non-ASCII range starts at 0x80.  */ | 
 | 	assert (0x80 % BITSET_WORD_BITS == 0); | 
 | 	for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) | 
 | 	  if (dfa->nodes[node].opr.sbcset[i]) | 
 | 	    return; | 
 | 	break; | 
 |       default: | 
 | 	abort (); | 
 |       } | 
 |  | 
 |   if (mb_chars || has_period) | 
 |     for (node = 0; node < dfa->nodes_len; ++node) | 
 |       { | 
 | 	if (dfa->nodes[node].type == CHARACTER | 
 | 	    && dfa->nodes[node].opr.c >= 0x80) | 
 | 	  dfa->nodes[node].mb_partial = 0; | 
 | 	else if (dfa->nodes[node].type == OP_PERIOD) | 
 | 	  dfa->nodes[node].type = OP_UTF8_PERIOD; | 
 |       } | 
 |  | 
 |   /* The search can be in single byte locale.  */ | 
 |   dfa->mb_cur_max = 1; | 
 |   dfa->is_utf8 = 0; | 
 |   dfa->has_mb_node = dfa->nbackref > 0 || has_period; | 
 | } | 
 | #endif | 
 |  | 
 | /* Analyze the structure tree, and calculate "first", "next", "edest", | 
 |    "eclosure", and "inveclosure".  */ | 
 |  | 
 | static reg_errcode_t | 
 | analyze (regex_t *preg) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   reg_errcode_t ret; | 
 |  | 
 |   /* Allocate arrays.  */ | 
 |   dfa->nexts = re_malloc (int, dfa->nodes_alloc); | 
 |   dfa->org_indices = re_malloc (int, dfa->nodes_alloc); | 
 |   dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); | 
 |   dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); | 
 |   if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL | 
 | 	  || dfa->eclosures == NULL, 0)) | 
 |     return REG_ESPACE; | 
 |  | 
 |   dfa->subexp_map = re_malloc (int, preg->re_nsub); | 
 |   if (dfa->subexp_map != NULL) | 
 |     { | 
 |       int i; | 
 |       for (i = 0; i < preg->re_nsub; i++) | 
 | 	dfa->subexp_map[i] = i; | 
 |       preorder (dfa->str_tree, optimize_subexps, dfa); | 
 |       for (i = 0; i < preg->re_nsub; i++) | 
 | 	if (dfa->subexp_map[i] != i) | 
 | 	  break; | 
 |       if (i == preg->re_nsub) | 
 | 	{ | 
 | 	  free (dfa->subexp_map); | 
 | 	  dfa->subexp_map = NULL; | 
 | 	} | 
 |     } | 
 |  | 
 |   ret = postorder (dfa->str_tree, lower_subexps, preg); | 
 |   if (BE (ret != REG_NOERROR, 0)) | 
 |     return ret; | 
 |   ret = postorder (dfa->str_tree, calc_first, dfa); | 
 |   if (BE (ret != REG_NOERROR, 0)) | 
 |     return ret; | 
 |   preorder (dfa->str_tree, calc_next, dfa); | 
 |   ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); | 
 |   if (BE (ret != REG_NOERROR, 0)) | 
 |     return ret; | 
 |   ret = calc_eclosure (dfa); | 
 |   if (BE (ret != REG_NOERROR, 0)) | 
 |     return ret; | 
 |  | 
 |   /* We only need this during the prune_impossible_nodes pass in regexec.c; | 
 |      skip it if p_i_n will not run, as calc_inveclosure can be quadratic.  */ | 
 |   if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match) | 
 |       || dfa->nbackref) | 
 |     { | 
 |       dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len); | 
 |       if (BE (dfa->inveclosures == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       ret = calc_inveclosure (dfa); | 
 |     } | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | /* Our parse trees are very unbalanced, so we cannot use a stack to | 
 |    implement parse tree visits.  Instead, we use parent pointers and | 
 |    some hairy code in these two functions.  */ | 
 | static reg_errcode_t | 
 | postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | 
 | 	   void *extra) | 
 | { | 
 |   bin_tree_t *node, *prev; | 
 |  | 
 |   for (node = root; ; ) | 
 |     { | 
 |       /* Descend down the tree, preferably to the left (or to the right | 
 | 	 if that's the only child).  */ | 
 |       while (node->left || node->right) | 
 | 	if (node->left) | 
 | 	  node = node->left; | 
 | 	else | 
 | 	  node = node->right; | 
 |  | 
 |       do | 
 | 	{ | 
 | 	  reg_errcode_t err = fn (extra, node); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	  if (node->parent == NULL) | 
 | 	    return REG_NOERROR; | 
 | 	  prev = node; | 
 | 	  node = node->parent; | 
 | 	} | 
 |       /* Go up while we have a node that is reached from the right.  */ | 
 |       while (node->right == prev || node->right == NULL); | 
 |       node = node->right; | 
 |     } | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | 
 | 	  void *extra) | 
 | { | 
 |   bin_tree_t *node; | 
 |  | 
 |   for (node = root; ; ) | 
 |     { | 
 |       reg_errcode_t err = fn (extra, node); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return err; | 
 |  | 
 |       /* Go to the left node, or up and to the right.  */ | 
 |       if (node->left) | 
 | 	node = node->left; | 
 |       else | 
 | 	{ | 
 | 	  bin_tree_t *prev = NULL; | 
 | 	  while (node->right == prev || node->right == NULL) | 
 | 	    { | 
 | 	      prev = node; | 
 | 	      node = node->parent; | 
 | 	      if (!node) | 
 | 		return REG_NOERROR; | 
 | 	    } | 
 | 	  node = node->right; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell | 
 |    re_search_internal to map the inner one's opr.idx to this one's.  Adjust | 
 |    backreferences as well.  Requires a preorder visit.  */ | 
 | static reg_errcode_t | 
 | optimize_subexps (void *extra, bin_tree_t *node) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) extra; | 
 |  | 
 |   if (node->token.type == OP_BACK_REF && dfa->subexp_map) | 
 |     { | 
 |       int idx = node->token.opr.idx; | 
 |       node->token.opr.idx = dfa->subexp_map[idx]; | 
 |       dfa->used_bkref_map |= 1 << node->token.opr.idx; | 
 |     } | 
 |  | 
 |   else if (node->token.type == SUBEXP | 
 | 	   && node->left && node->left->token.type == SUBEXP) | 
 |     { | 
 |       int other_idx = node->left->token.opr.idx; | 
 |  | 
 |       node->left = node->left->left; | 
 |       if (node->left) | 
 | 	node->left->parent = node; | 
 |  | 
 |       dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; | 
 |       if (other_idx < BITSET_WORD_BITS) | 
 | 	  dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx); | 
 |     } | 
 |  | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation | 
 |    of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP.  */ | 
 | static reg_errcode_t | 
 | lower_subexps (void *extra, bin_tree_t *node) | 
 | { | 
 |   regex_t *preg = (regex_t *) extra; | 
 |   reg_errcode_t err = REG_NOERROR; | 
 |  | 
 |   if (node->left && node->left->token.type == SUBEXP) | 
 |     { | 
 |       node->left = lower_subexp (&err, preg, node->left); | 
 |       if (node->left) | 
 | 	node->left->parent = node; | 
 |     } | 
 |   if (node->right && node->right->token.type == SUBEXP) | 
 |     { | 
 |       node->right = lower_subexp (&err, preg, node->right); | 
 |       if (node->right) | 
 | 	node->right->parent = node; | 
 |     } | 
 |  | 
 |   return err; | 
 | } | 
 |  | 
 | static bin_tree_t * | 
 | lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   bin_tree_t *body = node->left; | 
 |   bin_tree_t *op, *cls, *tree1, *tree; | 
 |  | 
 |   if (preg->no_sub | 
 |       /* We do not optimize empty subexpressions, because otherwise we may | 
 | 	 have bad CONCAT nodes with NULL children.  This is obviously not | 
 | 	 very common, so we do not lose much.  An example that triggers | 
 | 	 this case is the sed "script" /\(\)/x.  */ | 
 |       && node->left != NULL | 
 |       && (node->token.opr.idx >= BITSET_WORD_BITS | 
 | 	  || !(dfa->used_bkref_map | 
 | 	       & ((bitset_word_t) 1 << node->token.opr.idx)))) | 
 |     return node->left; | 
 |  | 
 |   /* Convert the SUBEXP node to the concatenation of an | 
 |      OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP.  */ | 
 |   op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); | 
 |   cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); | 
 |   tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; | 
 |   tree = create_tree (dfa, op, tree1, CONCAT); | 
 |   if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) | 
 |     { | 
 |       *err = REG_ESPACE; | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; | 
 |   op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; | 
 |   return tree; | 
 | } | 
 |  | 
 | /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton | 
 |    nodes.  Requires a postorder visit.  */ | 
 | static reg_errcode_t | 
 | calc_first (void *extra, bin_tree_t *node) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) extra; | 
 |   if (node->token.type == CONCAT) | 
 |     { | 
 |       node->first = node->left->first; | 
 |       node->node_idx = node->left->node_idx; | 
 |     } | 
 |   else | 
 |     { | 
 |       node->first = node; | 
 |       node->node_idx = re_dfa_add_node (dfa, node->token); | 
 |       if (BE (node->node_idx == -1, 0)) | 
 | 	return REG_ESPACE; | 
 |       if (node->token.type == ANCHOR) | 
 | 	dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type; | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Pass 2: compute NEXT on the tree.  Preorder visit.  */ | 
 | static reg_errcode_t | 
 | calc_next (void *extra, bin_tree_t *node) | 
 | { | 
 |   switch (node->token.type) | 
 |     { | 
 |     case OP_DUP_ASTERISK: | 
 |       node->left->next = node; | 
 |       break; | 
 |     case CONCAT: | 
 |       node->left->next = node->right->first; | 
 |       node->right->next = node->next; | 
 |       break; | 
 |     default: | 
 |       if (node->left) | 
 | 	node->left->next = node->next; | 
 |       if (node->right) | 
 | 	node->right->next = node->next; | 
 |       break; | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Pass 3: link all DFA nodes to their NEXT node (any order will do).  */ | 
 | static reg_errcode_t | 
 | link_nfa_nodes (void *extra, bin_tree_t *node) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) extra; | 
 |   int idx = node->node_idx; | 
 |   reg_errcode_t err = REG_NOERROR; | 
 |  | 
 |   switch (node->token.type) | 
 |     { | 
 |     case CONCAT: | 
 |       break; | 
 |  | 
 |     case END_OF_RE: | 
 |       assert (node->next == NULL); | 
 |       break; | 
 |  | 
 |     case OP_DUP_ASTERISK: | 
 |     case OP_ALT: | 
 |       { | 
 | 	int left, right; | 
 | 	dfa->has_plural_match = 1; | 
 | 	if (node->left != NULL) | 
 | 	  left = node->left->first->node_idx; | 
 | 	else | 
 | 	  left = node->next->node_idx; | 
 | 	if (node->right != NULL) | 
 | 	  right = node->right->first->node_idx; | 
 | 	else | 
 | 	  right = node->next->node_idx; | 
 | 	assert (left > -1); | 
 | 	assert (right > -1); | 
 | 	err = re_node_set_init_2 (dfa->edests + idx, left, right); | 
 |       } | 
 |       break; | 
 |  | 
 |     case ANCHOR: | 
 |     case OP_OPEN_SUBEXP: | 
 |     case OP_CLOSE_SUBEXP: | 
 |       err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); | 
 |       break; | 
 |  | 
 |     case OP_BACK_REF: | 
 |       dfa->nexts[idx] = node->next->node_idx; | 
 |       if (node->token.type == OP_BACK_REF) | 
 | 	err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); | 
 |       break; | 
 |  | 
 |     default: | 
 |       assert (!IS_EPSILON_NODE (node->token.type)); | 
 |       dfa->nexts[idx] = node->next->node_idx; | 
 |       break; | 
 |     } | 
 |  | 
 |   return err; | 
 | } | 
 |  | 
 | /* Duplicate the epsilon closure of the node ROOT_NODE. | 
 |    Note that duplicated nodes have constraint INIT_CONSTRAINT in addition | 
 |    to their own constraint.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node, | 
 | 			int root_node, unsigned int init_constraint) | 
 | { | 
 |   int org_node, clone_node, ret; | 
 |   unsigned int constraint = init_constraint; | 
 |   for (org_node = top_org_node, clone_node = top_clone_node;;) | 
