|  | /* Extended regular expression matching and search library. | 
|  | Copyright (C) 2002-2007,2009,2010 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #if defined __TANDEM | 
|  | /* This is currently duplicated from git-compat-utils.h */ | 
|  | # ifdef NO_INTPTR_T | 
|  | typedef long intptr_t; | 
|  | typedef unsigned long uintptr_t; | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, | 
|  | size_t length, reg_syntax_t syntax); | 
|  | static void re_compile_fastmap_iter (regex_t *bufp, | 
|  | const re_dfastate_t *init_state, | 
|  | char *fastmap); | 
|  | static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static void free_charset (re_charset_t *cset); | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | static void free_workarea_compile (regex_t *preg); | 
|  | static reg_errcode_t create_initial_state (re_dfa_t *dfa); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static void optimize_utf8 (re_dfa_t *dfa); | 
|  | #endif | 
|  | static reg_errcode_t analyze (regex_t *preg); | 
|  | static reg_errcode_t preorder (bin_tree_t *root, | 
|  | reg_errcode_t (fn (void *, bin_tree_t *)), | 
|  | void *extra); | 
|  | static reg_errcode_t postorder (bin_tree_t *root, | 
|  | reg_errcode_t (fn (void *, bin_tree_t *)), | 
|  | void *extra); | 
|  | static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); | 
|  | static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); | 
|  | static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, | 
|  | bin_tree_t *node); | 
|  | static reg_errcode_t calc_first (void *extra, bin_tree_t *node); | 
|  | static reg_errcode_t calc_next (void *extra, bin_tree_t *node); | 
|  | static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); | 
|  | static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint); | 
|  | static int search_duplicated_node (const re_dfa_t *dfa, int org_node, | 
|  | unsigned int constraint); | 
|  | static reg_errcode_t calc_eclosure (re_dfa_t *dfa); | 
|  | static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, | 
|  | int node, int root); | 
|  | static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); | 
|  | static int fetch_number (re_string_t *input, re_token_t *token, | 
|  | reg_syntax_t syntax); | 
|  | static int peek_token (re_token_t *token, re_string_t *input, | 
|  | reg_syntax_t syntax) internal_function; | 
|  | static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, | 
|  | reg_syntax_t syntax, reg_errcode_t *err); | 
|  | static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, | 
|  | re_token_t *token, reg_syntax_t syntax, | 
|  | int nest, reg_errcode_t *err); | 
|  | static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, | 
|  | re_token_t *token, reg_syntax_t syntax, | 
|  | int nest, reg_errcode_t *err); | 
|  | static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, | 
|  | re_token_t *token, reg_syntax_t syntax, | 
|  | int nest, reg_errcode_t *err); | 
|  | static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, | 
|  | re_token_t *token, reg_syntax_t syntax, | 
|  | int nest, reg_errcode_t *err); | 
|  | static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, | 
|  | re_dfa_t *dfa, re_token_t *token, | 
|  | reg_syntax_t syntax, reg_errcode_t *err); | 
|  | static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, | 
|  | re_token_t *token, reg_syntax_t syntax, | 
|  | reg_errcode_t *err); | 
|  | static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, | 
|  | re_string_t *regexp, | 
|  | re_token_t *token, int token_len, | 
|  | re_dfa_t *dfa, | 
|  | reg_syntax_t syntax, | 
|  | int accept_hyphen); | 
|  | static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, | 
|  | re_string_t *regexp, | 
|  | re_token_t *token); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static reg_errcode_t build_equiv_class (bitset_t sbcset, | 
|  | re_charset_t *mbcset, | 
|  | int *equiv_class_alloc, | 
|  | const unsigned char *name); | 
|  | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, | 
|  | bitset_t sbcset, | 
|  | re_charset_t *mbcset, | 
|  | int *char_class_alloc, | 
|  | const char *class_name, | 
|  | reg_syntax_t syntax); | 
|  | #else  /* not RE_ENABLE_I18N */ | 
|  | static reg_errcode_t build_equiv_class (bitset_t sbcset, | 
|  | const unsigned char *name); | 
|  | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, | 
|  | bitset_t sbcset, | 
|  | const char *class_name, | 
|  | reg_syntax_t syntax); | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | static bin_tree_t *build_charclass_op (re_dfa_t *dfa, | 
|  | RE_TRANSLATE_TYPE trans, | 
|  | const char *class_name, | 
|  | const char *extra, | 
|  | int non_match, reg_errcode_t *err); | 
|  | static bin_tree_t *create_tree (re_dfa_t *dfa, | 
|  | bin_tree_t *left, bin_tree_t *right, | 
|  | re_token_type_t type); | 
|  | static bin_tree_t *create_token_tree (re_dfa_t *dfa, | 
|  | bin_tree_t *left, bin_tree_t *right, | 
|  | const re_token_t *token); | 
|  | static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); | 
|  | static void free_token (re_token_t *node); | 
|  | static reg_errcode_t free_tree (void *extra, bin_tree_t *node); | 
|  | static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); | 
|  |  | 
|  | /* This table gives an error message for each of the error codes listed | 
|  | in regex.h.  Obviously the order here has to be same as there. | 
|  | POSIX doesn't require that we do anything for REG_NOERROR, | 
|  | but why not be nice?  */ | 
|  |  | 
|  | const char __re_error_msgid[] attribute_hidden = | 
|  | { | 
|  | #define REG_NOERROR_IDX	0 | 
|  | gettext_noop ("Success")	/* REG_NOERROR */ | 
|  | "\0" | 
|  | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") | 
|  | gettext_noop ("No match")	/* REG_NOMATCH */ | 
|  | "\0" | 
|  | #define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match") | 
|  | gettext_noop ("Invalid regular expression") /* REG_BADPAT */ | 
|  | "\0" | 
|  | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") | 
|  | gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ | 
|  | "\0" | 
|  | #define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character") | 
|  | gettext_noop ("Invalid character class name") /* REG_ECTYPE */ | 
|  | "\0" | 
|  | #define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name") | 
|  | gettext_noop ("Trailing backslash") /* REG_EESCAPE */ | 
|  | "\0" | 
|  | #define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash") | 
|  | gettext_noop ("Invalid back reference") /* REG_ESUBREG */ | 
|  | "\0" | 
|  | #define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference") | 
|  | gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */ | 
|  | "\0" | 
|  | #define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^") | 
|  | gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ | 
|  | "\0" | 
|  | #define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") | 
|  | gettext_noop ("Unmatched \\{") /* REG_EBRACE */ | 
|  | "\0" | 
|  | #define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{") | 
|  | gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ | 
|  | "\0" | 
|  | #define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") | 
|  | gettext_noop ("Invalid range end")	/* REG_ERANGE */ | 
|  | "\0" | 
|  | #define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end") | 
|  | gettext_noop ("Memory exhausted") /* REG_ESPACE */ | 
|  | "\0" | 
|  | #define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted") | 
|  | gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ | 
|  | "\0" | 
|  | #define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") | 
|  | gettext_noop ("Premature end of regular expression") /* REG_EEND */ | 
|  | "\0" | 
|  | #define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression") | 
|  | gettext_noop ("Regular expression too big") /* REG_ESIZE */ | 
|  | "\0" | 
|  | #define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big") | 
|  | gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ | 
|  | }; | 
|  |  | 
|  | const size_t __re_error_msgid_idx[] attribute_hidden = | 
|  | { | 
|  | REG_NOERROR_IDX, | 
|  | REG_NOMATCH_IDX, | 
|  | REG_BADPAT_IDX, | 
|  | REG_ECOLLATE_IDX, | 
|  | REG_ECTYPE_IDX, | 
|  | REG_EESCAPE_IDX, | 
|  | REG_ESUBREG_IDX, | 
|  | REG_EBRACK_IDX, | 
|  | REG_EPAREN_IDX, | 
|  | REG_EBRACE_IDX, | 
|  | REG_BADBR_IDX, | 
|  | REG_ERANGE_IDX, | 
|  | REG_ESPACE_IDX, | 
|  | REG_BADRPT_IDX, | 
|  | REG_EEND_IDX, | 
|  | REG_ESIZE_IDX, | 
|  | REG_ERPAREN_IDX | 
|  | }; | 
|  |  | 
|  | /* Entry points for GNU code.  */ | 
|  |  | 
|  |  | 
|  | #ifdef ZOS_USS | 
|  |  | 
|  | /* For ZOS USS we must define btowc */ | 
|  |  | 
|  | wchar_t | 
|  | btowc (int c) | 