 |     { | 
 |       int org_dest, clone_dest; | 
 |       if (dfa->nodes[org_node].type == OP_BACK_REF) | 
 | 	{ | 
 | 	  /* If the back reference epsilon-transit, its destination must | 
 | 	     also have the constraint.  Then duplicate the epsilon closure | 
 | 	     of the destination of the back reference, and store it in | 
 | 	     edests of the back reference.  */ | 
 | 	  org_dest = dfa->nexts[org_node]; | 
 | 	  re_node_set_empty (dfa->edests + clone_node); | 
 | 	  clone_dest = duplicate_node (dfa, org_dest, constraint); | 
 | 	  if (BE (clone_dest == -1, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	  dfa->nexts[clone_node] = dfa->nexts[org_node]; | 
 | 	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
 | 	  if (BE (ret < 0, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	} | 
 |       else if (dfa->edests[org_node].nelem == 0) | 
 | 	{ | 
 | 	  /* In case of the node can't epsilon-transit, don't duplicate the | 
 | 	     destination and store the original destination as the | 
 | 	     destination of the node.  */ | 
 | 	  dfa->nexts[clone_node] = dfa->nexts[org_node]; | 
 | 	  break; | 
 | 	} | 
 |       else if (dfa->edests[org_node].nelem == 1) | 
 | 	{ | 
 | 	  /* In case of the node can epsilon-transit, and it has only one | 
 | 	     destination.  */ | 
 | 	  org_dest = dfa->edests[org_node].elems[0]; | 
 | 	  re_node_set_empty (dfa->edests + clone_node); | 
 | 	  /* If the node is root_node itself, it means the epsilon clsoure | 
 | 	     has a loop.   Then tie it to the destination of the root_node.  */ | 
 | 	  if (org_node == root_node && clone_node != org_node) | 
 | 	    { | 
 | 	      ret = re_node_set_insert (dfa->edests + clone_node, org_dest); | 
 | 	      if (BE (ret < 0, 0)) | 
 | 		return REG_ESPACE; | 
 | 	      break; | 
 | 	    } | 
 | 	  /* In case of the node has another constraint, add it.  */ | 
 | 	  constraint |= dfa->nodes[org_node].constraint; | 
 | 	  clone_dest = duplicate_node (dfa, org_dest, constraint); | 
 | 	  if (BE (clone_dest == -1, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
 | 	  if (BE (ret < 0, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	} | 
 |       else /* dfa->edests[org_node].nelem == 2 */ | 
 | 	{ | 
 | 	  /* In case of the node can epsilon-transit, and it has two | 
 | 	     destinations. In the bin_tree_t and DFA, that's '|' and '*'.   */ | 
 | 	  org_dest = dfa->edests[org_node].elems[0]; | 
 | 	  re_node_set_empty (dfa->edests + clone_node); | 
 | 	  /* Search for a duplicated node which satisfies the constraint.  */ | 
 | 	  clone_dest = search_duplicated_node (dfa, org_dest, constraint); | 
 | 	  if (clone_dest == -1) | 
 | 	    { | 
 | 	      /* There is no such duplicated node, create a new one.  */ | 
 | 	      reg_errcode_t err; | 
 | 	      clone_dest = duplicate_node (dfa, org_dest, constraint); | 
 | 	      if (BE (clone_dest == -1, 0)) | 
 | 		return REG_ESPACE; | 
 | 	      ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
 | 	      if (BE (ret < 0, 0)) | 
 | 		return REG_ESPACE; | 
 | 	      err = duplicate_node_closure (dfa, org_dest, clone_dest, | 
 | 					    root_node, constraint); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		return err; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      /* There is a duplicated node which satisfies the constraint, | 
 | 		 use it to avoid infinite loop.  */ | 
 | 	      ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
 | 	      if (BE (ret < 0, 0)) | 
 | 		return REG_ESPACE; | 
 | 	    } | 
 |  | 
 | 	  org_dest = dfa->edests[org_node].elems[1]; | 
 | 	  clone_dest = duplicate_node (dfa, org_dest, constraint); | 
 | 	  if (BE (clone_dest == -1, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
 | 	  if (BE (ret < 0, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	} | 
 |       org_node = org_dest; | 
 |       clone_node = clone_dest; | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Search for a node which is duplicated from the node ORG_NODE, and | 
 |    satisfies the constraint CONSTRAINT.  */ | 
 |  | 
 | static int | 
 | search_duplicated_node (const re_dfa_t *dfa, int org_node, | 
 | 			unsigned int constraint) | 
 | { | 
 |   int idx; | 
 |   for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) | 
 |     { | 
 |       if (org_node == dfa->org_indices[idx] | 
 | 	  && constraint == dfa->nodes[idx].constraint) | 
 | 	return idx; /* Found.  */ | 
 |     } | 
 |   return -1; /* Not found.  */ | 
 | } | 
 |  | 
 | /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. | 
 |    Return the index of the new node, or -1 if insufficient storage is | 
 |    available.  */ | 
 |  | 
 | static int | 
 | duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint) | 
 | { | 
 |   int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); | 
 |   if (BE (dup_idx != -1, 1)) | 
 |     { | 
 |       dfa->nodes[dup_idx].constraint = constraint; | 
 |       dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint; | 
 |       dfa->nodes[dup_idx].duplicated = 1; | 
 |  | 
 |       /* Store the index of the original node.  */ | 
 |       dfa->org_indices[dup_idx] = org_idx; | 
 |     } | 
 |   return dup_idx; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | calc_inveclosure (re_dfa_t *dfa) | 
 | { | 
 |   int src, idx, ret; | 
 |   for (idx = 0; idx < dfa->nodes_len; ++idx) | 
 |     re_node_set_init_empty (dfa->inveclosures + idx); | 
 |  | 
 |   for (src = 0; src < dfa->nodes_len; ++src) | 
 |     { | 
 |       int *elems = dfa->eclosures[src].elems; | 
 |       for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) | 
 | 	{ | 
 | 	  ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); | 
 | 	  if (BE (ret == -1, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	} | 
 |     } | 
 |  | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Calculate "eclosure" for all the node in DFA.  */ | 
 |  | 
 | static reg_errcode_t | 
 | calc_eclosure (re_dfa_t *dfa) | 
 | { | 
 |   int node_idx, incomplete; | 
 | #ifdef DEBUG | 
 |   assert (dfa->nodes_len > 0); | 
 | #endif | 
 |   incomplete = 0; | 
 |   /* For each nodes, calculate epsilon closure.  */ | 
 |   for (node_idx = 0; ; ++node_idx) | 
 |     { | 
 |       reg_errcode_t err; | 
 |       re_node_set eclosure_elem; | 
 |       if (node_idx == dfa->nodes_len) | 
 | 	{ | 
 | 	  if (!incomplete) | 
 | 	    break; | 
 | 	  incomplete = 0; | 
 | 	  node_idx = 0; | 
 | 	} | 
 |  | 
 | #ifdef DEBUG | 
 |       assert (dfa->eclosures[node_idx].nelem != -1); | 
 | #endif | 
 |  | 
 |       /* If we have already calculated, skip it.  */ | 
 |       if (dfa->eclosures[node_idx].nelem != 0) | 
 | 	continue; | 
 |       /* Calculate epsilon closure of `node_idx'.  */ | 
 |       err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return err; | 
 |  | 
 |       if (dfa->eclosures[node_idx].nelem == 0) | 
 | 	{ | 
 | 	  incomplete = 1; | 
 | 	  re_node_set_free (&eclosure_elem); | 
 | 	} | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Calculate epsilon closure of NODE.  */ | 
 |  | 
 | static reg_errcode_t | 
 | calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int i; | 
 |   re_node_set eclosure; | 
 |   int ret; | 
 |   int incomplete = 0; | 
 |   err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     return err; | 
 |  | 
 |   /* This indicates that we are calculating this node now. | 
 |      We reference this value to avoid infinite loop.  */ | 
 |   dfa->eclosures[node].nelem = -1; | 
 |  | 
 |   /* If the current node has constraints, duplicate all nodes | 
 |      since they must inherit the constraints.  */ | 
 |   if (dfa->nodes[node].constraint | 
 |       && dfa->edests[node].nelem | 
 |       && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) | 
 |     { | 
 |       err = duplicate_node_closure (dfa, node, node, node, | 
 | 				    dfa->nodes[node].constraint); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return err; | 
 |     } | 
 |  | 
 |   /* Expand each epsilon destination nodes.  */ | 
 |   if (IS_EPSILON_NODE(dfa->nodes[node].type)) | 
 |     for (i = 0; i < dfa->edests[node].nelem; ++i) | 
 |       { | 
 | 	re_node_set eclosure_elem; | 
 | 	int edest = dfa->edests[node].elems[i]; | 
 | 	/* If calculating the epsilon closure of `edest' is in progress, | 
 | 	   return intermediate result.  */ | 
 | 	if (dfa->eclosures[edest].nelem == -1) | 
 | 	  { | 
 | 	    incomplete = 1; | 
 | 	    continue; | 
 | 	  } | 
 | 	/* If we haven't calculated the epsilon closure of `edest' yet, | 
 | 	   calculate now. Otherwise use calculated epsilon closure.  */ | 
 | 	if (dfa->eclosures[edest].nelem == 0) | 
 | 	  { | 
 | 	    err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0); | 
 | 	    if (BE (err != REG_NOERROR, 0)) | 
 | 	      return err; | 
 | 	  } | 
 | 	else | 
 | 	  eclosure_elem = dfa->eclosures[edest]; | 
 | 	/* Merge the epsilon closure of `edest'.  */ | 
 | 	err = re_node_set_merge (&eclosure, &eclosure_elem); | 
 | 	if (BE (err != REG_NOERROR, 0)) | 
 | 	  return err; | 
 | 	/* If the epsilon closure of `edest' is incomplete, | 
 | 	   the epsilon closure of this node is also incomplete.  */ | 
 | 	if (dfa->eclosures[edest].nelem == 0) | 
 | 	  { | 
 | 	    incomplete = 1; | 
 | 	    re_node_set_free (&eclosure_elem); | 
 | 	  } | 
 |       } | 
 |  | 
 |   /* An epsilon closure includes itself.  */ | 
 |   ret = re_node_set_insert (&eclosure, node); | 
 |   if (BE (ret < 0, 0)) | 
 |     return REG_ESPACE; | 
 |   if (incomplete && !root) | 
 |     dfa->eclosures[node].nelem = 0; | 
 |   else | 
 |     dfa->eclosures[node] = eclosure; | 
 |   *new_set = eclosure; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Functions for token which are used in the parser.  */ | 
 |  | 
 | /* Fetch a token from INPUT. | 
 |    We must not use this function inside bracket expressions.  */ | 
 |  | 
 | static void | 
 | internal_function | 
 | fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) | 
 | { | 
 |   re_string_skip_bytes (input, peek_token (result, input, syntax)); | 
 | } | 
 |  | 
 | /* Peek a token from INPUT, and return the length of the token. | 
 |    We must not use this function inside bracket expressions.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | 
 | { | 
 |   unsigned char c; | 
 |  | 
 |   if (re_string_eoi (input)) | 
 |     { | 
 |       token->type = END_OF_RE; | 
 |       return 0; | 
 |     } | 
 |  | 
 |   c = re_string_peek_byte (input, 0); | 
 |   token->opr.c = c; | 
 |  | 
 |   token->word_char = 0; | 
 | #ifdef RE_ENABLE_I18N | 
 |   token->mb_partial = 0; | 
 |   if (input->mb_cur_max > 1 && | 
 |       !re_string_first_byte (input, re_string_cur_idx (input))) | 
 |     { | 
 |       token->type = CHARACTER; | 
 |       token->mb_partial = 1; | 
 |       return 1; | 
 |     } | 
 | #endif | 
 |   if (c == '\\') | 
 |     { | 
 |       unsigned char c2; | 
 |       if (re_string_cur_idx (input) + 1 >= re_string_length (input)) | 
 | 	{ | 
 | 	  token->type = BACK_SLASH; | 
 | 	  return 1; | 
 | 	} | 
 |  | 
 |       c2 = re_string_peek_byte_case (input, 1); | 
 |       token->opr.c = c2; | 
 |       token->type = CHARACTER; | 
 | #ifdef RE_ENABLE_I18N | 
 |       if (input->mb_cur_max > 1) | 
 | 	{ | 
 | 	  wint_t wc = re_string_wchar_at (input, | 
 | 					  re_string_cur_idx (input) + 1); | 
 | 	  token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | 
 | 	} | 
 |       else | 
 | #endif | 
 | 	token->word_char = IS_WORD_CHAR (c2) != 0; | 
 |  | 
 |       switch (c2) | 
 | 	{ | 
 | 	case '|': | 
 | 	  if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) | 
 | 	    token->type = OP_ALT; | 
 | 	  break; | 
 | 	case '1': case '2': case '3': case '4': case '5': | 
 | 	case '6': case '7': case '8': case '9': | 
 | 	  if (!(syntax & RE_NO_BK_REFS)) | 
 | 	    { | 
 | 	      token->type = OP_BACK_REF; | 
 | 	      token->opr.idx = c2 - '1'; | 
 | 	    } | 
 | 	  break; | 
 | 	case '<': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    { | 
 | 	      token->type = ANCHOR; | 
 | 	      token->opr.ctx_type = WORD_FIRST; | 
 | 	    } | 
 | 	  break; | 
 | 	case '>': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    { | 
 | 	      token->type = ANCHOR; | 
 | 	      token->opr.ctx_type = WORD_LAST; | 
 | 	    } | 
 | 	  break; | 
 | 	case 'b': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    { | 
 | 	      token->type = ANCHOR; | 
 | 	      token->opr.ctx_type = WORD_DELIM; | 
 | 	    } | 
 | 	  break; | 
 | 	case 'B': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    { | 
 | 	      token->type = ANCHOR; | 
 | 	      token->opr.ctx_type = NOT_WORD_DELIM; | 
 | 	    } | 
 | 	  break; | 
 | 	case 'w': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    token->type = OP_WORD; | 
 | 	  break; | 
 | 	case 'W': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    token->type = OP_NOTWORD; | 
 | 	  break; | 
 | 	case 's': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    token->type = OP_SPACE; | 
 | 	  break; | 
 | 	case 'S': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    token->type = OP_NOTSPACE; | 
 | 	  break; | 
 | 	case '`': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    { | 
 | 	      token->type = ANCHOR; | 
 | 	      token->opr.ctx_type = BUF_FIRST; | 
 | 	    } | 
 | 	  break; | 
 | 	case '\'': | 
 | 	  if (!(syntax & RE_NO_GNU_OPS)) | 
 | 	    { | 
 | 	      token->type = ANCHOR; | 
 | 	      token->opr.ctx_type = BUF_LAST; | 
 | 	    } | 
 | 	  break; | 
 | 	case '(': | 
 | 	  if (!(syntax & RE_NO_BK_PARENS)) | 
 | 	    token->type = OP_OPEN_SUBEXP; | 
 | 	  break; | 
 | 	case ')': | 
 | 	  if (!(syntax & RE_NO_BK_PARENS)) | 
 | 	    token->type = OP_CLOSE_SUBEXP; | 
 | 	  break; | 
 | 	case '+': | 
 | 	  if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) | 
 | 	    token->type = OP_DUP_PLUS; | 
 | 	  break; | 
 | 	case '?': | 
 | 	  if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) | 
 | 	    token->type = OP_DUP_QUESTION; | 
 | 	  break; | 
 | 	case '{': | 
 | 	  if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) | 
 | 	    token->type = OP_OPEN_DUP_NUM; | 
 | 	  break; | 
 | 	case '}': | 
 | 	  if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) | 
 | 	    token->type = OP_CLOSE_DUP_NUM; | 
 | 	  break; | 
 | 	default: | 
 | 	  break; | 
 | 	} | 
 |       return 2; | 
 |     } | 
 |  | 
 |   token->type = CHARACTER; | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (input->mb_cur_max > 1) | 
 |     { | 
 |       wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); | 
 |       token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | 
 |     } | 
 |   else | 
 | #endif | 
 |     token->word_char = IS_WORD_CHAR (token->opr.c); | 
 |  | 
 |   switch (c) | 
 |     { | 
 |     case '\n': | 
 |       if (syntax & RE_NEWLINE_ALT) | 
 | 	token->type = OP_ALT; | 
 |       break; | 
 |     case '|': | 
 |       if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) | 
 | 	token->type = OP_ALT; | 
 |       break; | 
 |     case '*': | 
 |       token->type = OP_DUP_ASTERISK; | 
 |       break; | 
 |     case '+': | 
 |       if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) | 
 | 	token->type = OP_DUP_PLUS; | 
 |       break; | 
 |     case '?': | 
 |       if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) | 
 | 	token->type = OP_DUP_QUESTION; | 
 |       break; | 
 |     case '{': | 
 |       if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | 
 | 	token->type = OP_OPEN_DUP_NUM; | 
 |       break; | 
 |     case '}': | 
 |       if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | 
 | 	token->type = OP_CLOSE_DUP_NUM; | 
 |       break; | 
 |     case '(': | 
 |       if (syntax & RE_NO_BK_PARENS) | 
 | 	token->type = OP_OPEN_SUBEXP; | 
 |       break; | 
 |     case ')': | 
 |       if (syntax & RE_NO_BK_PARENS) | 
 | 	token->type = OP_CLOSE_SUBEXP; | 
 |       break; | 
 |     case '[': | 
 |       token->type = OP_OPEN_BRACKET; | 
 |       break; | 
 |     case '.': | 
 |       token->type = OP_PERIOD; | 
 |       break; | 
 |     case '^': | 
 |       if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) && | 
 | 	  re_string_cur_idx (input) != 0) | 
 | 	{ | 
 | 	  char prev = re_string_peek_byte (input, -1); | 
 | 	  if (!(syntax & RE_NEWLINE_ALT) || prev != '\n') | 
 | 	    break; | 
 | 	} | 
 |       token->type = ANCHOR; | 
 |       token->opr.ctx_type = LINE_FIRST; | 
 |       break; | 
 |     case '$': | 
 |       if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && | 
 | 	  re_string_cur_idx (input) + 1 != re_string_length (input)) | 
 | 	{ | 
 | 	  re_token_t next; | 
 | 	  re_string_skip_bytes (input, 1); | 
 | 	  peek_token (&next, input, syntax); | 
 | 	  re_string_skip_bytes (input, -1); | 
 | 	  if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) | 
 | 	    break; | 
 | 	} | 
 |       token->type = ANCHOR; | 
 |       token->opr.ctx_type = LINE_LAST; | 
 |       break; | 
 |     default: | 
 |       break; | 
 |     } | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Peek a token from INPUT, and return the length of the token. | 
 |    We must not use this function out of bracket expressions.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | 
 | { | 
 |   unsigned char c; | 
 |   if (re_string_eoi (input)) | 
 |     { | 
 |       token->type = END_OF_RE; | 
 |       return 0; | 
 |     } | 
 |   c = re_string_peek_byte (input, 0); | 
 |   token->opr.c = c; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (input->mb_cur_max > 1 && | 
 |       !re_string_first_byte (input, re_string_cur_idx (input))) | 
 |     { | 
 |       token->type = CHARACTER; | 
 |       return 1; | 
 |     } | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 |   if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) | 
 |       && re_string_cur_idx (input) + 1 < re_string_length (input)) | 
 |     { | 
 |       /* In this case, '\' escape a character.  */ | 
 |       unsigned char c2; | 
 |       re_string_skip_bytes (input, 1); | 
 |       c2 = re_string_peek_byte (input, 0); | 
 |       token->opr.c = c2; | 
 |       token->type = CHARACTER; | 
 |       return 1; | 
 |     } | 
 |   if (c == '[') /* '[' is a special char in a bracket exps.  */ | 
 |     { | 
 |       unsigned char c2; | 
 |       int token_len; | 
 |       if (re_string_cur_idx (input) + 1 < re_string_length (input)) | 
 | 	c2 = re_string_peek_byte (input, 1); | 
 |       else | 
 | 	c2 = 0; | 
 |       token->opr.c = c2; | 
 |       token_len = 2; | 
 |       switch (c2) | 
 | 	{ | 
 | 	case '.': | 
 | 	  token->type = OP_OPEN_COLL_ELEM; | 
 | 	  break; | 
 | 	case '=': | 
 | 	  token->type = OP_OPEN_EQUIV_CLASS; | 
 | 	  break; | 
 | 	case ':': | 
 | 	  if (syntax & RE_CHAR_CLASSES) | 
 | 	    { | 
 | 	      token->type = OP_OPEN_CHAR_CLASS; | 
 | 	      break; | 
 | 	    } | 
 | 	  /* else fall through.  */ | 
 | 	default: | 
 | 	  token->type = CHARACTER; | 
 | 	  token->opr.c = c; | 
 | 	  token_len = 1; | 
 | 	  break; | 
 | 	} | 
 |       return token_len; | 
 |     } | 
 |   switch (c) | 
 |     { | 
 |     case '-': | 
 |       token->type = OP_CHARSET_RANGE; | 
 |       break; | 
 |     case ']': | 
 |       token->type = OP_CLOSE_BRACKET; | 
 |       break; | 
 |     case '^': | 
 |       token->type = OP_NON_MATCH_LIST; | 
 |       break; | 
 |     default: | 
 |       token->type = CHARACTER; | 
 |     } | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Functions for parser.  */ | 
 |  | 
 | /* Entry point of the parser. | 
 |    Parse the regular expression REGEXP and return the structure tree. | 
 |    If an error has occurred, ERR is set by error code, and return NULL. | 
 |    This function build the following tree, from regular expression <reg_exp>: | 
 | 	   CAT | 
 | 	   / \ | 
 | 	  /   \ | 
 |    <reg_exp>  EOR | 
 |  | 
 |    CAT means concatenation. | 
 |    EOR means end of regular expression.  */ | 
 |  | 
 | static bin_tree_t * | 
 | parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, | 
 |        reg_errcode_t *err) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   bin_tree_t *tree, *eor, *root; | 
 |   re_token_t current_token; | 
 |   dfa->syntax = syntax; | 
 |   fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE); | 
 |   tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); | 
 |   if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
 |     return NULL; | 
 |   eor = create_tree (dfa, NULL, NULL, END_OF_RE); | 
 |   if (tree != NULL) | 
 |     root = create_tree (dfa, tree, eor, CONCAT); | 
 |   else | 
 |     root = eor; | 
 |   if (BE (eor == NULL || root == NULL, 0)) | 
 |     { | 
 |       *err = REG_ESPACE; | 
 |       return NULL; | 
 |     } | 
 |   return root; | 
 | } | 
 |  | 
 | /* This function build the following tree, from regular expression | 
 |    <branch1>|<branch2>: | 
 | 	   ALT | 
 | 	   / \ | 
 | 	  /   \ | 
 |    <branch1> <branch2> | 
 |  | 
 |    ALT means alternative, which represents the operator `|'.  */ | 
 |  | 
 | static bin_tree_t * | 
 | parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | 
 | 	       reg_syntax_t syntax, int nest, reg_errcode_t *err) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   bin_tree_t *tree, *branch = NULL; | 
 |   tree = parse_branch (regexp, preg, token, syntax, nest, err); | 
 |   if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
 |     return NULL; | 
 |  | 
 |   while (token->type == OP_ALT) | 
 |     { | 
 |       fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); | 
 |       if (token->type != OP_ALT && token->type != END_OF_RE | 
 | 	  && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | 
 | 	{ | 
 | 	  branch = parse_branch (regexp, preg, token, syntax, nest, err); | 
 | 	  if (BE (*err != REG_NOERROR && branch == NULL, 0)) | 
 | 	    return NULL; | 
 | 	} | 
 |       else | 
 | 	branch = NULL; | 
 |       tree = create_tree (dfa, tree, branch, OP_ALT); | 
 |       if (BE (tree == NULL, 0)) | 
 | 	{ | 
 | 	  *err = REG_ESPACE; | 
 | 	  return NULL; | 
 | 	} | 
 |     } | 
 |   return tree; | 
 | } | 
 |  | 
 | /* This function build the following tree, from regular expression | 
 |    <exp1><exp2>: | 
 | 	CAT | 
 | 	/ \ | 
 |        /   \ | 
 |    <exp1> <exp2> | 
 |  | 
 |    CAT means concatenation.  */ | 
 |  | 
 | static bin_tree_t * | 
 | parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, | 
 | 	      reg_syntax_t syntax, int nest, reg_errcode_t *err) | 
 | { | 
 |   bin_tree_t *tree, *exp; | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   tree = parse_expression (regexp, preg, token, syntax, nest, err); | 
 |   if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
 |     return NULL; | 
 |  | 
 |   while (token->type != OP_ALT && token->type != END_OF_RE | 
 | 	 && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | 
 |     { | 
 |       exp = parse_expression (regexp, preg, token, syntax, nest, err); | 
 |       if (BE (*err != REG_NOERROR && exp == NULL, 0)) | 
 | 	{ | 
 | 	  return NULL; | 
 | 	} | 
 |       if (tree != NULL && exp != NULL) | 
 | 	{ | 
 | 	  tree = create_tree (dfa, tree, exp, CONCAT); | 
 | 	  if (tree == NULL) | 
 | 	    { | 