|  | { | 
|  | wchar_t wtmp[2]; | 
|  | char tmp[2]; | 
|  |  | 
|  | tmp[0] = c; | 
|  | tmp[1] = 0; | 
|  |  | 
|  | mbtowc (wtmp, tmp, 1); | 
|  | return wtmp[0]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* re_compile_pattern is the GNU regular expression compiler: it | 
|  | compiles PATTERN (of length LENGTH) and puts the result in BUFP. | 
|  | Returns 0 if the pattern was valid, otherwise an error string. | 
|  |  | 
|  | Assumes the `allocated' (and perhaps `buffer') and `translate' fields | 
|  | are set in BUFP on entry.  */ | 
|  |  | 
|  | const char * | 
|  | re_compile_pattern (const char *pattern, | 
|  | size_t length, | 
|  | struct re_pattern_buffer *bufp) | 
|  | { | 
|  | reg_errcode_t ret; | 
|  |  | 
|  | /* And GNU code determines whether or not to get register information | 
|  | by passing null for the REGS argument to re_match, etc., not by | 
|  | setting no_sub, unless RE_NO_SUB is set.  */ | 
|  | bufp->no_sub = !!(re_syntax_options & RE_NO_SUB); | 
|  |  | 
|  | /* Match anchors at newline.  */ | 
|  | bufp->newline_anchor = 1; | 
|  |  | 
|  | ret = re_compile_internal (bufp, pattern, length, re_syntax_options); | 
|  |  | 
|  | if (!ret) | 
|  | return NULL; | 
|  | return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_compile_pattern, re_compile_pattern) | 
|  | #endif | 
|  |  | 
|  | /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can | 
|  | also be assigned to arbitrarily: each pattern buffer stores its own | 
|  | syntax, so it can be changed between regex compilations.  */ | 
|  | /* This has no initializer because initialized variables in Emacs | 
|  | become read-only after dumping.  */ | 
|  | reg_syntax_t re_syntax_options; | 
|  |  | 
|  |  | 
|  | /* Specify the precise syntax of regexps for compilation.  This provides | 
|  | for compatibility for various utilities which historically have | 
|  | different, incompatible syntaxes. | 
|  |  | 
|  | The argument SYNTAX is a bit mask comprised of the various bits | 
|  | defined in regex.h.  We return the old syntax.  */ | 
|  |  | 
|  | reg_syntax_t | 
|  | re_set_syntax (reg_syntax_t syntax) | 
|  | { | 
|  | reg_syntax_t ret = re_syntax_options; | 
|  |  | 
|  | re_syntax_options = syntax; | 
|  | return ret; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_set_syntax, re_set_syntax) | 
|  | #endif | 
|  |  | 
|  | int | 
|  | re_compile_fastmap (struct re_pattern_buffer *bufp) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | 
|  | char *fastmap = bufp->fastmap; | 
|  |  | 
|  | memset (fastmap, '\0', sizeof (char) * SBC_MAX); | 
|  | re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); | 
|  | if (dfa->init_state != dfa->init_state_word) | 
|  | re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); | 
|  | if (dfa->init_state != dfa->init_state_nl) | 
|  | re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); | 
|  | if (dfa->init_state != dfa->init_state_begbuf) | 
|  | re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); | 
|  | bufp->fastmap_accurate = 1; | 
|  | return 0; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_compile_fastmap, re_compile_fastmap) | 
|  | #endif | 
|  |  | 
|  | static inline void | 
|  | __attribute ((always_inline)) | 
|  | re_set_fastmap (char *fastmap, int icase, int ch) | 
|  | { | 
|  | fastmap[ch] = 1; | 
|  | if (icase) | 
|  | fastmap[tolower (ch)] = 1; | 
|  | } | 
|  |  | 
|  | /* Helper function for re_compile_fastmap. | 
|  | Compile fastmap for the initial_state INIT_STATE.  */ | 
|  |  | 
|  | static void | 
|  | re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, | 
|  | char *fastmap) | 
|  | { | 
|  | volatile re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | 
|  | int node_cnt; | 
|  | int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE)); | 
|  | for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) | 
|  | { | 
|  | int node = init_state->nodes.elems[node_cnt]; | 
|  | re_token_type_t type = dfa->nodes[node].type; | 
|  |  | 
|  | if (type == CHARACTER) | 
|  | { | 
|  | re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) | 
|  | { | 
|  | unsigned char *buf = re_malloc (unsigned char, dfa->mb_cur_max), *p; | 
|  | wchar_t wc; | 
|  | mbstate_t state; | 
|  |  | 
|  | p = buf; | 
|  | *p++ = dfa->nodes[node].opr.c; | 
|  | while (++node < dfa->nodes_len | 
|  | && dfa->nodes[node].type == CHARACTER | 
|  | && dfa->nodes[node].mb_partial) | 
|  | *p++ = dfa->nodes[node].opr.c; | 
|  | memset (&state, '\0', sizeof (state)); | 
|  | if (__mbrtowc (&wc, (const char *) buf, p - buf, | 
|  | &state) == p - buf | 
|  | && (__wcrtomb ((char *) buf, towlower (wc), &state) | 
|  | != (size_t) -1)) | 
|  | re_set_fastmap (fastmap, 0, buf[0]); | 
|  | re_free (buf); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | else if (type == SIMPLE_BRACKET) | 
|  | { | 
|  | int i, ch; | 
|  | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | 
|  | { | 
|  | int j; | 
|  | bitset_word_t w = dfa->nodes[node].opr.sbcset[i]; | 
|  | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | 
|  | if (w & ((bitset_word_t) 1 << j)) | 
|  | re_set_fastmap (fastmap, icase, ch); | 
|  | } | 
|  | } | 
|  | #ifdef RE_ENABLE_I18N | 
|  | else if (type == COMPLEX_BRACKET) | 
|  | { | 
|  | re_charset_t *cset = dfa->nodes[node].opr.mbcset; | 
|  | int i; | 
|  |  | 
|  | # ifdef _LIBC | 
|  | /* See if we have to try all bytes which start multiple collation | 
|  | elements. | 
|  | e.g. In da_DK, we want to catch 'a' since "aa" is a valid | 
|  | collation element, and don't catch 'b' since 'b' is | 
|  | the only collation element which starts from 'b' (and | 
|  | it is caught by SIMPLE_BRACKET).  */ | 
|  | if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0 | 
|  | && (cset->ncoll_syms || cset->nranges)) | 
|  | { | 
|  | const int32_t *table = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | 
|  | for (i = 0; i < SBC_MAX; ++i) | 
|  | if (table[i] < 0) | 
|  | re_set_fastmap (fastmap, icase, i); | 
|  | } | 
|  | # endif /* _LIBC */ | 
|  |  | 
|  | /* See if we have to start the match at all multibyte characters, | 
|  | i.e. where we would not find an invalid sequence.  This only | 
|  | applies to multibyte character sets; for single byte character | 
|  | sets, the SIMPLE_BRACKET again suffices.  */ | 
|  | if (dfa->mb_cur_max > 1 | 
|  | && (cset->nchar_classes || cset->non_match || cset->nranges | 
|  | # ifdef _LIBC | 
|  | || cset->nequiv_classes | 
|  | # endif /* _LIBC */ | 
|  | )) | 
|  | { | 
|  | unsigned char c = 0; | 
|  | do | 
|  | { | 
|  | mbstate_t mbs; | 
|  | memset (&mbs, 0, sizeof (mbs)); | 
|  | if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2) | 
|  | re_set_fastmap (fastmap, false, (int) c); | 
|  | } | 
|  | while (++c != 0); | 
|  | } | 
|  |  | 
|  | else | 
|  | { | 
|  | /* ... Else catch all bytes which can start the mbchars.  */ | 
|  | for (i = 0; i < cset->nmbchars; ++i) | 
|  | { | 
|  | char buf[256]; | 
|  | mbstate_t state; | 
|  | memset (&state, '\0', sizeof (state)); | 
|  | if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) | 
|  | re_set_fastmap (fastmap, icase, *(unsigned char *) buf); | 
|  | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) | 
|  | { | 
|  | if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) | 
|  | != (size_t) -1) | 
|  | re_set_fastmap (fastmap, false, *(unsigned char *) buf); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | else if (type == OP_PERIOD | 
|  | #ifdef RE_ENABLE_I18N | 
|  | || type == OP_UTF8_PERIOD | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | || type == END_OF_RE) | 
|  | { | 
|  | memset (fastmap, '\1', sizeof (char) * SBC_MAX); | 
|  | if (type == END_OF_RE) | 
|  | bufp->can_be_null = 1; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Entry point for POSIX code.  */ | 
|  | /* regcomp takes a regular expression as a string and compiles it. | 
|  |  | 
|  | PREG is a regex_t *.  We do not expect any fields to be initialized, | 
|  | since POSIX says we shouldn't.  Thus, we set | 
|  |  | 
|  | `buffer' to the compiled pattern; | 
|  | `used' to the length of the compiled pattern; | 
|  | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | 
|  | REG_EXTENDED bit in CFLAGS is set; otherwise, to | 
|  | RE_SYNTAX_POSIX_BASIC; | 
|  | `newline_anchor' to REG_NEWLINE being set in CFLAGS; | 
|  | `fastmap' to an allocated space for the fastmap; | 
|  | `fastmap_accurate' to zero; | 
|  | `re_nsub' to the number of subexpressions in PATTERN. | 
|  |  | 
|  | PATTERN is the address of the pattern string. | 
|  |  | 
|  | CFLAGS is a series of bits which affect compilation. | 
|  |  | 
|  | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | 
|  | use POSIX basic syntax. | 