 | 	      *err = REG_ESPACE; | 
 | 	      return NULL; | 
 | 	    } | 
 | 	} | 
 |       else if (tree == NULL) | 
 | 	tree = exp; | 
 |       /* Otherwise exp == NULL, we don't need to create new tree.  */ | 
 |     } | 
 |   return tree; | 
 | } | 
 |  | 
 | /* This function build the following tree, from regular expression a*: | 
 | 	 * | 
 | 	 | | 
 | 	 a | 
 | */ | 
 |  | 
 | static bin_tree_t * | 
 | parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, | 
 | 		  reg_syntax_t syntax, int nest, reg_errcode_t *err) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   bin_tree_t *tree; | 
 |   switch (token->type) | 
 |     { | 
 |     case CHARACTER: | 
 |       tree = create_token_tree (dfa, NULL, NULL, token); | 
 |       if (BE (tree == NULL, 0)) | 
 | 	{ | 
 | 	  *err = REG_ESPACE; | 
 | 	  return NULL; | 
 | 	} | 
 | #ifdef RE_ENABLE_I18N | 
 |       if (dfa->mb_cur_max > 1) | 
 | 	{ | 
 | 	  while (!re_string_eoi (regexp) | 
 | 		 && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) | 
 | 	    { | 
 | 	      bin_tree_t *mbc_remain; | 
 | 	      fetch_token (token, regexp, syntax); | 
 | 	      mbc_remain = create_token_tree (dfa, NULL, NULL, token); | 
 | 	      tree = create_tree (dfa, tree, mbc_remain, CONCAT); | 
 | 	      if (BE (mbc_remain == NULL || tree == NULL, 0)) | 
 | 		{ | 
 | 		  *err = REG_ESPACE; | 
 | 		  return NULL; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 | #endif | 
 |       break; | 
 |     case OP_OPEN_SUBEXP: | 
 |       tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); | 
 |       if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
 | 	return NULL; | 
 |       break; | 
 |     case OP_OPEN_BRACKET: | 
 |       tree = parse_bracket_exp (regexp, dfa, token, syntax, err); | 
 |       if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
 | 	return NULL; | 
 |       break; | 
 |     case OP_BACK_REF: | 
 |       if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) | 
 | 	{ | 
 | 	  *err = REG_ESUBREG; | 
 | 	  return NULL; | 
 | 	} | 
 |       dfa->used_bkref_map |= 1 << token->opr.idx; | 
 |       tree = create_token_tree (dfa, NULL, NULL, token); | 
 |       if (BE (tree == NULL, 0)) | 
 | 	{ | 
 | 	  *err = REG_ESPACE; | 
 | 	  return NULL; | 
 | 	} | 
 |       ++dfa->nbackref; | 
 |       dfa->has_mb_node = 1; | 
 |       break; | 
 |     case OP_OPEN_DUP_NUM: | 
 |       if (syntax & RE_CONTEXT_INVALID_DUP) | 
 | 	{ | 
 | 	  *err = REG_BADRPT; | 
 | 	  return NULL; | 
 | 	} | 
 |       /* FALLTHROUGH */ | 
 |     case OP_DUP_ASTERISK: | 
 |     case OP_DUP_PLUS: | 
 |     case OP_DUP_QUESTION: | 
 |       if (syntax & RE_CONTEXT_INVALID_OPS) | 
 | 	{ | 
 | 	  *err = REG_BADRPT; | 
 | 	  return NULL; | 
 | 	} | 
 |       else if (syntax & RE_CONTEXT_INDEP_OPS) | 
 | 	{ | 
 | 	  fetch_token (token, regexp, syntax); | 
 | 	  return parse_expression (regexp, preg, token, syntax, nest, err); | 
 | 	} | 
 |       /* else fall through  */ | 
 |     case OP_CLOSE_SUBEXP: | 
 |       if ((token->type == OP_CLOSE_SUBEXP) && | 
 | 	  !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) | 
 | 	{ | 
 | 	  *err = REG_ERPAREN; | 
 | 	  return NULL; | 
 | 	} | 
 |       /* else fall through  */ | 
 |     case OP_CLOSE_DUP_NUM: | 
 |       /* We treat it as a normal character.  */ | 
 |  | 
 |       /* Then we can these characters as normal characters.  */ | 
 |       token->type = CHARACTER; | 
 |       /* mb_partial and word_char bits should be initialized already | 
 | 	 by peek_token.  */ | 
 |       tree = create_token_tree (dfa, NULL, NULL, token); | 
 |       if (BE (tree == NULL, 0)) | 
 | 	{ | 
 | 	  *err = REG_ESPACE; | 
 | 	  return NULL; | 
 | 	} | 
 |       break; | 
 |     case ANCHOR: | 
 |       if ((token->opr.ctx_type | 
 | 	   & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) | 
 | 	  && dfa->word_ops_used == 0) | 
 | 	init_word_char (dfa); | 
 |       if (token->opr.ctx_type == WORD_DELIM | 
 | 	  || token->opr.ctx_type == NOT_WORD_DELIM) | 
 | 	{ | 
 | 	  bin_tree_t *tree_first, *tree_last; | 
 | 	  if (token->opr.ctx_type == WORD_DELIM) | 
 | 	    { | 
 | 	      token->opr.ctx_type = WORD_FIRST; | 
 | 	      tree_first = create_token_tree (dfa, NULL, NULL, token); | 
 | 	      token->opr.ctx_type = WORD_LAST; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      token->opr.ctx_type = INSIDE_WORD; | 
 | 	      tree_first = create_token_tree (dfa, NULL, NULL, token); | 
 | 	      token->opr.ctx_type = INSIDE_NOTWORD; | 
 | 	    } | 
 | 	  tree_last = create_token_tree (dfa, NULL, NULL, token); | 
 | 	  tree = create_tree (dfa, tree_first, tree_last, OP_ALT); | 
 | 	  if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) | 
 | 	    { | 
 | 	      *err = REG_ESPACE; | 
 | 	      return NULL; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  tree = create_token_tree (dfa, NULL, NULL, token); | 
 | 	  if (BE (tree == NULL, 0)) | 
 | 	    { | 
 | 	      *err = REG_ESPACE; | 
 | 	      return NULL; | 
 | 	    } | 
 | 	} | 
 |       /* We must return here, since ANCHORs can't be followed | 
 | 	 by repetition operators. | 
 | 	 eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", | 
 | 	     it must not be "<ANCHOR(^)><REPEAT(*)>".  */ | 
 |       fetch_token (token, regexp, syntax); | 
 |       return tree; | 
 |     case OP_PERIOD: | 
 |       tree = create_token_tree (dfa, NULL, NULL, token); | 
 |       if (BE (tree == NULL, 0)) | 
 | 	{ | 
 | 	  *err = REG_ESPACE; | 
 | 	  return NULL; | 
 | 	} | 
 |       if (dfa->mb_cur_max > 1) | 
 | 	dfa->has_mb_node = 1; | 
 |       break; | 
 |     case OP_WORD: | 
 |     case OP_NOTWORD: | 
 |       tree = build_charclass_op (dfa, regexp->trans, | 
 | 				 "alnum", | 
 | 				 "_", | 
 | 				 token->type == OP_NOTWORD, err); | 
 |       if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
 | 	return NULL; | 
 |       break; | 
 |     case OP_SPACE: | 
 |     case OP_NOTSPACE: | 
 |       tree = build_charclass_op (dfa, regexp->trans, | 
 | 				 "space", | 
 | 				 "", | 
 | 				 token->type == OP_NOTSPACE, err); | 
 |       if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
 | 	return NULL; | 
 |       break; | 
 |     case OP_ALT: | 
 |     case END_OF_RE: | 
 |       return NULL; | 
 |     case BACK_SLASH: | 
 |       *err = REG_EESCAPE; | 
 |       return NULL; | 
 |     default: | 
 |       /* Must not happen?  */ | 
 | #ifdef DEBUG | 
 |       assert (0); | 
 | #endif | 
 |       return NULL; | 
 |     } | 
 |   fetch_token (token, regexp, syntax); | 
 |  | 
 |   while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS | 
 | 	 || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) | 
 |     { | 
 |       tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); | 
 |       if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
 | 	return NULL; | 
 |       /* In BRE consecutive duplications are not allowed.  */ | 
 |       if ((syntax & RE_CONTEXT_INVALID_DUP) | 
 | 	  && (token->type == OP_DUP_ASTERISK | 
 | 	      || token->type == OP_OPEN_DUP_NUM)) | 
 | 	{ | 
 | 	  *err = REG_BADRPT; | 
 | 	  return NULL; | 
 | 	} | 
 |     } | 
 |  | 
 |   return tree; | 
 | } | 
 |  | 
 | /* This function build the following tree, from regular expression | 
 |    (<reg_exp>): | 
 | 	 SUBEXP | 
 | 	    | | 
 | 	<reg_exp> | 
 | */ | 
 |  | 
 | static bin_tree_t * | 
 | parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | 
 | 	       reg_syntax_t syntax, int nest, reg_errcode_t *err) | 
 | { | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |   bin_tree_t *tree; | 
 |   size_t cur_nsub; | 
 |   cur_nsub = preg->re_nsub++; | 
 |  | 
 |   fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); | 
 |  | 
 |   /* The subexpression may be a null string.  */ | 
 |   if (token->type == OP_CLOSE_SUBEXP) | 
 |     tree = NULL; | 
 |   else | 
 |     { | 
 |       tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); | 
 |       if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) | 
 | 	*err = REG_EPAREN; | 
 |       if (BE (*err != REG_NOERROR, 0)) | 
 | 	return NULL; | 
 |     } | 
 |  | 
 |   if (cur_nsub <= '9' - '1') | 
 |     dfa->completed_bkref_map |= 1 << cur_nsub; | 
 |  | 
 |   tree = create_tree (dfa, tree, NULL, SUBEXP); | 
 |   if (BE (tree == NULL, 0)) | 
 |     { | 
 |       *err = REG_ESPACE; | 
 |       return NULL; | 
 |     } | 
 |   tree->token.opr.idx = cur_nsub; | 
 |   return tree; | 
 | } | 
 |  | 
 | /* This function parse repetition operators like "*", "+", "{1,3}" etc.  */ | 
 |  | 
 | static bin_tree_t * | 
 | parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, | 
 | 	      re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) | 
 | { | 
 |   bin_tree_t *tree = NULL, *old_tree = NULL; | 
 |   int i, start, end, start_idx = re_string_cur_idx (regexp); | 
 | #ifndef RE_TOKEN_INIT_BUG | 
 |   re_token_t start_token = *token; | 
 | #else | 
 |   re_token_t start_token; | 
 |  | 
 |   memcpy ((void *) &start_token, (void *) token, sizeof start_token); | 
 | #endif | 
 |  | 
 |   if (token->type == OP_OPEN_DUP_NUM) | 
 |     { | 
 |       end = 0; | 
 |       start = fetch_number (regexp, token, syntax); | 
 |       if (start == -1) | 
 | 	{ | 
 | 	  if (token->type == CHARACTER && token->opr.c == ',') | 
 | 	    start = 0; /* We treat "{,m}" as "{0,m}".  */ | 
 | 	  else | 
 | 	    { | 
 | 	      *err = REG_BADBR; /* <re>{} is invalid.  */ | 
 | 	      return NULL; | 
 | 	    } | 
 | 	} | 
 |       if (BE (start != -2, 1)) | 
 | 	{ | 
 | 	  /* We treat "{n}" as "{n,n}".  */ | 
 | 	  end = ((token->type == OP_CLOSE_DUP_NUM) ? start | 
 | 		 : ((token->type == CHARACTER && token->opr.c == ',') | 
 | 		    ? fetch_number (regexp, token, syntax) : -2)); | 
 | 	} | 
 |       if (BE (start == -2 || end == -2, 0)) | 
 | 	{ | 
 | 	  /* Invalid sequence.  */ | 
 | 	  if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0)) | 
 | 	    { | 
 | 	      if (token->type == END_OF_RE) | 
 | 		*err = REG_EBRACE; | 
 | 	      else | 
 | 		*err = REG_BADBR; | 
 |  | 
 | 	      return NULL; | 
 | 	    } | 
 |  | 
 | 	  /* If the syntax bit is set, rollback.  */ | 
 | 	  re_string_set_index (regexp, start_idx); | 
 | 	  *token = start_token; | 
 | 	  token->type = CHARACTER; | 
 | 	  /* mb_partial and word_char bits should be already initialized by | 
 | 	     peek_token.  */ | 
 | 	  return elem; | 
 | 	} | 
 |  | 
 |       if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0)) | 
 | 	{ | 
 | 	  /* First number greater than second.  */ | 
 | 	  *err = REG_BADBR; | 
 | 	  return NULL; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       start = (token->type == OP_DUP_PLUS) ? 1 : 0; | 
 |       end = (token->type == OP_DUP_QUESTION) ? 1 : -1; | 
 |     } | 
 |  | 
 |   fetch_token (token, regexp, syntax); | 
 |  | 
 |   if (BE (elem == NULL, 0)) | 
 |     return NULL; | 
 |   if (BE (start == 0 && end == 0, 0)) | 
 |     { | 
 |       postorder (elem, free_tree, NULL); | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}".  */ | 
 |   if (BE (start > 0, 0)) | 
 |     { | 
 |       tree = elem; | 
 |       for (i = 2; i <= start; ++i) | 
 | 	{ | 
 | 	  elem = duplicate_tree (elem, dfa); | 
 | 	  tree = create_tree (dfa, tree, elem, CONCAT); | 
 | 	  if (BE (elem == NULL || tree == NULL, 0)) | 
 | 	    goto parse_dup_op_espace; | 
 | 	} | 
 |  | 
 |       if (start == end) | 
 | 	return tree; | 
 |  | 
 |       /* Duplicate ELEM before it is marked optional.  */ | 
 |       elem = duplicate_tree (elem, dfa); | 
 |       old_tree = tree; | 
 |     } | 
 |   else | 
 |     old_tree = NULL; | 
 |  | 
 |   if (elem->token.type == SUBEXP) | 
 |     postorder (elem, mark_opt_subexp, (void *) (intptr_t) elem->token.opr.idx); | 
 |  | 
 |   tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT)); | 
 |   if (BE (tree == NULL, 0)) | 
 |     goto parse_dup_op_espace; | 
 |  | 
 |   /* This loop is actually executed only when end != -1, | 
 |      to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?...  We have | 
 |      already created the start+1-th copy.  */ | 
 |   for (i = start + 2; i <= end; ++i) | 
 |     { | 
 |       elem = duplicate_tree (elem, dfa); | 
 |       tree = create_tree (dfa, tree, elem, CONCAT); | 
 |       if (BE (elem == NULL || tree == NULL, 0)) | 
 | 	goto parse_dup_op_espace; | 
 |  | 
 |       tree = create_tree (dfa, tree, NULL, OP_ALT); | 
 |       if (BE (tree == NULL, 0)) | 
 | 	goto parse_dup_op_espace; | 
 |     } | 
 |  | 
 |   if (old_tree) | 
 |     tree = create_tree (dfa, old_tree, tree, CONCAT); | 
 |  | 
 |   return tree; | 
 |  | 
 |  parse_dup_op_espace: | 
 |   *err = REG_ESPACE; | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Size of the names for collating symbol/equivalence_class/character_class. | 
 |    I'm not sure, but maybe enough.  */ | 
 | #define BRACKET_NAME_BUF_SIZE 32 | 
 |  | 
 | #ifndef _LIBC | 
 |   /* Local function for parse_bracket_exp only used in case of NOT _LIBC. | 
 |      Build the range expression which starts from START_ELEM, and ends | 
 |      at END_ELEM.  The result are written to MBCSET and SBCSET. | 
 |      RANGE_ALLOC is the allocated size of mbcset->range_starts, and | 
 |      mbcset->range_ends, is a pointer argument since we may | 
 |      update it.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | # ifdef RE_ENABLE_I18N | 
 | build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc, | 
 | 		 bracket_elem_t *start_elem, bracket_elem_t *end_elem) | 
 | # else /* not RE_ENABLE_I18N */ | 
 | build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem, | 
 | 		 bracket_elem_t *end_elem) | 
 | # endif /* not RE_ENABLE_I18N */ | 
 | { | 
 |   unsigned int start_ch, end_ch; | 
 |   /* Equivalence Classes and Character Classes can't be a range start/end.  */ | 
 |   if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | 
 | 	  || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | 
 | 	  0)) | 
 |     return REG_ERANGE; | 
 |  | 
 |   /* We can handle no multi character collating elements without libc | 
 |      support.  */ | 
 |   if (BE ((start_elem->type == COLL_SYM | 
 | 	   && strlen ((char *) start_elem->opr.name) > 1) | 
 | 	  || (end_elem->type == COLL_SYM | 
 | 	      && strlen ((char *) end_elem->opr.name) > 1), 0)) | 
 |     return REG_ECOLLATE; | 
 |  | 
 | # ifdef RE_ENABLE_I18N | 
 |   { | 
 |     wchar_t wc; | 
 |     wint_t start_wc; | 
 |     wint_t end_wc; | 
 |     wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | 
 |  | 
 |     start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch | 
 | 		: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | 
 | 		   : 0)); | 
 |     end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch | 
 | 	      : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | 
 | 		 : 0)); | 
 | #ifdef GAWK | 
 |     /* | 
 |      * Fedora Core 2, maybe others, have broken `btowc' that returns -1 | 
 |      * for any value > 127. Sigh. Note that `start_ch' and `end_ch' are | 
 |      * unsigned, so we don't have sign extension problems. | 
 |      */ | 
 |     start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | 
 | 		? start_ch : start_elem->opr.wch); | 
 |     end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | 
 | 	      ? end_ch : end_elem->opr.wch); | 
 | #else | 
 |     start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | 
 | 		? __btowc (start_ch) : start_elem->opr.wch); | 
 |     end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | 
 | 	      ? __btowc (end_ch) : end_elem->opr.wch); | 
 | #endif | 
 |     if (start_wc == WEOF || end_wc == WEOF) | 
 |       return REG_ECOLLATE; | 
 |     cmp_buf[0] = start_wc; | 
 |     cmp_buf[4] = end_wc; | 
 |     if (wcscoll (cmp_buf, cmp_buf + 4) > 0) | 
 |       return REG_ERANGE; | 
 |  | 
 |     /* Got valid collation sequence values, add them as a new entry. | 
 |        However, for !_LIBC we have no collation elements: if the | 
 |        character set is single byte, the single byte character set | 
 |        that we build below suffices.  parse_bracket_exp passes | 
 |        no MBCSET if dfa->mb_cur_max == 1.  */ | 
 |     if (mbcset) | 
 |       { | 
 | 	/* Check the space of the arrays.  */ | 
 | 	if (BE (*range_alloc == mbcset->nranges, 0)) | 
 | 	  { | 
 | 	    /* There is not enough space, need realloc.  */ | 
 | 	    wchar_t *new_array_start, *new_array_end; | 
 | 	    int new_nranges; | 
 |  | 
 | 	    /* +1 in case of mbcset->nranges is 0.  */ | 
 | 	    new_nranges = 2 * mbcset->nranges + 1; | 
 | 	    /* Use realloc since mbcset->range_starts and mbcset->range_ends | 
 | 	       are NULL if *range_alloc == 0.  */ | 
 | 	    new_array_start = re_realloc (mbcset->range_starts, wchar_t, | 
 | 					  new_nranges); | 
 | 	    new_array_end = re_realloc (mbcset->range_ends, wchar_t, | 
 | 					new_nranges); | 
 |  | 
 | 	    if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | 
 | 	      return REG_ESPACE; | 
 |  | 
 | 	    mbcset->range_starts = new_array_start; | 
 | 	    mbcset->range_ends = new_array_end; | 
 | 	    *range_alloc = new_nranges; | 
 | 	  } | 
 |  | 
 | 	mbcset->range_starts[mbcset->nranges] = start_wc; | 
 | 	mbcset->range_ends[mbcset->nranges++] = end_wc; | 
 |       } | 
 |  | 
 |     /* Build the table for single byte characters.  */ | 
 |     for (wc = 0; wc < SBC_MAX; ++wc) | 
 |       { | 
 | 	cmp_buf[2] = wc; | 
 | 	if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | 
 | 	    && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | 
 | 	  bitset_set (sbcset, wc); | 
 |       } | 
 |   } | 
 | # else /* not RE_ENABLE_I18N */ | 
 |   { | 
 |     unsigned int ch; | 
 |     start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch | 
 | 		: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | 
 | 		   : 0)); | 
 |     end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch | 
 | 	      : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | 
 | 		 : 0)); | 
 |     if (start_ch > end_ch) | 
 |       return REG_ERANGE; | 
 |     /* Build the table for single byte characters.  */ | 
 |     for (ch = 0; ch < SBC_MAX; ++ch) | 
 |       if (start_ch <= ch  && ch <= end_ch) | 
 | 	bitset_set (sbcset, ch); | 
 |   } | 
 | # endif /* not RE_ENABLE_I18N */ | 
 |   return REG_NOERROR; | 
 | } | 
 | #endif /* not _LIBC */ | 
 |  | 
 | #ifndef _LIBC | 
 | /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. | 
 |    Build the collating element which is represented by NAME. | 
 |    The result are written to MBCSET and SBCSET. | 
 |    COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | 
 |    pointer argument since we may update it.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | # ifdef RE_ENABLE_I18N | 
 | build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset, | 
 | 			int *coll_sym_alloc, const unsigned char *name) | 
 | # else /* not RE_ENABLE_I18N */ | 
 | build_collating_symbol (bitset_t sbcset, const unsigned char *name) | 
 | # endif /* not RE_ENABLE_I18N */ | 
 | { | 
 |   size_t name_len = strlen ((const char *) name); | 
 |   if (BE (name_len != 1, 0)) | 
 |     return REG_ECOLLATE; | 
 |   else | 
 |     { | 
 |       bitset_set (sbcset, name[0]); | 
 |       return REG_NOERROR; | 
 |     } | 
 | } | 
 | #endif /* not _LIBC */ | 
 |  | 
 | /* This function parse bracket expression like "[abc]", "[a-c]", | 
 |    "[[.a-a.]]" etc.  */ | 
 |  | 
 | static bin_tree_t * | 
 | parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, | 
 | 		   reg_syntax_t syntax, reg_errcode_t *err) | 
 | { | 
 | #ifdef _LIBC | 
 |   const unsigned char *collseqmb; | 
 |   const char *collseqwc; | 
 |   uint32_t nrules; | 
 |   int32_t table_size; | 
 |   const int32_t *symb_table; | 
 |   const unsigned char *extra; | 
 |  | 
 |   /* Local function for parse_bracket_exp used in _LIBC environment. | 
 |      Seek the collating symbol entry correspondings to NAME. | 
 |      Return the index of the symbol in the SYMB_TABLE.  */ | 
 |  | 
 |   auto inline int32_t | 
 |   __attribute ((always_inline)) | 
 |   seek_collating_symbol_entry (name, name_len) | 
 | 	 const unsigned char *name; | 
 | 	 size_t name_len; | 
 |     { | 
 |       int32_t hash = elem_hash ((const char *) name, name_len); | 
 |       int32_t elem = hash % table_size; | 
 |       if (symb_table[2 * elem] != 0) | 
 | 	{ | 
 | 	  int32_t second = hash % (table_size - 2) + 1; | 
 |  | 
 | 	  do | 
 | 	    { | 
 | 	      /* First compare the hashing value.  */ | 
 | 	      if (symb_table[2 * elem] == hash | 
 | 		  /* Compare the length of the name.  */ | 
 | 		  && name_len == extra[symb_table[2 * elem + 1]] | 
 | 		  /* Compare the name.  */ | 
 | 		  && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], | 
 | 			     name_len) == 0) | 
 | 		{ | 
 | 		  /* Yep, this is the entry.  */ | 
 | 		  break; | 
 | 		} | 
 |  | 
 | 	      /* Next entry.  */ | 
 | 	      elem += second; | 
 | 	    } | 
 | 	  while (symb_table[2 * elem] != 0); | 
 | 	} | 
 |       return elem; | 
 |     } | 
 |  | 
 |   /* Local function for parse_bracket_exp used in _LIBC environment. | 
 |      Look up the collation sequence value of BR_ELEM. | 
 |      Return the value if succeeded, UINT_MAX otherwise.  */ | 
 |  | 
 |   auto inline unsigned int | 
 |   __attribute ((always_inline)) | 
 |   lookup_collation_sequence_value (br_elem) | 
 | 	 bracket_elem_t *br_elem; | 
 |     { | 
 |       if (br_elem->type == SB_CHAR) | 
 | 	{ | 
 | 	  /* | 
 | 	  if (MB_CUR_MAX == 1) | 
 | 	  */ | 
 | 	  if (nrules == 0) | 
 | 	    return collseqmb[br_elem->opr.ch]; | 
 | 	  else | 
 | 	    { | 
 | 	      wint_t wc = __btowc (br_elem->opr.ch); | 
 | 	      return __collseq_table_lookup (collseqwc, wc); | 
 | 	    } | 
 | 	} | 
 |       else if (br_elem->type == MB_CHAR) | 
 | 	{ | 
 | 	  if (nrules != 0) | 
 | 	    return __collseq_table_lookup (collseqwc, br_elem->opr.wch); | 
 | 	} | 
 |       else if (br_elem->type == COLL_SYM) | 
 | 	{ | 
 | 	  size_t sym_name_len = strlen ((char *) br_elem->opr.name); | 
 | 	  if (nrules != 0) | 
 | 	    { | 
 | 	      int32_t elem, idx; | 
 | 	      elem = seek_collating_symbol_entry (br_elem->opr.name, | 
 | 						  sym_name_len); | 
 | 	      if (symb_table[2 * elem] != 0) | 
 | 		{ | 
 | 		  /* We found the entry.  */ | 
 | 		  idx = symb_table[2 * elem + 1]; | 
 | 		  /* Skip the name of collating element name.  */ | 
 | 		  idx += 1 + extra[idx]; | 
 | 		  /* Skip the byte sequence of the collating element.  */ | 
 | 		  idx += 1 + extra[idx]; | 
 | 		  /* Adjust for the alignment.  */ | 
 | 		  idx = (idx + 3) & ~3; | 
 | 		  /* Skip the multibyte collation sequence value.  */ | 
 | 		  idx += sizeof (unsigned int); | 
 | 		  /* Skip the wide char sequence of the collating element.  */ | 
 | 		  idx += sizeof (unsigned int) * | 
 | 		    (1 + *(unsigned int *) (extra + idx)); | 
 | 		  /* Return the collation sequence value.  */ | 
 | 		  return *(unsigned int *) (extra + idx); | 
 | 		} | 
 | 	      else if (symb_table[2 * elem] == 0 && sym_name_len == 1) | 
 | 		{ | 
 | 		  /* No valid character.  Match it as a single byte | 
 | 		     character.  */ | 
 | 		  return collseqmb[br_elem->opr.name[0]]; | 
 | 		} | 
 | 	    } | 