|  |  | 
|  | If REG_NEWLINE is set, then . and [^...] don't match newline. | 
|  | Also, regexec will try a match beginning after every newline. | 
|  |  | 
|  | If REG_ICASE is set, then we considers upper- and lowercase | 
|  | versions of letters to be equivalent when matching. | 
|  |  | 
|  | If REG_NOSUB is set, then when PREG is passed to regexec, that | 
|  | routine will report only success or failure, and nothing about the | 
|  | registers. | 
|  |  | 
|  | It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for | 
|  | the return codes and their meanings.)  */ | 
|  |  | 
|  | int | 
|  | regcomp (regex_t *__restrict preg, | 
|  | const char *__restrict pattern, | 
|  | int cflags) | 
|  | { | 
|  | reg_errcode_t ret; | 
|  | reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED | 
|  | : RE_SYNTAX_POSIX_BASIC); | 
|  |  | 
|  | preg->buffer = NULL; | 
|  | preg->allocated = 0; | 
|  | preg->used = 0; | 
|  |  | 
|  | /* Try to allocate space for the fastmap.  */ | 
|  | preg->fastmap = re_malloc (char, SBC_MAX); | 
|  | if (BE (preg->fastmap == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; | 
|  |  | 
|  | /* If REG_NEWLINE is set, newlines are treated differently.  */ | 
|  | if (cflags & REG_NEWLINE) | 
|  | { /* REG_NEWLINE implies neither . nor [^...] match newline.  */ | 
|  | syntax &= ~RE_DOT_NEWLINE; | 
|  | syntax |= RE_HAT_LISTS_NOT_NEWLINE; | 
|  | /* It also changes the matching behavior.  */ | 
|  | preg->newline_anchor = 1; | 
|  | } | 
|  | else | 
|  | preg->newline_anchor = 0; | 
|  | preg->no_sub = !!(cflags & REG_NOSUB); | 
|  | preg->translate = NULL; | 
|  |  | 
|  | ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); | 
|  |  | 
|  | /* POSIX doesn't distinguish between an unmatched open-group and an | 
|  | unmatched close-group: both are REG_EPAREN.  */ | 
|  | if (ret == REG_ERPAREN) | 
|  | ret = REG_EPAREN; | 
|  |  | 
|  | /* We have already checked preg->fastmap != NULL.  */ | 
|  | if (BE (ret == REG_NOERROR, 1)) | 
|  | /* Compute the fastmap now, since regexec cannot modify the pattern | 
|  | buffer.  This function never fails in this implementation.  */ | 
|  | (void) re_compile_fastmap (preg); | 
|  | else | 
|  | { | 
|  | /* Some error occurred while compiling the expression.  */ | 
|  | re_free (preg->fastmap); | 
|  | preg->fastmap = NULL; | 
|  | } | 
|  |  | 
|  | return (int) ret; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__regcomp, regcomp) | 
|  | #endif | 
|  |  | 
|  | /* Returns a message corresponding to an error code, ERRCODE, returned | 
|  | from either regcomp or regexec.   We don't use PREG here.  */ | 
|  |  | 
|  | size_t | 
|  | regerror(int errcode, const regex_t *__restrict preg, | 
|  | char *__restrict errbuf, size_t errbuf_size) | 
|  | { | 
|  | const char *msg; | 
|  | size_t msg_size; | 
|  |  | 
|  | if (BE (errcode < 0 | 
|  | || errcode >= (int) (sizeof (__re_error_msgid_idx) | 
|  | / sizeof (__re_error_msgid_idx[0])), 0)) | 
|  | /* Only error codes returned by the rest of the code should be passed | 
|  | to this routine.  If we are given anything else, or if other regex | 
|  | code generates an invalid error code, then the program has a bug. | 
|  | Dump core so we can fix it.  */ | 
|  | abort (); | 
|  |  | 
|  | msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); | 
|  |  | 
|  | msg_size = strlen (msg) + 1; /* Includes the null.  */ | 
|  |  | 
|  | if (BE (errbuf_size != 0, 1)) | 
|  | { | 
|  | if (BE (msg_size > errbuf_size, 0)) | 
|  | { | 
|  | memcpy (errbuf, msg, errbuf_size - 1); | 
|  | errbuf[errbuf_size - 1] = 0; | 
|  | } | 
|  | else | 
|  | memcpy (errbuf, msg, msg_size); | 
|  | } | 
|  |  | 
|  | return msg_size; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__regerror, regerror) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* This static array is used for the map to single-byte characters when | 
|  | UTF-8 is used.  Otherwise we would allocate memory just to initialize | 
|  | it the same all the time.  UTF-8 is the preferred encoding so this is | 
|  | a worthwhile optimization.  */ | 
|  | #if __GNUC__ >= 3 | 
|  | static const bitset_t utf8_sb_map = { | 
|  | /* Set the first 128 bits.  */ | 
|  | [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX | 
|  | }; | 
|  | #else /* ! (__GNUC__ >= 3) */ | 
|  | static bitset_t utf8_sb_map; | 
|  | #endif /* __GNUC__ >= 3 */ | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  |  | 
|  | static void | 
|  | free_dfa_content (re_dfa_t *dfa) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | if (dfa->nodes) | 
|  | for (i = 0; i < dfa->nodes_len; ++i) | 
|  | free_token (dfa->nodes + i); | 
|  | re_free (dfa->nexts); | 
|  | for (i = 0; i < dfa->nodes_len; ++i) | 
|  | { | 
|  | if (dfa->eclosures != NULL) | 
|  | re_node_set_free (dfa->eclosures + i); | 
|  | if (dfa->inveclosures != NULL) | 
|  | re_node_set_free (dfa->inveclosures + i); | 
|  | if (dfa->edests != NULL) | 
|  | re_node_set_free (dfa->edests + i); | 
|  | } | 
|  | re_free (dfa->edests); | 
|  | re_free (dfa->eclosures); | 
|  | re_free (dfa->inveclosures); | 
|  | re_free (dfa->nodes); | 
|  |  | 
|  | if (dfa->state_table) | 
|  | for (i = 0; i <= dfa->state_hash_mask; ++i) | 
|  | { | 
|  | struct re_state_table_entry *entry = dfa->state_table + i; | 
|  | for (j = 0; j < entry->num; ++j) | 
|  | { | 
|  | re_dfastate_t *state = entry->array[j]; | 
|  | free_state (state); | 
|  | } | 
|  | re_free (entry->array); | 
|  | } | 
|  | re_free (dfa->state_table); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (dfa->sb_char != utf8_sb_map) | 
|  | re_free (dfa->sb_char); | 
|  | #endif | 
|  | re_free (dfa->subexp_map); | 
|  | #ifdef DEBUG | 
|  | re_free (dfa->re_str); | 
|  | #endif | 
|  |  | 
|  | re_free (dfa); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Free dynamically allocated space used by PREG.  */ | 
|  |  | 
|  | void | 
|  | regfree (regex_t *preg) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | if (BE (dfa != NULL, 1)) | 
|  | free_dfa_content (dfa); | 
|  | preg->buffer = NULL; | 
|  | preg->allocated = 0; | 
|  |  | 
|  | re_free (preg->fastmap); | 
|  | preg->fastmap = NULL; | 
|  |  | 
|  | re_free (preg->translate); | 
|  | preg->translate = NULL; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__regfree, regfree) | 
|  | #endif | 
|  |  | 
|  | /* Entry points compatible with 4.2 BSD regex library.  We don't define | 
|  | them unless specifically requested.  */ | 
|  |  | 
|  | #if defined _REGEX_RE_COMP || defined _LIBC | 
|  |  | 
|  | /* BSD has one and only one pattern buffer.  */ | 
|  | static struct re_pattern_buffer re_comp_buf; | 
|  |  | 
|  | char * | 
|  | # ifdef _LIBC | 
|  | /* Make these definitions weak in libc, so POSIX programs can redefine | 
|  | these names if they don't use our functions, and still use | 
|  | regcomp/regexec above without link errors.  */ | 
|  | weak_function | 
|  | # endif | 
|  | re_comp (s) | 
|  | const char *s; | 
|  | { | 
|  | reg_errcode_t ret; | 
|  | char *fastmap; | 
|  |  | 
|  | if (!s) | 
|  | { | 
|  | if (!re_comp_buf.buffer) | 
|  | return gettext ("No previous regular expression"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (re_comp_buf.buffer) | 
|  | { | 
|  | fastmap = re_comp_buf.fastmap; | 
|  | re_comp_buf.fastmap = NULL; | 
|  | __regfree (&re_comp_buf); | 
|  | memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); | 
|  | re_comp_buf.fastmap = fastmap; | 
|  | } | 
|  |  | 
|  | if (re_comp_buf.fastmap == NULL) | 
|  | { | 
|  | re_comp_buf.fastmap = (char *) malloc (SBC_MAX); | 
|  | if (re_comp_buf.fastmap == NULL) | 
|  | return (char *) gettext (__re_error_msgid | 
|  | + __re_error_msgid_idx[(int) REG_ESPACE]); | 
|  | } | 
|  |  | 
|  | /* Since `re_exec' always passes NULL for the `regs' argument, we | 
|  | don't need to initialize the pattern buffer fields which affect it.  */ | 
|  |  | 
|  | /* Match anchors at newlines.  */ | 
|  | re_comp_buf.newline_anchor = 1; | 
|  |  | 
|  | ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); | 
|  |  | 
|  | if (!ret) | 
|  | return NULL; | 
|  |  | 
|  | /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */ | 
|  | return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | 
|  | } | 
|  |  | 
|  | #ifdef _LIBC | 
|  | libc_freeres_fn (free_mem) | 
|  | { | 
|  | __regfree (&re_comp_buf); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* _REGEX_RE_COMP */ | 
|  |  | 
|  | /* Internal entry point. | 
|  | Compile the regular expression PATTERN, whose length is LENGTH. | 
|  | SYNTAX indicate regular expression's syntax.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | re_compile_internal (regex_t *preg, const char * pattern, size_t length, | 
|  | reg_syntax_t syntax) | 
|  | { | 
|  | reg_errcode_t err = REG_NOERROR; | 
|  | re_dfa_t *dfa; | 
|  | re_string_t regexp; | 
|  |  | 
|  | /* Initialize the pattern buffer.  */ | 
|  | preg->fastmap_accurate = 0; | 
|  | preg->syntax = syntax; | 
|  | preg->not_bol = preg->not_eol = 0; | 
|  | preg->used = 0; | 
|  | preg->re_nsub = 0; | 
|  | preg->can_be_null = 0; | 
|  | preg->regs_allocated = REGS_UNALLOCATED; | 
|  |  | 
|  | /* Initialize the dfa.  */ | 
|  | dfa = (re_dfa_t *) preg->buffer; | 
|  | if (BE (preg->allocated < sizeof (re_dfa_t), 0)) | 
|  | { | 
|  | /* If zero allocated, but buffer is non-null, try to realloc | 
|  | enough space.  This loses if buffer's address is bogus, but | 
|  | that is the user's responsibility.  If ->buffer is NULL this | 
|  | is a simple allocation.  */ | 
|  | dfa = re_realloc (preg->buffer, re_dfa_t, 1); | 
|  | if (dfa == NULL) | 
|  | return REG_ESPACE; | 
|  | preg->allocated = sizeof (re_dfa_t); | 
|  | preg->buffer = (unsigned char *) dfa; | 
|  | } | 
|  | preg->used = sizeof (re_dfa_t); | 
|  |  | 
|  | err = init_dfa (dfa, length); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | free_dfa_content (dfa); | 
|  | preg->buffer = NULL; | 
|  | preg->allocated = 0; | 
|  | return err; | 
|  | } | 
|  | #ifdef DEBUG | 
|  | /* Note: length+1 will not overflow since it is checked in init_dfa.  */ | 
|  | dfa->re_str = re_malloc (char, length + 1); | 
|  | strncpy (dfa->re_str, pattern, length + 1); | 
|  | #endif | 
|  |  | 
|  | __libc_lock_init (dfa->lock); | 
|  |  | 
|  | err = re_string_construct (®exp, pattern, length, preg->translate, | 
|  | syntax & RE_ICASE, dfa); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_compile_internal_free_return: | 
|  | free_workarea_compile (preg); | 
|  | re_string_destruct (®exp); | 
|  | free_dfa_content (dfa); | 
|  | preg->buffer = NULL; | 
|  | preg->allocated = 0; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Parse the regular expression, and build a structure tree.  */ | 
|  | preg->re_nsub = 0; | 
|  | dfa->str_tree = parse (®exp, preg, syntax, &err); | 
|  | if (BE (dfa->str_tree == NULL, 0)) | 
|  | goto re_compile_internal_free_return; | 
|  |  | 
|  | /* Analyze the tree and create the nfa.  */ | 
|  | err = analyze (preg); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto re_compile_internal_free_return; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* If possible, do searching in single byte encoding to speed things up.  */ | 
|  | if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL) | 
|  | optimize_utf8 (dfa); | 
|  | #endif | 
|  |  | 
|  | /* Then create the initial state of the dfa.  */ | 
|  | err = create_initial_state (dfa); | 
|  |  | 
|  | /* Release work areas.  */ | 
|  | free_workarea_compile (preg); | 
|  | re_string_destruct (®exp); | 
|  |  | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | free_dfa_content (dfa); | 
|  | preg->buffer = NULL; | 
|  | preg->allocated = 0; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Initialize DFA.  We use the length of the regular expression PAT_LEN | 
|  | as the initial length of some arrays.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | init_dfa (re_dfa_t *dfa, size_t pat_len) | 
|  | { | 
|  | unsigned int table_size; | 
|  | #ifndef _LIBC | 
|  | char *codeset_name; | 
|  | #endif | 
|  |  | 
|  | memset (dfa, '\0', sizeof (re_dfa_t)); | 
|  |  | 
|  | /* Force allocation of str_tree_storage the first time.  */ | 
|  | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | 
|  |  | 
|  | /* Avoid overflows.  */ | 
|  | if (pat_len == SIZE_MAX) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | dfa->nodes_alloc = pat_len + 1; | 
|  | dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); | 
|  |  | 
|  | /*  table_size = 2 ^ ceil(log pat_len) */ | 
|  | for (table_size = 1; ; table_size <<= 1) | 
|  | if (table_size > pat_len) | 
|  | break; | 
|  |  | 
|  | dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size); | 
|  | dfa->state_hash_mask = table_size - 1; | 
|  |  | 
|  | dfa->mb_cur_max = MB_CUR_MAX; | 
|  | #ifdef _LIBC | 
|  | if (dfa->mb_cur_max == 6 | 
|  | && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) | 
|  | dfa->is_utf8 = 1; | 
|  | dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) | 
|  | != 0); | 
|  | #else | 
|  | # ifdef HAVE_LANGINFO_CODESET | 
|  | codeset_name = nl_langinfo (CODESET); | 
|  | # else | 
|  | codeset_name = getenv ("LC_ALL"); | 
|  | if (codeset_name == NULL || codeset_name[0] == '\0') | 
|  | codeset_name = getenv ("LC_CTYPE"); | 
|  | if (codeset_name == NULL || codeset_name[0] == '\0') | 
|  | codeset_name = getenv ("LANG"); | 
|  | if (codeset_name == NULL) | 
|  | codeset_name = ""; | 
|  | else if (strchr (codeset_name, '.') !=  NULL) | 
|  | codeset_name = strchr (codeset_name, '.') + 1; | 
|  | # endif | 
|  |  | 
|  | /* strcasecmp isn't a standard interface. brute force check */ | 
|  | #if 0 | 
|  | if (strcasecmp (codeset_name, "UTF-8") == 0 | 
|  | || strcasecmp (codeset_name, "UTF8") == 0) | 
|  | dfa->is_utf8 = 1; | 
|  | #else | 
|  | if (   (codeset_name[0] == 'U' || codeset_name[0] == 'u') | 
|  | && (codeset_name[1] == 'T' || codeset_name[1] == 't') | 
|  | && (codeset_name[2] == 'F' || codeset_name[2] == 'f') | 
|  | && (codeset_name[3] == '-' | 
|  | ? codeset_name[4] == '8' && codeset_name[5] == '\0' | 
|  | : codeset_name[3] == '8' && codeset_name[4] == '\0')) | 
|  | dfa->is_utf8 = 1; | 
|  | #endif | 
|  |  | 
|  | /* We check exhaustively in the loop below if this charset is a | 
|  | superset of ASCII.  */ | 
|  | dfa->map_notascii = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (dfa->mb_cur_max > 1) | 
|  | { | 
|  | if (dfa->is_utf8) | 
|  | { | 
|  | #if !defined(__GNUC__) || __GNUC__ < 3 | 
|  | static short utf8_sb_map_inited = 0; | 
|  |  | 
|  | if (! utf8_sb_map_inited) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | utf8_sb_map_inited = 0; | 
|  | for (i = 0; i <= 0x80 / BITSET_WORD_BITS - 1; i++) | 
|  | utf8_sb_map[i] = BITSET_WORD_MAX; | 
|  | } | 
|  | #endif | 
|  | dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; | 
|  | } | 
|  | else | 
|  | { | 
|  | int i, j, ch; | 
|  |  | 
|  | dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | 
|  | if (BE (dfa->sb_char == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | /* Set the bits corresponding to single byte chars.  */ | 
|  | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | 
|  | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | 
|  | { | 
|  | wint_t wch = __btowc (ch); | 
|  | if (wch != WEOF) | 
|  | dfa->sb_char[i] |= (bitset_word_t) 1 << j; | 
|  | # ifndef _LIBC | 
|  | if (isascii (ch) && wch != ch) | 
|  | dfa->map_notascii = 1; | 
|  | # endif | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Initialize WORD_CHAR table, which indicate which character is | 
|  | "word".  In this case "word" means that it is the word construction | 
|  | character used by some operators like "\<", "\>", etc.  */ | 
|  |  | 
|  | static void | 
|  | internal_function | 
|  | init_word_char (re_dfa_t *dfa) | 
|  | { | 
|  | int i, j, ch; | 
|  | dfa->word_ops_used = 1; | 
|  | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | 
|  | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | 
|  | if (isalnum (ch) || ch == '_') | 
|  | dfa->word_char[i] |= (bitset_word_t) 1 << j; | 
|  | } | 
|  |  | 
|  | /* Free the work area which are only used while compiling.  */ | 
|  |  | 
|  | static void | 
|  | free_workarea_compile (regex_t *preg) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | bin_tree_storage_t *storage, *next; | 
|  | for (storage = dfa->str_tree_storage; storage; storage = next) | 
|  | { | 
|  | next = storage->next; | 
|  | re_free (storage); | 
|  | } | 
|  | dfa->str_tree_storage = NULL; | 
|  | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | 
|  | dfa->str_tree = NULL; | 
|  | re_free (dfa->org_indices); | 
|  | dfa->org_indices = NULL; | 
|  | } | 
|  |  | 
|  | /* Create initial states for all contexts.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | create_initial_state (re_dfa_t *dfa) | 
|  | { | 
|  | int first, i; | 
|  | reg_errcode_t err; | 
|  | re_node_set init_nodes; | 
|  |  | 
|  | /* Initial states have the epsilon closure of the node which is | 
|  | the first node of the regular expression.  */ | 
|  | first = dfa->str_tree->first->node_idx; | 
|  | dfa->init_node = first; | 
|  | err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  |  | 
|  | /* The back-references which are in initial states can epsilon transit, | 
|  | since in this case all of the subexpressions can be null. | 
|  | Then we add epsilon closures of the nodes which are the next nodes of | 