 | 	  else if (sym_name_len == 1) | 
 | 	    return collseqmb[br_elem->opr.name[0]]; | 
 | 	} | 
 |       return UINT_MAX; | 
 |     } | 
 |  | 
 |   /* Local function for parse_bracket_exp used in _LIBC environment. | 
 |      Build the range expression which starts from START_ELEM, and ends | 
 |      at END_ELEM.  The result are written to MBCSET and SBCSET. | 
 |      RANGE_ALLOC is the allocated size of mbcset->range_starts, and | 
 |      mbcset->range_ends, is a pointer argument since we may | 
 |      update it.  */ | 
 |  | 
 |   auto inline reg_errcode_t | 
 |   __attribute ((always_inline)) | 
 |   build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem) | 
 | 	 re_charset_t *mbcset; | 
 | 	 int *range_alloc; | 
 | 	 bitset_t sbcset; | 
 | 	 bracket_elem_t *start_elem, *end_elem; | 
 |     { | 
 |       unsigned int ch; | 
 |       uint32_t start_collseq; | 
 |       uint32_t end_collseq; | 
 |  | 
 |       /* Equivalence Classes and Character Classes can't be a range | 
 | 	 start/end.  */ | 
 |       if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | 
 | 	      || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | 
 | 	      0)) | 
 | 	return REG_ERANGE; | 
 |  | 
 |       start_collseq = lookup_collation_sequence_value (start_elem); | 
 |       end_collseq = lookup_collation_sequence_value (end_elem); | 
 |       /* Check start/end collation sequence values.  */ | 
 |       if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) | 
 | 	return REG_ECOLLATE; | 
 |       if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) | 
 | 	return REG_ERANGE; | 
 |  | 
 |       /* Got valid collation sequence values, add them as a new entry. | 
 | 	 However, if we have no collation elements, and the character set | 
 | 	 is single byte, the single byte character set that we | 
 | 	 build below suffices. */ | 
 |       if (nrules > 0 || dfa->mb_cur_max > 1) | 
 | 	{ | 
 | 	  /* Check the space of the arrays.  */ | 
 | 	  if (BE (*range_alloc == mbcset->nranges, 0)) | 
 | 	    { | 
 | 	      /* There is not enough space, need realloc.  */ | 
 | 	      uint32_t *new_array_start; | 
 | 	      uint32_t *new_array_end; | 
 | 	      int new_nranges; | 
 |  | 
 | 	      /* +1 in case of mbcset->nranges is 0.  */ | 
 | 	      new_nranges = 2 * mbcset->nranges + 1; | 
 | 	      new_array_start = re_realloc (mbcset->range_starts, uint32_t, | 
 | 					    new_nranges); | 
 | 	      new_array_end = re_realloc (mbcset->range_ends, uint32_t, | 
 | 					  new_nranges); | 
 |  | 
 | 	      if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | 
 | 		return REG_ESPACE; | 
 |  | 
 | 	      mbcset->range_starts = new_array_start; | 
 | 	      mbcset->range_ends = new_array_end; | 
 | 	      *range_alloc = new_nranges; | 
 | 	    } | 
 |  | 
 | 	  mbcset->range_starts[mbcset->nranges] = start_collseq; | 
 | 	  mbcset->range_ends[mbcset->nranges++] = end_collseq; | 
 | 	} | 
 |  | 
 |       /* Build the table for single byte characters.  */ | 
 |       for (ch = 0; ch < SBC_MAX; ch++) | 
 | 	{ | 
 | 	  uint32_t ch_collseq; | 
 | 	  /* | 
 | 	  if (MB_CUR_MAX == 1) | 
 | 	  */ | 
 | 	  if (nrules == 0) | 
 | 	    ch_collseq = collseqmb[ch]; | 
 | 	  else | 
 | 	    ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); | 
 | 	  if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) | 
 | 	    bitset_set (sbcset, ch); | 
 | 	} | 
 |       return REG_NOERROR; | 
 |     } | 
 |  | 
 |   /* Local function for parse_bracket_exp used in _LIBC environment. | 
 |      Build the collating element which is represented by NAME. | 
 |      The result are written to MBCSET and SBCSET. | 
 |      COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | 
 |      pointer argument since we may update it.  */ | 
 |  | 
 |   auto inline reg_errcode_t | 
 |   __attribute ((always_inline)) | 
 |   build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name) | 
 | 	 re_charset_t *mbcset; | 
 | 	 int *coll_sym_alloc; | 
 | 	 bitset_t sbcset; | 
 | 	 const unsigned char *name; | 
 |     { | 
 |       int32_t elem, idx; | 
 |       size_t name_len = strlen ((const char *) name); | 
 |       if (nrules != 0) | 
 | 	{ | 
 | 	  elem = seek_collating_symbol_entry (name, name_len); | 
 | 	  if (symb_table[2 * elem] != 0) | 
 | 	    { | 
 | 	      /* We found the entry.  */ | 
 | 	      idx = symb_table[2 * elem + 1]; | 
 | 	      /* Skip the name of collating element name.  */ | 
 | 	      idx += 1 + extra[idx]; | 
 | 	    } | 
 | 	  else if (symb_table[2 * elem] == 0 && name_len == 1) | 
 | 	    { | 
 | 	      /* No valid character, treat it as a normal | 
 | 		 character.  */ | 
 | 	      bitset_set (sbcset, name[0]); | 
 | 	      return REG_NOERROR; | 
 | 	    } | 
 | 	  else | 
 | 	    return REG_ECOLLATE; | 
 |  | 
 | 	  /* Got valid collation sequence, add it as a new entry.  */ | 
 | 	  /* Check the space of the arrays.  */ | 
 | 	  if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) | 
 | 	    { | 
 | 	      /* Not enough, realloc it.  */ | 
 | 	      /* +1 in case of mbcset->ncoll_syms is 0.  */ | 
 | 	      int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; | 
 | 	      /* Use realloc since mbcset->coll_syms is NULL | 
 | 		 if *alloc == 0.  */ | 
 | 	      int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t, | 
 | 						   new_coll_sym_alloc); | 
 | 	      if (BE (new_coll_syms == NULL, 0)) | 
 | 		return REG_ESPACE; | 
 | 	      mbcset->coll_syms = new_coll_syms; | 
 | 	      *coll_sym_alloc = new_coll_sym_alloc; | 
 | 	    } | 
 | 	  mbcset->coll_syms[mbcset->ncoll_syms++] = idx; | 
 | 	  return REG_NOERROR; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (BE (name_len != 1, 0)) | 
 | 	    return REG_ECOLLATE; | 
 | 	  else | 
 | 	    { | 
 | 	      bitset_set (sbcset, name[0]); | 
 | 	      return REG_NOERROR; | 
 | 	    } | 
 | 	} | 
 |     } | 
 | #endif | 
 |  | 
 |   re_token_t br_token; | 
 |   re_bitset_ptr_t sbcset; | 
 | #ifdef RE_ENABLE_I18N | 
 |   re_charset_t *mbcset; | 
 |   int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; | 
 |   int equiv_class_alloc = 0, char_class_alloc = 0; | 
 | #endif /* not RE_ENABLE_I18N */ | 
 |   int non_match = 0; | 
 |   bin_tree_t *work_tree; | 
 |   int token_len; | 
 |   int first_round = 1; | 
 | #ifdef _LIBC | 
 |   collseqmb = (const unsigned char *) | 
 |     _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | 
 |   nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
 |   if (nrules) | 
 |     { | 
 |       /* | 
 |       if (MB_CUR_MAX > 1) | 
 |       */ | 
 |       collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | 
 |       table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); | 
 |       symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, | 
 | 						  _NL_COLLATE_SYMB_TABLEMB); | 
 |       extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | 
 | 						   _NL_COLLATE_SYMB_EXTRAMB); | 
 |     } | 
 | #endif | 
 |   sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | 
 | #ifdef RE_ENABLE_I18N | 
 |   mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); | 
 | #endif /* RE_ENABLE_I18N */ | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (BE (sbcset == NULL || mbcset == NULL, 0)) | 
 | #else | 
 |   if (BE (sbcset == NULL, 0)) | 
 | #endif /* RE_ENABLE_I18N */ | 
 |     { | 
 |       *err = REG_ESPACE; | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   token_len = peek_token_bracket (token, regexp, syntax); | 
 |   if (BE (token->type == END_OF_RE, 0)) | 
 |     { | 
 |       *err = REG_BADPAT; | 
 |       goto parse_bracket_exp_free_return; | 
 |     } | 
 |   if (token->type == OP_NON_MATCH_LIST) | 
 |     { | 
 | #ifdef RE_ENABLE_I18N | 
 |       mbcset->non_match = 1; | 
 | #endif /* not RE_ENABLE_I18N */ | 
 |       non_match = 1; | 
 |       if (syntax & RE_HAT_LISTS_NOT_NEWLINE) | 
 | 	bitset_set (sbcset, '\n'); | 
 |       re_string_skip_bytes (regexp, token_len); /* Skip a token.  */ | 
 |       token_len = peek_token_bracket (token, regexp, syntax); | 
 |       if (BE (token->type == END_OF_RE, 0)) | 
 | 	{ | 
 | 	  *err = REG_BADPAT; | 
 | 	  goto parse_bracket_exp_free_return; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* We treat the first ']' as a normal character.  */ | 
 |   if (token->type == OP_CLOSE_BRACKET) | 
 |     token->type = CHARACTER; | 
 |  | 
 |   while (1) | 
 |     { | 
 |       bracket_elem_t start_elem, end_elem; | 
 |       unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; | 
 |       unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; | 
 |       reg_errcode_t ret; | 
 |       int token_len2 = 0, is_range_exp = 0; | 
 |       re_token_t token2; | 
 |  | 
 |       start_elem.opr.name = start_name_buf; | 
 |       ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, | 
 | 				   syntax, first_round); | 
 |       if (BE (ret != REG_NOERROR, 0)) | 
 | 	{ | 
 | 	  *err = ret; | 
 | 	  goto parse_bracket_exp_free_return; | 
 | 	} | 
 |       first_round = 0; | 
 |  | 
 |       /* Get information about the next token.  We need it in any case.  */ | 
 |       token_len = peek_token_bracket (token, regexp, syntax); | 
 |  | 
 |       /* Do not check for ranges if we know they are not allowed.  */ | 
 |       if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) | 
 | 	{ | 
 | 	  if (BE (token->type == END_OF_RE, 0)) | 
 | 	    { | 
 | 	      *err = REG_EBRACK; | 
 | 	      goto parse_bracket_exp_free_return; | 
 | 	    } | 
 | 	  if (token->type == OP_CHARSET_RANGE) | 
 | 	    { | 
 | 	      re_string_skip_bytes (regexp, token_len); /* Skip '-'.  */ | 
 | 	      token_len2 = peek_token_bracket (&token2, regexp, syntax); | 
 | 	      if (BE (token2.type == END_OF_RE, 0)) | 
 | 		{ | 
 | 		  *err = REG_EBRACK; | 
 | 		  goto parse_bracket_exp_free_return; | 
 | 		} | 
 | 	      if (token2.type == OP_CLOSE_BRACKET) | 
 | 		{ | 
 | 		  /* We treat the last '-' as a normal character.  */ | 
 | 		  re_string_skip_bytes (regexp, -token_len); | 
 | 		  token->type = CHARACTER; | 
 | 		} | 
 | 	      else | 
 | 		is_range_exp = 1; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (is_range_exp == 1) | 
 | 	{ | 
 | 	  end_elem.opr.name = end_name_buf; | 
 | 	  ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, | 
 | 				       dfa, syntax, 1); | 
 | 	  if (BE (ret != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      *err = ret; | 
 | 	      goto parse_bracket_exp_free_return; | 
 | 	    } | 
 |  | 
 | 	  token_len = peek_token_bracket (token, regexp, syntax); | 
 |  | 
 | #ifdef _LIBC | 
 | 	  *err = build_range_exp (sbcset, mbcset, &range_alloc, | 
 | 				  &start_elem, &end_elem); | 
 | #else | 
 | # ifdef RE_ENABLE_I18N | 
 | 	  *err = build_range_exp (sbcset, | 
 | 				  dfa->mb_cur_max > 1 ? mbcset : NULL, | 
 | 				  &range_alloc, &start_elem, &end_elem); | 
 | # else | 
 | 	  *err = build_range_exp (sbcset, &start_elem, &end_elem); | 
 | # endif | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 	  if (BE (*err != REG_NOERROR, 0)) | 
 | 	    goto parse_bracket_exp_free_return; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  switch (start_elem.type) | 
 | 	    { | 
 | 	    case SB_CHAR: | 
 | 	      bitset_set (sbcset, start_elem.opr.ch); | 
 | 	      break; | 
 | #ifdef RE_ENABLE_I18N | 
 | 	    case MB_CHAR: | 
 | 	      /* Check whether the array has enough space.  */ | 
 | 	      if (BE (mbchar_alloc == mbcset->nmbchars, 0)) | 
 | 		{ | 
 | 		  wchar_t *new_mbchars; | 
 | 		  /* Not enough, realloc it.  */ | 
 | 		  /* +1 in case of mbcset->nmbchars is 0.  */ | 