|  | the back-references.  */ | 
|  | if (dfa->nbackref > 0) | 
|  | for (i = 0; i < init_nodes.nelem; ++i) | 
|  | { | 
|  | int node_idx = init_nodes.elems[i]; | 
|  | re_token_type_t type = dfa->nodes[node_idx].type; | 
|  |  | 
|  | int clexp_idx; | 
|  | if (type != OP_BACK_REF) | 
|  | continue; | 
|  | for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) | 
|  | { | 
|  | re_token_t *clexp_node; | 
|  | clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; | 
|  | if (clexp_node->type == OP_CLOSE_SUBEXP | 
|  | && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) | 
|  | break; | 
|  | } | 
|  | if (clexp_idx == init_nodes.nelem) | 
|  | continue; | 
|  |  | 
|  | if (type == OP_BACK_REF) | 
|  | { | 
|  | int dest_idx = dfa->edests[node_idx].elems[0]; | 
|  | if (!re_node_set_contains (&init_nodes, dest_idx)) | 
|  | { | 
|  | reg_errcode_t err = re_node_set_merge (&init_nodes, | 
|  | dfa->eclosures | 
|  | + dest_idx); | 
|  | if (err != REG_NOERROR) | 
|  | return err; | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* It must be the first time to invoke acquire_state.  */ | 
|  | dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); | 
|  | /* We don't check ERR here, since the initial state must not be NULL.  */ | 
|  | if (BE (dfa->init_state == NULL, 0)) | 
|  | return err; | 
|  | if (dfa->init_state->has_constraint) | 
|  | { | 
|  | dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, | 
|  | CONTEXT_WORD); | 
|  | dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, | 
|  | CONTEXT_NEWLINE); | 
|  | dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, | 
|  | &init_nodes, | 
|  | CONTEXT_NEWLINE | 
|  | | CONTEXT_BEGBUF); | 
|  | if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL | 
|  | || dfa->init_state_begbuf == NULL, 0)) | 
|  | return err; | 
|  | } | 
|  | else | 
|  | dfa->init_state_word = dfa->init_state_nl | 
|  | = dfa->init_state_begbuf = dfa->init_state; | 
|  |  | 
|  | re_node_set_free (&init_nodes); | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* If it is possible to do searching in single byte encoding instead of UTF-8 | 
|  | to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change | 
|  | DFA nodes where needed.  */ | 
|  |  | 
|  | static void | 
|  | optimize_utf8 (re_dfa_t *dfa) | 
|  | { | 
|  | int node, i, mb_chars = 0, has_period = 0; | 
|  |  | 
|  | for (node = 0; node < dfa->nodes_len; ++node) | 
|  | switch (dfa->nodes[node].type) | 
|  | { | 
|  | case CHARACTER: | 
|  | if (dfa->nodes[node].opr.c >= 0x80) | 
|  | mb_chars = 1; | 
|  | break; | 
|  | case ANCHOR: | 
|  | switch (dfa->nodes[node].opr.ctx_type) | 
|  | { | 
|  | case LINE_FIRST: | 
|  | case LINE_LAST: | 
|  | case BUF_FIRST: | 
|  | case BUF_LAST: | 
|  | break; | 
|  | default: | 
|  | /* Word anchors etc. cannot be handled.  It's okay to test | 
|  | opr.ctx_type since constraints (for all DFA nodes) are | 
|  | created by ORing one or more opr.ctx_type values.  */ | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case OP_PERIOD: | 
|  | has_period = 1; | 
|  | break; | 
|  | case OP_BACK_REF: | 
|  | case OP_ALT: | 
|  | case END_OF_RE: | 
|  | case OP_DUP_ASTERISK: | 
|  | case OP_OPEN_SUBEXP: | 
|  | case OP_CLOSE_SUBEXP: | 
|  | break; | 
|  | case COMPLEX_BRACKET: | 
|  | return; | 
|  | case SIMPLE_BRACKET: | 
|  | /* Just double check.  The non-ASCII range starts at 0x80.  */ | 
|  | assert (0x80 % BITSET_WORD_BITS == 0); | 
|  | for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) | 
|  | if (dfa->nodes[node].opr.sbcset[i]) | 
|  | return; | 
|  | break; | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | if (mb_chars || has_period) | 
|  | for (node = 0; node < dfa->nodes_len; ++node) | 
|  | { | 
|  | if (dfa->nodes[node].type == CHARACTER | 
|  | && dfa->nodes[node].opr.c >= 0x80) | 
|  | dfa->nodes[node].mb_partial = 0; | 
|  | else if (dfa->nodes[node].type == OP_PERIOD) | 
|  | dfa->nodes[node].type = OP_UTF8_PERIOD; | 
|  | } | 
|  |  | 
|  | /* The search can be in single byte locale.  */ | 
|  | dfa->mb_cur_max = 1; | 
|  | dfa->is_utf8 = 0; | 
|  | dfa->has_mb_node = dfa->nbackref > 0 || has_period; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Analyze the structure tree, and calculate "first", "next", "edest", | 
|  | "eclosure", and "inveclosure".  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | analyze (regex_t *preg) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | reg_errcode_t ret; | 
|  |  | 
|  | /* Allocate arrays.  */ | 
|  | dfa->nexts = re_malloc (int, dfa->nodes_alloc); | 
|  | dfa->org_indices = re_malloc (int, dfa->nodes_alloc); | 
|  | dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); | 
|  | dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); | 
|  | if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL | 
|  | || dfa->eclosures == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | dfa->subexp_map = re_malloc (int, preg->re_nsub); | 
|  | if (dfa->subexp_map != NULL) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < preg->re_nsub; i++) | 
|  | dfa->subexp_map[i] = i; | 
|  | preorder (dfa->str_tree, optimize_subexps, dfa); | 
|  | for (i = 0; i < preg->re_nsub; i++) | 
|  | if (dfa->subexp_map[i] != i) | 
|  | break; | 
|  | if (i == preg->re_nsub) | 
|  | { | 
|  | free (dfa->subexp_map); | 
|  | dfa->subexp_map = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = postorder (dfa->str_tree, lower_subexps, preg); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | return ret; | 
|  | ret = postorder (dfa->str_tree, calc_first, dfa); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | return ret; | 
|  | preorder (dfa->str_tree, calc_next, dfa); | 
|  | ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | return ret; | 
|  | ret = calc_eclosure (dfa); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | return ret; | 
|  |  | 
|  | /* We only need this during the prune_impossible_nodes pass in regexec.c; | 
|  | skip it if p_i_n will not run, as calc_inveclosure can be quadratic.  */ | 
|  | if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match) | 
|  | || dfa->nbackref) | 
|  | { | 
|  | dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len); | 
|  | if (BE (dfa->inveclosures == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | ret = calc_inveclosure (dfa); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Our parse trees are very unbalanced, so we cannot use a stack to | 
|  | implement parse tree visits.  Instead, we use parent pointers and | 
|  | some hairy code in these two functions.  */ | 
|  | static reg_errcode_t | 
|  | postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | 
|  | void *extra) | 
|  | { | 
|  | bin_tree_t *node, *prev; | 
|  |  | 
|  | for (node = root; ; ) | 
|  | { | 
|  | /* Descend down the tree, preferably to the left (or to the right | 
|  | if that's the only child).  */ | 
|  | while (node->left || node->right) | 
|  | if (node->left) | 
|  | node = node->left; | 
|  | else | 
|  | node = node->right; | 
|  |  | 
|  | do | 
|  | { | 
|  | reg_errcode_t err = fn (extra, node); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | if (node->parent == NULL) | 
|  | return REG_NOERROR; | 
|  | prev = node; | 
|  | node = node->parent; | 
|  | } | 
|  | /* Go up while we have a node that is reached from the right.  */ | 
|  | while (node->right == prev || node->right == NULL); | 
|  | node = node->right; | 
|  | } | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | 
|  | void *extra) | 
|  | { | 
|  | bin_tree_t *node; | 
|  |  | 
|  | for (node = root; ; ) | 
|  | { | 
|  | reg_errcode_t err = fn (extra, node); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  |  | 
|  | /* Go to the left node, or up and to the right.  */ | 
|  | if (node->left) | 
|  | node = node->left; | 
|  | else | 
|  | { | 
|  | bin_tree_t *prev = NULL; | 
|  | while (node->right == prev || node->right == NULL) | 
|  | { | 
|  | prev = node; | 
|  | node = node->parent; | 
|  | if (!node) | 
|  | return REG_NOERROR; | 
|  | } | 
|  | node = node->right; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell | 
|  | re_search_internal to map the inner one's opr.idx to this one's.  Adjust | 
|  | backreferences as well.  Requires a preorder visit.  */ | 
|  | static reg_errcode_t | 
|  | optimize_subexps (void *extra, bin_tree_t *node) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) extra; | 
|  |  | 
|  | if (node->token.type == OP_BACK_REF && dfa->subexp_map) | 
|  | { | 
|  | int idx = node->token.opr.idx; | 
|  | node->token.opr.idx = dfa->subexp_map[idx]; | 
|  | dfa->used_bkref_map |= 1 << node->token.opr.idx; | 
|  | } | 
|  |  | 
|  | else if (node->token.type == SUBEXP | 
|  | && node->left && node->left->token.type == SUBEXP) | 
|  | { | 
|  | int other_idx = node->left->token.opr.idx; | 
|  |  | 
|  | node->left = node->left->left; | 
|  | if (node->left) | 
|  | node->left->parent = node; | 
|  |  | 
|  | dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; | 
|  | if (other_idx < BITSET_WORD_BITS) | 
|  | dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx); | 
|  | } | 
|  |  | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation | 
|  | of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP.  */ | 
|  | static reg_errcode_t | 
|  | lower_subexps (void *extra, bin_tree_t *node) | 
|  | { | 
|  | regex_t *preg = (regex_t *) extra; | 
|  | reg_errcode_t err = REG_NOERROR; | 
|  |  | 
|  | if (node->left && node->left->token.type == SUBEXP) | 
|  | { | 
|  | node->left = lower_subexp (&err, preg, node->left); | 
|  | if (node->left) | 
|  | node->left->parent = node; | 
|  | } | 
|  | if (node->right && node->right->token.type == SUBEXP) | 
|  | { | 
|  | node->right = lower_subexp (&err, preg, node->right); | 
|  | if (node->right) | 
|  | node->right->parent = node; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bin_tree_t * | 
|  | lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | bin_tree_t *body = node->left; | 
|  | bin_tree_t *op, *cls, *tree1, *tree; | 
|  |  | 
|  | if (preg->no_sub | 
|  | /* We do not optimize empty subexpressions, because otherwise we may | 
|  | have bad CONCAT nodes with NULL children.  This is obviously not | 
|  | very common, so we do not lose much.  An example that triggers | 
|  | this case is the sed "script" /\(\)/x.  */ | 
|  | && node->left != NULL | 
|  | && (node->token.opr.idx >= BITSET_WORD_BITS | 
|  | || !(dfa->used_bkref_map | 
|  | & ((bitset_word_t) 1 << node->token.opr.idx)))) | 
|  | return node->left; | 
|  |  | 
|  | /* Convert the SUBEXP node to the concatenation of an | 
|  | OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP.  */ | 
|  | op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); | 
|  | cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); | 
|  | tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; | 
|  | tree = create_tree (dfa, op, tree1, CONCAT); | 
|  | if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; | 
|  | op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; | 
|  | return tree; | 
|  | } | 
|  |  | 
|  | /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton | 
|  | nodes.  Requires a postorder visit.  */ | 
|  | static reg_errcode_t | 
|  | calc_first (void *extra, bin_tree_t *node) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) extra; | 
|  | if (node->token.type == CONCAT) | 
|  | { | 
|  | node->first = node->left->first; | 
|  | node->node_idx = node->left->node_idx; | 
|  | } | 
|  | else | 
|  | { | 
|  | node->first = node; | 
|  | node->node_idx = re_dfa_add_node (dfa, node->token); | 
|  | if (BE (node->node_idx == -1, 0)) | 
|  | return REG_ESPACE; | 
|  | if (node->token.type == ANCHOR) | 
|  | dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type; | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Pass 2: compute NEXT on the tree.  Preorder visit.  */ | 
|  | static reg_errcode_t | 
|  | calc_next (void *extra, bin_tree_t *node) | 
|  | { | 
|  | switch (node->token.type) | 
|  | { | 
|  | case OP_DUP_ASTERISK: | 
|  | node->left->next = node; | 
|  | break; | 
|  | case CONCAT: | 
|  | node->left->next = node->right->first; | 
|  | node->right->next = node->next; | 
|  | break; | 
|  | default: | 
|  | if (node->left) | 
|  | node->left->next = node->next; | 
|  | if (node->right) | 
|  | node->right->next = node->next; | 
|  | break; | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Pass 3: link all DFA nodes to their NEXT node (any order will do).  */ | 
|  | static reg_errcode_t | 
|  | link_nfa_nodes (void *extra, bin_tree_t *node) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) extra; | 
|  | int idx = node->node_idx; | 
|  | reg_errcode_t err = REG_NOERROR; | 
|  |  | 
|  | switch (node->token.type) | 
|  | { | 
|  | case CONCAT: | 
|  | break; | 
|  |  | 
|  | case END_OF_RE: | 
|  | assert (node->next == NULL); | 
|  | break; | 
|  |  | 
|  | case OP_DUP_ASTERISK: | 
|  | case OP_ALT: | 
|  | { | 
|  | int left, right; | 
|  | dfa->has_plural_match = 1; | 
|  | if (node->left != NULL) | 
|  | left = node->left->first->node_idx; | 
|  | else | 
|  | left = node->next->node_idx; | 
|  | if (node->right != NULL) | 
|  | right = node->right->first->node_idx; | 
|  | else | 
|  | right = node->next->node_idx; | 
|  | assert (left > -1); | 
|  | assert (right > -1); | 
|  | err = re_node_set_init_2 (dfa->edests + idx, left, right); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ANCHOR: | 
|  | case OP_OPEN_SUBEXP: | 
|  | case OP_CLOSE_SUBEXP: | 
|  | err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); | 
|  | break; | 
|  |  | 
|  | case OP_BACK_REF: | 
|  | dfa->nexts[idx] = node->next->node_idx; | 
|  | if (node->token.type == OP_BACK_REF) | 
|  | err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | assert (!IS_EPSILON_NODE (node->token.type)); | 
|  | dfa->nexts[idx] = node->next->node_idx; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Duplicate the epsilon closure of the node ROOT_NODE. | 
|  | Note that duplicated nodes have constraint INIT_CONSTRAINT in addition | 
|  | to their own constraint.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node, | 
|  | int root_node, unsigned int init_constraint) | 
|  | { | 
|  | int org_node, clone_node, ret; | 
|  | unsigned int constraint = init_constraint; | 
|  | for (org_node = top_org_node, clone_node = top_clone_node;;) | 
|  | { | 
|  | int org_dest, clone_dest; | 
|  | if (dfa->nodes[org_node].type == OP_BACK_REF) | 
|  | { | 
|  | /* If the back reference epsilon-transit, its destination must | 
|  | also have the constraint.  Then duplicate the epsilon closure | 
|  | of the destination of the back reference, and store it in | 
|  | edests of the back reference.  */ | 
|  | org_dest = dfa->nexts[org_node]; | 
|  | re_node_set_empty (dfa->edests + clone_node); | 
|  | clone_dest = duplicate_node (dfa, org_dest, constraint); | 
|  | if (BE (clone_dest == -1, 0)) | 
|  | return REG_ESPACE; | 
|  | dfa->nexts[clone_node] = dfa->nexts[org_node]; | 
|  | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
|  | if (BE (ret < 0, 0)) | 
|  | return REG_ESPACE; | 
|  | } | 
|  | else if (dfa->edests[org_node].nelem == 0) | 
|  | { | 
|  | /* In case of the node can't epsilon-transit, don't duplicate the | 
|  | destination and store the original destination as the | 
|  | destination of the node.  */ | 
|  | dfa->nexts[clone_node] = dfa->nexts[org_node]; | 
|  | break; | 
|  | } | 
|  | else if (dfa->edests[org_node].nelem == 1) | 
|  | { | 
|  | /* In case of the node can epsilon-transit, and it has only one | 
|  | destination.  */ | 
|  | org_dest = dfa->edests[org_node].elems[0]; | 
|  | re_node_set_empty (dfa->edests + clone_node); | 
|  | /* If the node is root_node itself, it means the epsilon clsoure | 
|  | has a loop.   Then tie it to the destination of the root_node.  */ | 
|  | if (org_node == root_node && clone_node != org_node) | 
|  | { | 
|  | ret = re_node_set_insert (dfa->edests + clone_node, org_dest); | 
|  | if (BE (ret < 0, 0)) | 
|  | return REG_ESPACE; | 
|  | break; | 
|  | } | 
|  | /* In case of the node has another constraint, add it.  */ | 
|  | constraint |= dfa->nodes[org_node].constraint; | 
|  | clone_dest = duplicate_node (dfa, org_dest, constraint); | 
|  | if (BE (clone_dest == -1, 0)) | 
|  | return REG_ESPACE; | 
|  | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
|  | if (BE (ret < 0, 0)) | 
|  | return REG_ESPACE; | 
|  | } | 
|  | else /* dfa->edests[org_node].nelem == 2 */ | 
|  | { | 
|  | /* In case of the node can epsilon-transit, and it has two | 
|  | destinations. In the bin_tree_t and DFA, that's '|' and '*'.   */ | 
|  | org_dest = dfa->edests[org_node].elems[0]; | 
|  | re_node_set_empty (dfa->edests + clone_node); | 
|  | /* Search for a duplicated node which satisfies the constraint.  */ | 
|  | clone_dest = search_duplicated_node (dfa, org_dest, constraint); | 
|  | if (clone_dest == -1) | 
|  | { | 
|  | /* There is no such duplicated node, create a new one.  */ | 
|  | reg_errcode_t err; | 
|  | clone_dest = duplicate_node (dfa, org_dest, constraint); | 
|  | if (BE (clone_dest == -1, 0)) | 
|  | return REG_ESPACE; | 
|  | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
|  | if (BE (ret < 0, 0)) | 
|  | return REG_ESPACE; | 
|  | err = duplicate_node_closure (dfa, org_dest, clone_dest, | 
|  | root_node, constraint); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* There is a duplicated node which satisfies the constraint, | 