 | 		  mbchar_alloc = 2 * mbcset->nmbchars + 1; | 
 | 		  /* Use realloc since array is NULL if *alloc == 0.  */ | 
 | 		  new_mbchars = re_realloc (mbcset->mbchars, wchar_t, | 
 | 					    mbchar_alloc); | 
 | 		  if (BE (new_mbchars == NULL, 0)) | 
 | 		    goto parse_bracket_exp_espace; | 
 | 		  mbcset->mbchars = new_mbchars; | 
 | 		} | 
 | 	      mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; | 
 | 	      break; | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 	    case EQUIV_CLASS: | 
 | 	      *err = build_equiv_class (sbcset, | 
 | #ifdef RE_ENABLE_I18N | 
 | 					mbcset, &equiv_class_alloc, | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 					start_elem.opr.name); | 
 | 	      if (BE (*err != REG_NOERROR, 0)) | 
 | 		goto parse_bracket_exp_free_return; | 
 | 	      break; | 
 | 	    case COLL_SYM: | 
 | 	      *err = build_collating_symbol (sbcset, | 
 | #ifdef RE_ENABLE_I18N | 
 | 					     mbcset, &coll_sym_alloc, | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 					     start_elem.opr.name); | 
 | 	      if (BE (*err != REG_NOERROR, 0)) | 
 | 		goto parse_bracket_exp_free_return; | 
 | 	      break; | 
 | 	    case CHAR_CLASS: | 
 | 	      *err = build_charclass (regexp->trans, sbcset, | 
 | #ifdef RE_ENABLE_I18N | 
 | 				      mbcset, &char_class_alloc, | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 				      (const char *) start_elem.opr.name, syntax); | 
 | 	      if (BE (*err != REG_NOERROR, 0)) | 
 | 	       goto parse_bracket_exp_free_return; | 
 | 	      break; | 
 | 	    default: | 
 | 	      assert (0); | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |       if (BE (token->type == END_OF_RE, 0)) | 
 | 	{ | 
 | 	  *err = REG_EBRACK; | 
 | 	  goto parse_bracket_exp_free_return; | 
 | 	} | 
 |       if (token->type == OP_CLOSE_BRACKET) | 
 | 	break; | 
 |     } | 
 |  | 
 |   re_string_skip_bytes (regexp, token_len); /* Skip a token.  */ | 
 |  | 
 |   /* If it is non-matching list.  */ | 
 |   if (non_match) | 
 |     bitset_not (sbcset); | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   /* Ensure only single byte characters are set.  */ | 
 |   if (dfa->mb_cur_max > 1) | 
 |     bitset_mask (sbcset, dfa->sb_char); | 
 |  | 
 |   if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes | 
 |       || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes | 
 | 						     || mbcset->non_match))) | 
 |     { | 
 |       bin_tree_t *mbc_tree; | 
 |       int sbc_idx; | 
 |       /* Build a tree for complex bracket.  */ | 
 |       dfa->has_mb_node = 1; | 
 |       br_token.type = COMPLEX_BRACKET; | 
 |       br_token.opr.mbcset = mbcset; | 
 |       mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
 |       if (BE (mbc_tree == NULL, 0)) | 
 | 	goto parse_bracket_exp_espace; | 
 |       for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) | 
 | 	if (sbcset[sbc_idx]) | 
 | 	  break; | 
 |       /* If there are no bits set in sbcset, there is no point | 
 | 	 of having both SIMPLE_BRACKET and COMPLEX_BRACKET.  */ | 
 |       if (sbc_idx < BITSET_WORDS) | 
 | 	{ | 
 | 	  /* Build a tree for simple bracket.  */ | 
 | 	  br_token.type = SIMPLE_BRACKET; | 
 | 	  br_token.opr.sbcset = sbcset; | 
 | 	  work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
 | 	  if (BE (work_tree == NULL, 0)) | 
 | 	    goto parse_bracket_exp_espace; | 
 |  | 
 | 	  /* Then join them by ALT node.  */ | 
 | 	  work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); | 
 | 	  if (BE (work_tree == NULL, 0)) | 
 | 	    goto parse_bracket_exp_espace; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  re_free (sbcset); | 
 | 	  work_tree = mbc_tree; | 
 | 	} | 
 |     } | 
 |   else | 
 | #endif /* not RE_ENABLE_I18N */ | 
 |     { | 
 | #ifdef RE_ENABLE_I18N | 
 |       free_charset (mbcset); | 
 | #endif | 
 |       /* Build a tree for simple bracket.  */ | 
 |       br_token.type = SIMPLE_BRACKET; | 
 |       br_token.opr.sbcset = sbcset; | 
 |       work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
 |       if (BE (work_tree == NULL, 0)) | 
 | 	goto parse_bracket_exp_espace; | 
 |     } | 
 |   return work_tree; | 
 |  | 
 |  parse_bracket_exp_espace: | 
 |   *err = REG_ESPACE; | 
 |  parse_bracket_exp_free_return: | 
 |   re_free (sbcset); | 
 | #ifdef RE_ENABLE_I18N | 
 |   free_charset (mbcset); | 
 | #endif /* RE_ENABLE_I18N */ | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Parse an element in the bracket expression.  */ | 
 |  | 
 | static reg_errcode_t | 
 | parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, | 
 | 		       re_token_t *token, int token_len, re_dfa_t *dfa, | 
 | 		       reg_syntax_t syntax, int accept_hyphen) | 
 | { | 
 | #ifdef RE_ENABLE_I18N | 
 |   int cur_char_size; | 
 |   cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); | 
 |   if (cur_char_size > 1) | 
 |     { | 
 |       elem->type = MB_CHAR; | 
 |       elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); | 
 |       re_string_skip_bytes (regexp, cur_char_size); | 
 |       return REG_NOERROR; | 
 |     } | 
 | #endif /* RE_ENABLE_I18N */ | 
 |   re_string_skip_bytes (regexp, token_len); /* Skip a token.  */ | 
 |   if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS | 
 |       || token->type == OP_OPEN_EQUIV_CLASS) | 
 |     return parse_bracket_symbol (elem, regexp, token); | 
 |   if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) | 
 |     { | 
 |       /* A '-' must only appear as anything but a range indicator before | 
 | 	 the closing bracket.  Everything else is an error.  */ | 
 |       re_token_t token2; | 
 |       (void) peek_token_bracket (&token2, regexp, syntax); | 
 |       if (token2.type != OP_CLOSE_BRACKET) | 
 | 	/* The actual error value is not standardized since this whole | 
 | 	   case is undefined.  But ERANGE makes good sense.  */ | 
 | 	return REG_ERANGE; | 
 |     } | 
 |   elem->type = SB_CHAR; | 
 |   elem->opr.ch = token->opr.c; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Parse a bracket symbol in the bracket expression.  Bracket symbols are | 
 |    such as [:<character_class>:], [.<collating_element>.], and | 
 |    [=<equivalent_class>=].  */ | 
 |  | 
 | static reg_errcode_t | 
 | parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, | 
 | 		      re_token_t *token) | 
 | { | 
 |   unsigned char ch, delim = token->opr.c; | 
 |   int i = 0; | 
 |   if (re_string_eoi(regexp)) | 
 |     return REG_EBRACK; | 
 |   for (;; ++i) | 
 |     { | 
 |       if (i >= BRACKET_NAME_BUF_SIZE) | 
 | 	return REG_EBRACK; | 
 |       if (token->type == OP_OPEN_CHAR_CLASS) | 
 | 	ch = re_string_fetch_byte_case (regexp); | 
 |       else | 
 | 	ch = re_string_fetch_byte (regexp); | 
 |       if (re_string_eoi(regexp)) | 
 | 	return REG_EBRACK; | 
 |       if (ch == delim && re_string_peek_byte (regexp, 0) == ']') | 
 | 	break; | 
 |       elem->opr.name[i] = ch; | 
 |     } | 
 |   re_string_skip_bytes (regexp, 1); | 
 |   elem->opr.name[i] = '\0'; | 
 |   switch (token->type) | 
 |     { | 
 |     case OP_OPEN_COLL_ELEM: | 
 |       elem->type = COLL_SYM; | 
 |       break; | 
 |     case OP_OPEN_EQUIV_CLASS: | 
 |       elem->type = EQUIV_CLASS; | 
 |       break; | 
 |     case OP_OPEN_CHAR_CLASS: | 
 |       elem->type = CHAR_CLASS; | 
 |       break; | 
 |     default: | 
 |       break; | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 |   /* Helper function for parse_bracket_exp. | 
 |      Build the equivalence class which is represented by NAME. | 
 |      The result are written to MBCSET and SBCSET. | 
 |      EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, | 
 |      is a pointer argument since we may update it.  */ | 
 |  | 
 | static reg_errcode_t | 
 | #ifdef RE_ENABLE_I18N | 
 | build_equiv_class (bitset_t sbcset, re_charset_t *mbcset, | 
 | 		   int *equiv_class_alloc, const unsigned char *name) | 
 | #else /* not RE_ENABLE_I18N */ | 
 | build_equiv_class (bitset_t sbcset, const unsigned char *name) | 
 | #endif /* not RE_ENABLE_I18N */ | 
 | { | 
 | #ifdef _LIBC | 
 |   uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
 |   if (nrules != 0) | 
 |     { | 
 |       const int32_t *table, *indirect; | 
 |       const unsigned char *weights, *extra, *cp; | 
 |       unsigned char char_buf[2]; | 
 |       int32_t idx1, idx2; | 
 |       unsigned int ch; | 
 |       size_t len; | 
 |       /* This #include defines a local function!  */ | 
 | # include <locale/weight.h> | 
 |       /* Calculate the index for equivalence class.  */ | 
 |       cp = name; | 
 |       table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | 
 |       weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | 
 | 					       _NL_COLLATE_WEIGHTMB); | 
 |       extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | 
 | 						   _NL_COLLATE_EXTRAMB); | 
 |       indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, | 
 | 						_NL_COLLATE_INDIRECTMB); | 
 |       idx1 = findidx (&cp); | 
 |       if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) | 
 | 	/* This isn't a valid character.  */ | 
 | 	return REG_ECOLLATE; | 
 |  | 
 |       /* Build single byte matcing table for this equivalence class.  */ | 
 |       char_buf[1] = (unsigned char) '\0'; | 
 |       len = weights[idx1 & 0xffffff]; | 
 |       for (ch = 0; ch < SBC_MAX; ++ch) | 
 | 	{ | 
 | 	  char_buf[0] = ch; | 
 | 	  cp = char_buf; | 
 | 	  idx2 = findidx (&cp); | 
 | /* | 
 | 	  idx2 = table[ch]; | 
 | */ | 
 | 	  if (idx2 == 0) | 
 | 	    /* This isn't a valid character.  */ | 
 | 	    continue; | 
 | 	  /* Compare only if the length matches and the collation rule | 
 | 	     index is the same.  */ | 
 | 	  if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24)) | 
 | 	    { | 
 | 	      int cnt = 0; | 
 |  | 
 | 	      while (cnt <= len && | 
 | 		     weights[(idx1 & 0xffffff) + 1 + cnt] | 
 | 		     == weights[(idx2 & 0xffffff) + 1 + cnt]) | 
 | 		++cnt; | 
 |  | 
 | 	      if (cnt > len) | 
 | 		bitset_set (sbcset, ch); | 
 | 	    } | 
 | 	} | 
 |       /* Check whether the array has enough space.  */ | 
 |       if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) | 
 | 	{ | 
 | 	  /* Not enough, realloc it.  */ | 
 | 	  /* +1 in case of mbcset->nequiv_classes is 0.  */ | 
 | 	  int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; | 
 | 	  /* Use realloc since the array is NULL if *alloc == 0.  */ | 
 | 	  int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes, | 
 | 						   int32_t, | 
 | 						   new_equiv_class_alloc); | 
 | 	  if (BE (new_equiv_classes == NULL, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	  mbcset->equiv_classes = new_equiv_classes; | 
 | 	  *equiv_class_alloc = new_equiv_class_alloc; | 
 | 	} | 
 |       mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; | 
 |     } | 
 |   else | 
 | #endif /* _LIBC */ | 
 |     { | 
 |       if (BE (strlen ((const char *) name) != 1, 0)) | 
 | 	return REG_ECOLLATE; | 
 |       bitset_set (sbcset, *name); | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 |   /* Helper function for parse_bracket_exp. | 
 |      Build the character class which is represented by NAME. | 
 |      The result are written to MBCSET and SBCSET. | 
 |      CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, | 
 |      is a pointer argument since we may update it.  */ | 
 |  | 
 | static reg_errcode_t | 
 | #ifdef RE_ENABLE_I18N | 
 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, | 
 | 		 re_charset_t *mbcset, int *char_class_alloc, | 
 | 		 const char *class_name, reg_syntax_t syntax) | 
 | #else /* not RE_ENABLE_I18N */ | 
 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, | 
 | 		 const char *class_name, reg_syntax_t syntax) | 
 | #endif /* not RE_ENABLE_I18N */ | 
 | { | 
 |   int i; | 
 |  | 
 |   /* In case of REG_ICASE "upper" and "lower" match the both of | 
 |      upper and lower cases.  */ | 
 |   if ((syntax & RE_ICASE) | 
 |       && (strcmp (class_name, "upper") == 0 || strcmp (class_name, "lower") == 0)) | 
 |     class_name = "alpha"; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   /* Check the space of the arrays.  */ | 
 |   if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) | 
 |     { | 
 |       /* Not enough, realloc it.  */ | 
 |       /* +1 in case of mbcset->nchar_classes is 0.  */ | 
 |       int new_char_class_alloc = 2 * mbcset->nchar_classes + 1; | 
 |       /* Use realloc since array is NULL if *alloc == 0.  */ | 
 |       wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t, | 
 | 					       new_char_class_alloc); | 
 |       if (BE (new_char_classes == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       mbcset->char_classes = new_char_classes; | 
 |       *char_class_alloc = new_char_class_alloc; | 
 |     } | 
 |   mbcset->char_classes[mbcset->nchar_classes++] = __wctype (class_name); | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 | #define BUILD_CHARCLASS_LOOP(ctype_func)	\ | 
 |   do {						\ | 
 |     if (BE (trans != NULL, 0))			\ | 
 |       {						\ | 
 | 	for (i = 0; i < SBC_MAX; ++i)		\ | 
 |   	  if (ctype_func (i))			\ | 
 | 	    bitset_set (sbcset, trans[i]);	\ | 
 |       }						\ | 
 |     else					\ | 
 |       {						\ | 
 | 	for (i = 0; i < SBC_MAX; ++i)		\ | 
 |   	  if (ctype_func (i))			\ | 
 | 	    bitset_set (sbcset, i);		\ | 
 |       }						\ | 
 |   } while (0) | 
 |  | 
 |   if (strcmp (class_name, "alnum") == 0) | 
 |     BUILD_CHARCLASS_LOOP (isalnum); | 
 |   else if (strcmp (class_name, "cntrl") == 0) | 
 |     BUILD_CHARCLASS_LOOP (iscntrl); | 
 |   else if (strcmp (class_name, "lower") == 0) | 
 |     BUILD_CHARCLASS_LOOP (islower); | 
 |   else if (strcmp (class_name, "space") == 0) | 
 |     BUILD_CHARCLASS_LOOP (isspace); | 
 |   else if (strcmp (class_name, "alpha") == 0) | 
 |     BUILD_CHARCLASS_LOOP (isalpha); | 
 |   else if (strcmp (class_name, "digit") == 0) | 
 |     BUILD_CHARCLASS_LOOP (isdigit); | 
 |   else if (strcmp (class_name, "print") == 0) | 
 |     BUILD_CHARCLASS_LOOP (isprint); | 
 |   else if (strcmp (class_name, "upper") == 0) | 
 |     BUILD_CHARCLASS_LOOP (isupper); | 
 |   else if (strcmp (class_name, "blank") == 0) | 
 | #ifndef GAWK | 
 |     BUILD_CHARCLASS_LOOP (isblank); | 
 | #else | 
 |     /* see comments above */ | 
 |     BUILD_CHARCLASS_LOOP (is_blank); | 
 | #endif | 
 |   else if (strcmp (class_name, "graph") == 0) | 
 |     BUILD_CHARCLASS_LOOP (isgraph); | 
 |   else if (strcmp (class_name, "punct") == 0) | 
 |     BUILD_CHARCLASS_LOOP (ispunct); | 
 |   else if (strcmp (class_name, "xdigit") == 0) | 
 |     BUILD_CHARCLASS_LOOP (isxdigit); | 
 |   else | 
 |     return REG_ECTYPE; | 
 |  | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static bin_tree_t * | 
 | build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans, | 
 | 		    const char *class_name, | 
 | 		    const char *extra, int non_match, | 
 | 		    reg_errcode_t *err) | 
 | { | 
 |   re_bitset_ptr_t sbcset; | 
 | #ifdef RE_ENABLE_I18N | 
 |   re_charset_t *mbcset; | 
 |   int alloc = 0; | 
 | #endif /* not RE_ENABLE_I18N */ | 
 |   reg_errcode_t ret; | 
 |   re_token_t br_token; | 
 |   bin_tree_t *tree; | 
 |  | 
 |   sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | 
 | #ifdef RE_ENABLE_I18N | 
 |   mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (BE (sbcset == NULL || mbcset == NULL, 0)) | 
 | #else /* not RE_ENABLE_I18N */ | 
 |   if (BE (sbcset == NULL, 0)) | 
 | #endif /* not RE_ENABLE_I18N */ | 
 |     { | 
 |       *err = REG_ESPACE; | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   if (non_match) | 
 |     { | 
 | #ifdef RE_ENABLE_I18N | 
 |       mbcset->non_match = 1; | 
 | #endif /* not RE_ENABLE_I18N */ | 
 |     } | 
 |  | 
 |   /* We don't care the syntax in this case.  */ | 
 |   ret = build_charclass (trans, sbcset, | 
 | #ifdef RE_ENABLE_I18N | 
 | 			 mbcset, &alloc, | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 			 class_name, 0); | 
 |  | 
 |   if (BE (ret != REG_NOERROR, 0)) | 
 |     { | 
 |       re_free (sbcset); | 
 | #ifdef RE_ENABLE_I18N | 
 |       free_charset (mbcset); | 
 | #endif /* RE_ENABLE_I18N */ | 
 |       *err = ret; | 
 |       return NULL; | 
 |     } | 
 |   /* \w match '_' also.  */ | 
 |   for (; *extra; extra++) | 
 |     bitset_set (sbcset, *extra); | 
 |  | 
 |   /* If it is non-matching list.  */ | 
 |   if (non_match) | 
 |     bitset_not (sbcset); | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   /* Ensure only single byte characters are set.  */ | 
 |   if (dfa->mb_cur_max > 1) | 
 |     bitset_mask (sbcset, dfa->sb_char); | 
 | #endif | 
 |  | 
 |   /* Build a tree for simple bracket.  */ | 
 |   br_token.type = SIMPLE_BRACKET; | 
 |   br_token.opr.sbcset = sbcset; | 
 |   tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
 |   if (BE (tree == NULL, 0)) | 
 |     goto build_word_op_espace; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (dfa->mb_cur_max > 1) | 
 |     { | 
 |       bin_tree_t *mbc_tree; | 
 |       /* Build a tree for complex bracket.  */ | 
 |       br_token.type = COMPLEX_BRACKET; | 
 |       br_token.opr.mbcset = mbcset; | 
 |       dfa->has_mb_node = 1; | 
 |       mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
 |       if (BE (mbc_tree == NULL, 0)) | 
 | 	goto build_word_op_espace; | 
 |       /* Then join them by ALT node.  */ | 
 |       tree = create_tree (dfa, tree, mbc_tree, OP_ALT); | 
 |       if (BE (mbc_tree != NULL, 1)) | 
 | 	return tree; | 
 |     } | 
 |   else | 
 |     { | 
 |       free_charset (mbcset); | 
 |       return tree; | 
 |     } | 
 | #else /* not RE_ENABLE_I18N */ | 
 |   return tree; | 
 | #endif /* not RE_ENABLE_I18N */ | 
 |  | 
 |  build_word_op_espace: | 
 |   re_free (sbcset); | 
 | #ifdef RE_ENABLE_I18N | 
 |   free_charset (mbcset); | 
 | #endif /* RE_ENABLE_I18N */ | 
 |   *err = REG_ESPACE; | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* This is intended for the expressions like "a{1,3}". | 
 |    Fetch a number from `input', and return the number. | 
 |    Return -1, if the number field is empty like "{,1}". | 
 |    Return -2, if an error has occurred.  */ | 
 |  | 
 | static int | 
 | fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) | 
 | { | 
 |   int num = -1; | 
 |   unsigned char c; | 
 |   while (1) | 
 |     { | 
 |       fetch_token (token, input, syntax); | 
 |       c = token->opr.c; | 
 |       if (BE (token->type == END_OF_RE, 0)) | 
 | 	return -2; | 
 |       if (token->type == OP_CLOSE_DUP_NUM || c == ',') | 
 | 	break; | 
 |       num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2) | 
 | 	     ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0')); | 
 |       num = (num > RE_DUP_MAX) ? -2 : num; | 
 |     } | 
 |   return num; | 
 | } | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 | static void | 
 | free_charset (re_charset_t *cset) | 
 | { | 
 |   re_free (cset->mbchars); | 
 | # ifdef _LIBC | 
 |   re_free (cset->coll_syms); | 
 |   re_free (cset->equiv_classes); | 
 |   re_free (cset->range_starts); | 
 |   re_free (cset->range_ends); | 
 | # endif | 
 |   re_free (cset->char_classes); | 
 |   re_free (cset); | 
 | } | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 | /* Functions for binary tree operation.  */ | 
 |  | 
 | /* Create a tree node.  */ | 
 |  | 
 | static bin_tree_t * | 
 | create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | 
 | 	     re_token_type_t type) | 
 | { | 
 |   re_token_t t; | 
 |   t.type = type; | 
 |   return create_token_tree (dfa, left, right, &t); | 
 | } | 
 |  | 
 | static bin_tree_t * | 
 | create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | 
 | 		   const re_token_t *token) | 
 | { | 
 |   bin_tree_t *tree; | 
 |   if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) | 
 |     { | 
 |       bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); | 
 |  | 
 |       if (storage == NULL) | 
 | 	return NULL; | 
 |       storage->next = dfa->str_tree_storage; | 
 |       dfa->str_tree_storage = storage; | 
 |       dfa->str_tree_storage_idx = 0; | 
 |     } | 
 |   tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; | 
 |  | 
 |   tree->parent = NULL; | 
 |   tree->left = left; | 
 |   tree->right = right; | 
 |   tree->token = *token; | 
 |   tree->token.duplicated = 0; | 
 |   tree->token.opt_subexp = 0; | 
 |   tree->first = NULL; | 
 |   tree->next = NULL; | 
 |   tree->node_idx = -1; | 
 |  | 
 |   if (left != NULL) | 
 |     left->parent = tree; | 
 |   if (right != NULL) | 
 |     right->parent = tree; | 
 |   return tree; | 
 | } | 
 |  | 
 | /* Mark the tree SRC as an optional subexpression. | 
 |    To be called from preorder or postorder.  */ | 
 |  | 
 | static reg_errcode_t | 
 | mark_opt_subexp (void *extra, bin_tree_t *node) | 
 | { | 
 |   int idx = (int) (intptr_t) extra; | 
 |   if (node->token.type == SUBEXP && node->token.opr.idx == idx) | 
 |     node->token.opt_subexp = 1; | 
 |  | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Free the allocated memory inside NODE. */ | 
 |  | 
 | static void | 
 | free_token (re_token_t *node) | 
 | { | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (node->type == COMPLEX_BRACKET && node->duplicated == 0) | 
 |     free_charset (node->opr.mbcset); | 
 |   else | 
 | #endif /* RE_ENABLE_I18N */ | 
 |     if (node->type == SIMPLE_BRACKET && node->duplicated == 0) | 
 |       re_free (node->opr.sbcset); | 
 | } | 
 |  | 
 | /* Worker function for tree walking.  Free the allocated memory inside NODE | 
 |    and its children. */ | 
 |  | 
 | static reg_errcode_t | 
 | free_tree (void *extra, bin_tree_t *node) | 
 | { | 
 |   free_token (&node->token); | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 |  | 
 | /* Duplicate the node SRC, and return new node.  This is a preorder | 
 |    visit similar to the one implemented by the generic visitor, but | 
 |    we need more infrastructure to maintain two parallel trees --- so, | 
 |    it's easier to duplicate.  */ | 
 |  | 
 | static bin_tree_t * | 
 | duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) | 
 | { | 
 |   const bin_tree_t *node; | 
 |   bin_tree_t *dup_root; | 
 |   bin_tree_t **p_new = &dup_root, *dup_node = root->parent; | 
 |  | 
 |   for (node = root; ; ) | 
 |     { | 
 |       /* Create a new tree and link it back to the current parent.  */ | 
 |       *p_new = create_token_tree (dfa, NULL, NULL, &node->token); | 
 |       if (*p_new == NULL) | 
 | 	return NULL; | 
 |       (*p_new)->parent = dup_node; | 
 |       (*p_new)->token.duplicated = 1; | 
 |       dup_node = *p_new; | 
 |  | 
 |       /* Go to the left node, or up and to the right.  */ | 
 |       if (node->left) | 
 | 	{ | 
 | 	  node = node->left; | 
 | 	  p_new = &dup_node->left; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  const bin_tree_t *prev = NULL; | 
 | 	  while (node->right == prev || node->right == NULL) | 
 | 	    { | 
 | 	      prev = node; | 
 | 	      node = node->parent; | 
 | 	      dup_node = dup_node->parent; | 
 | 	      if (!node) | 
 | 		return dup_root; | 
 | 	    } | 
 | 	  node = node->right; | 
 | 	  p_new = &dup_node->right; | 
 | 	} | 
 |     } | 
 | } |