|  | use it to avoid infinite loop.  */ | 
|  | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
|  | if (BE (ret < 0, 0)) | 
|  | return REG_ESPACE; | 
|  | } | 
|  |  | 
|  | org_dest = dfa->edests[org_node].elems[1]; | 
|  | clone_dest = duplicate_node (dfa, org_dest, constraint); | 
|  | if (BE (clone_dest == -1, 0)) | 
|  | return REG_ESPACE; | 
|  | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | 
|  | if (BE (ret < 0, 0)) | 
|  | return REG_ESPACE; | 
|  | } | 
|  | org_node = org_dest; | 
|  | clone_node = clone_dest; | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Search for a node which is duplicated from the node ORG_NODE, and | 
|  | satisfies the constraint CONSTRAINT.  */ | 
|  |  | 
|  | static int | 
|  | search_duplicated_node (const re_dfa_t *dfa, int org_node, | 
|  | unsigned int constraint) | 
|  | { | 
|  | int idx; | 
|  | for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) | 
|  | { | 
|  | if (org_node == dfa->org_indices[idx] | 
|  | && constraint == dfa->nodes[idx].constraint) | 
|  | return idx; /* Found.  */ | 
|  | } | 
|  | return -1; /* Not found.  */ | 
|  | } | 
|  |  | 
|  | /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. | 
|  | Return the index of the new node, or -1 if insufficient storage is | 
|  | available.  */ | 
|  |  | 
|  | static int | 
|  | duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint) | 
|  | { | 
|  | int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); | 
|  | if (BE (dup_idx != -1, 1)) | 
|  | { | 
|  | dfa->nodes[dup_idx].constraint = constraint; | 
|  | dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint; | 
|  | dfa->nodes[dup_idx].duplicated = 1; | 
|  |  | 
|  | /* Store the index of the original node.  */ | 
|  | dfa->org_indices[dup_idx] = org_idx; | 
|  | } | 
|  | return dup_idx; | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | calc_inveclosure (re_dfa_t *dfa) | 
|  | { | 
|  | int src, idx, ret; | 
|  | for (idx = 0; idx < dfa->nodes_len; ++idx) | 
|  | re_node_set_init_empty (dfa->inveclosures + idx); | 
|  |  | 
|  | for (src = 0; src < dfa->nodes_len; ++src) | 
|  | { | 
|  | int *elems = dfa->eclosures[src].elems; | 
|  | for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) | 
|  | { | 
|  | ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); | 
|  | if (BE (ret == -1, 0)) | 
|  | return REG_ESPACE; | 
|  | } | 
|  | } | 
|  |  | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Calculate "eclosure" for all the node in DFA.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | calc_eclosure (re_dfa_t *dfa) | 
|  | { | 
|  | int node_idx, incomplete; | 
|  | #ifdef DEBUG | 
|  | assert (dfa->nodes_len > 0); | 
|  | #endif | 
|  | incomplete = 0; | 
|  | /* For each nodes, calculate epsilon closure.  */ | 
|  | for (node_idx = 0; ; ++node_idx) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | re_node_set eclosure_elem; | 
|  | if (node_idx == dfa->nodes_len) | 
|  | { | 
|  | if (!incomplete) | 
|  | break; | 
|  | incomplete = 0; | 
|  | node_idx = 0; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | assert (dfa->eclosures[node_idx].nelem != -1); | 
|  | #endif | 
|  |  | 
|  | /* If we have already calculated, skip it.  */ | 
|  | if (dfa->eclosures[node_idx].nelem != 0) | 
|  | continue; | 
|  | /* Calculate epsilon closure of `node_idx'.  */ | 
|  | err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  |  | 
|  | if (dfa->eclosures[node_idx].nelem == 0) | 
|  | { | 
|  | incomplete = 1; | 
|  | re_node_set_free (&eclosure_elem); | 
|  | } | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Calculate epsilon closure of NODE.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | int i; | 
|  | re_node_set eclosure; | 
|  | int ret; | 
|  | int incomplete = 0; | 
|  | err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  |  | 
|  | /* This indicates that we are calculating this node now. | 
|  | We reference this value to avoid infinite loop.  */ | 
|  | dfa->eclosures[node].nelem = -1; | 
|  |  | 
|  | /* If the current node has constraints, duplicate all nodes | 
|  | since they must inherit the constraints.  */ | 
|  | if (dfa->nodes[node].constraint | 
|  | && dfa->edests[node].nelem | 
|  | && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) | 
|  | { | 
|  | err = duplicate_node_closure (dfa, node, node, node, | 
|  | dfa->nodes[node].constraint); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Expand each epsilon destination nodes.  */ | 
|  | if (IS_EPSILON_NODE(dfa->nodes[node].type)) | 
|  | for (i = 0; i < dfa->edests[node].nelem; ++i) | 
|  | { | 
|  | re_node_set eclosure_elem; | 
|  | int edest = dfa->edests[node].elems[i]; | 
|  | /* If calculating the epsilon closure of `edest' is in progress, | 
|  | return intermediate result.  */ | 
|  | if (dfa->eclosures[edest].nelem == -1) | 
|  | { | 
|  | incomplete = 1; | 
|  | continue; | 
|  | } | 
|  | /* If we haven't calculated the epsilon closure of `edest' yet, | 
|  | calculate now. Otherwise use calculated epsilon closure.  */ | 
|  | if (dfa->eclosures[edest].nelem == 0) | 
|  | { | 
|  | err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | else | 
|  | eclosure_elem = dfa->eclosures[edest]; | 
|  | /* Merge the epsilon closure of `edest'.  */ | 
|  | err = re_node_set_merge (&eclosure, &eclosure_elem); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | /* If the epsilon closure of `edest' is incomplete, | 
|  | the epsilon closure of this node is also incomplete.  */ | 
|  | if (dfa->eclosures[edest].nelem == 0) | 
|  | { | 
|  | incomplete = 1; | 
|  | re_node_set_free (&eclosure_elem); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* An epsilon closure includes itself.  */ | 
|  | ret = re_node_set_insert (&eclosure, node); | 
|  | if (BE (ret < 0, 0)) | 
|  | return REG_ESPACE; | 
|  | if (incomplete && !root) | 
|  | dfa->eclosures[node].nelem = 0; | 
|  | else | 
|  | dfa->eclosures[node] = eclosure; | 
|  | *new_set = eclosure; | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Functions for token which are used in the parser.  */ | 
|  |  | 
|  | /* Fetch a token from INPUT. | 
|  | We must not use this function inside bracket expressions.  */ | 
|  |  | 
|  | static void | 
|  | internal_function | 
|  | fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) | 
|  | { | 
|  | re_string_skip_bytes (input, peek_token (result, input, syntax)); | 
|  | } | 
|  |  | 
|  | /* Peek a token from INPUT, and return the length of the token. | 
|  | We must not use this function inside bracket expressions.  */ | 
|  |  | 
|  | static int | 
|  | internal_function | 
|  | peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | 
|  | { | 
|  | unsigned char c; | 
|  |  | 
|  | if (re_string_eoi (input)) | 
|  | { | 
|  | token->type = END_OF_RE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | c = re_string_peek_byte (input, 0); | 
|  | token->opr.c = c; | 
|  |  | 
|  | token->word_char = 0; | 
|  | #ifdef RE_ENABLE_I18N | 
|  | token->mb_partial = 0; | 
|  | if (input->mb_cur_max > 1 && | 
|  | !re_string_first_byte (input, re_string_cur_idx (input))) | 
|  | { | 
|  | token->type = CHARACTER; | 
|  | token->mb_partial = 1; | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | if (c == '\\') | 
|  | { | 
|  | unsigned char c2; | 
|  | if (re_string_cur_idx (input) + 1 >= re_string_length (input)) | 
|  | { | 
|  | token->type = BACK_SLASH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | c2 = re_string_peek_byte_case (input, 1); | 
|  | token->opr.c = c2; | 
|  | token->type = CHARACTER; | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (input->mb_cur_max > 1) | 
|  | { | 
|  | wint_t wc = re_string_wchar_at (input, | 
|  | re_string_cur_idx (input) + 1); | 
|  | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | 
|  | } | 
|  | else | 
|  | #endif | 
|  | token->word_char = IS_WORD_CHAR (c2) != 0; | 
|  |  | 
|  | switch (c2) | 
|  | { | 
|  | case '|': | 
|  | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) | 
|  | token->type = OP_ALT; | 
|  | break; | 
|  | case '1': case '2': case '3': case '4': case '5': | 
|  | case '6': case '7': case '8': case '9': | 
|  | if (!(syntax & RE_NO_BK_REFS)) | 
|  | { | 
|  | token->type = OP_BACK_REF; | 
|  | token->opr.idx = c2 - '1'; | 
|  | } | 
|  | break; | 
|  | case '<': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | { | 
|  | token->type = ANCHOR; | 
|  | token->opr.ctx_type = WORD_FIRST; | 
|  | } | 
|  | break; | 
|  | case '>': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | { | 
|  | token->type = ANCHOR; | 
|  | token->opr.ctx_type = WORD_LAST; | 
|  | } | 
|  | break; | 
|  | case 'b': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | { | 
|  | token->type = ANCHOR; | 
|  | token->opr.ctx_type = WORD_DELIM; | 
|  | } | 
|  | break; | 
|  | case 'B': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | { | 
|  | token->type = ANCHOR; | 
|  | token->opr.ctx_type = NOT_WORD_DELIM; | 
|  | } | 
|  | break; | 
|  | case 'w': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | token->type = OP_WORD; | 
|  | break; | 
|  | case 'W': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | token->type = OP_NOTWORD; | 
|  | break; | 
|  | case 's': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | token->type = OP_SPACE; | 
|  | break; | 
|  | case 'S': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | token->type = OP_NOTSPACE; | 
|  | break; | 
|  | case '`': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | { | 
|  | token->type = ANCHOR; | 
|  | token->opr.ctx_type = BUF_FIRST; | 
|  | } | 
|  | break; | 
|  | case '\'': | 
|  | if (!(syntax & RE_NO_GNU_OPS)) | 
|  | { | 
|  | token->type = ANCHOR; | 
|  | token->opr.ctx_type = BUF_LAST; | 
|  | } | 
|  | break; | 
|  | case '(': | 
|  | if (!(syntax & RE_NO_BK_PARENS)) | 
|  | token->type = OP_OPEN_SUBEXP; | 
|  | break; | 
|  | case ')': | 
|  | if (!(syntax & RE_NO_BK_PARENS)) | 
|  | token->type = OP_CLOSE_SUBEXP; | 
|  | break; | 
|  | case '+': | 
|  | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) | 
|  | token->type = OP_DUP_PLUS; | 
|  | break; | 
|  | case '?': | 
|  | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) | 
|  | token->type = OP_DUP_QUESTION; | 
|  | break; | 
|  | case '{': | 
|  | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) | 
|  | token->type = OP_OPEN_DUP_NUM; | 
|  | break; | 
|  | case '}': | 
|  | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) | 
|  | token->type = OP_CLOSE_DUP_NUM; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | token->type = CHARACTER; | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (input->mb_cur_max > 1) | 
|  | { | 
|  | wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); | 
|  | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | 
|  | } | 
|  | else | 
|  | #endif | 
|  | token->word_char = IS_WORD_CHAR (token->opr.c); | 
|  |  | 
|  | switch (c) | 
|  | { | 
|  | case '\n': | 
|  | if (syntax & RE_NEWLINE_ALT) | 
|  | token->type = OP_ALT; | 
|  | break; | 
|  | case '|': | 
|  | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) | 
|  | token->type = OP_ALT; | 
|  | break; | 
|  | case '*': | 
|  | token->type = OP_DUP_ASTERISK; | 
|  | break; | 
|  | case '+': | 
|  | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) | 
|  | token->type = OP_DUP_PLUS; | 
|  | break; | 
|  | case '?': | 
|  | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) | 
|  | token->type = OP_DUP_QUESTION; | 
|  | break; | 
|  | case '{': | 
|  | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | 
|  | token->type = OP_OPEN_DUP_NUM; | 
|  | break; | 
|  | case '}': | 
|  | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | 
|  | token->type = OP_CLOSE_DUP_NUM; | 
|  | break; | 
|  | case '(': | 
|  | if (syntax & RE_NO_BK_PARENS) | 
|  | token->type = OP_OPEN_SUBEXP; | 
|  | break; | 
|  | case ')': | 
|  | if (syntax & RE_NO_BK_PARENS) | 
|  | token->type = OP_CLOSE_SUBEXP; | 
|  | break; | 
|  | case '[': | 
|  | token->type = OP_OPEN_BRACKET; | 
|  | break; | 
|  | case '.': | 
|  | token->type = OP_PERIOD; | 
|  | break; | 
|  | case '^': | 
|  | if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) && | 
|  | re_string_cur_idx (input) != 0) | 
|  | { | 
|  | char prev = re_string_peek_byte (input, -1); | 
|  | if (!(syntax & RE_NEWLINE_ALT) || prev != '\n') | 
|  | break; | 
|  | } | 
|  | token->type = ANCHOR; | 
|  | token->opr.ctx_type = LINE_FIRST; | 
|  | break; | 
|  | case '$': | 
|  | if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && | 
|  | re_string_cur_idx (input) + 1 != re_string_length (input)) | 
|  | { | 
|  | re_token_t next; | 
|  | re_string_skip_bytes (input, 1); | 
|  | peek_token (&next, input, syntax); | 
|  | re_string_skip_bytes (input, -1); | 
|  | if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) | 
|  | break; | 
|  | } | 
|  | token->type = ANCHOR; | 
|  | token->opr.ctx_type = LINE_LAST; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Peek a token from INPUT, and return the length of the token. | 
|  | We must not use this function out of bracket expressions.  */ | 
|  |  | 
|  | static int | 
|  | internal_function | 
|  | peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | 
|  | { | 
|  | unsigned char c; | 
|  | if (re_string_eoi (input)) | 
|  | { | 
|  | token->type = END_OF_RE; | 
|  | return 0; | 
|  | } | 
|  | c = re_string_peek_byte (input, 0); | 
|  | token->opr.c = c; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (input->mb_cur_max > 1 && | 
|  | !re_string_first_byte (input, re_string_cur_idx (input))) | 
|  | { | 
|  | token->type = CHARACTER; | 
|  | return 1; | 
|  | } | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  | if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) | 
|  | && re_string_cur_idx (input) + 1 < re_string_length (input)) | 
|  | { | 
|  | /* In this case, '\' escape a character.  */ | 
|  | unsigned char c2; | 
|  | re_string_skip_bytes (input, 1); | 
|  | c2 = re_string_peek_byte (input, 0); | 
|  | token->opr.c = c2; | 
|  | token->type = CHARACTER; | 
|  | return 1; | 
|  | } | 
|  | if (c == '[') /* '[' is a special char in a bracket exps.  */ | 
|  | { | 
|  | unsigned char c2; | 
|  | int token_len; | 
|  | if (re_string_cur_idx (input) + 1 < re_string_length (input)) | 
|  | c2 = re_string_peek_byte (input, 1); | 
|  | else | 
|  | c2 = 0; | 
|  | token->opr.c = c2; | 
|  | token_len = 2; | 
|  | switch (c2) | 
|  | { | 
|  | case '.': | 
|  | token->type = OP_OPEN_COLL_ELEM; | 
|  | break; | 
|  | case '=': | 
|  | token->type = OP_OPEN_EQUIV_CLASS; | 
|  | break; | 
|  | case ':': | 
|  | if (syntax & RE_CHAR_CLASSES) | 
|  | { | 
|  | token->type = OP_OPEN_CHAR_CLASS; | 
|  | break; | 
|  | } | 
|  | /* else fall through.  */ | 
|  | default: | 
|  | token->type = CHARACTER; | 
|  | token->opr.c = c; | 
|  | token_len = 1; | 
|  | break; | 
|  | } | 
|  | return token_len; | 
|  | } | 
|  | switch (c) | 
|  | { | 
|  | case '-': | 
|  | token->type = OP_CHARSET_RANGE; | 
|  | break; | 
|  | case ']': | 
|  | token->type = OP_CLOSE_BRACKET; | 
|  | break; | 
|  | case '^': | 
|  | token->type = OP_NON_MATCH_LIST; | 
|  | break; | 
|  | default: | 
|  | token->type = CHARACTER; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Functions for parser.  */ | 
|  |  | 
|  | /* Entry point of the parser. | 
|  | Parse the regular expression REGEXP and return the structure tree. | 
|  | If an error has occurred, ERR is set by error code, and return NULL. | 
|  | This function build the following tree, from regular expression <reg_exp>: | 
|  | CAT | 
|  | / \ | 
|  | /   \ | 
|  | <reg_exp>  EOR | 
|  |  | 
|  | CAT means concatenation. | 
|  | EOR means end of regular expression.  */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, | 
|  | reg_errcode_t *err) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | bin_tree_t *tree, *eor, *root; | 
|  | re_token_t current_token; | 
|  | dfa->syntax = syntax; | 
|  | fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE); | 
|  | tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); | 
|  | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
|  | return NULL; | 
|  | eor = create_tree (dfa, NULL, NULL, END_OF_RE); | 
|  | if (tree != NULL) | 
|  | root = create_tree (dfa, tree, eor, CONCAT); | 
|  | else | 
|  | root = eor; | 
|  | if (BE (eor == NULL || root == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | return root; | 
|  | } | 
|  |  | 
|  | /* This function build the following tree, from regular expression | 
|  | <branch1>|<branch2>: | 
|  | ALT | 
|  | / \ | 
|  | /   \ | 
|  | <branch1> <branch2> | 
|  |  | 
|  | ALT means alternative, which represents the operator `|'.  */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | 
|  | reg_syntax_t syntax, int nest, reg_errcode_t *err) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | bin_tree_t *tree, *branch = NULL; | 
|  | tree = parse_branch (regexp, preg, token, syntax, nest, err); | 
|  | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
|  | return NULL; | 
|  |  | 
|  | while (token->type == OP_ALT) | 
|  | { | 
|  | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); | 
|  | if (token->type != OP_ALT && token->type != END_OF_RE | 
|  | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | 
|  | { | 
|  | branch = parse_branch (regexp, preg, token, syntax, nest, err); | 
|  | if (BE (*err != REG_NOERROR && branch == NULL, 0)) | 
|  | return NULL; | 
|  | } | 
|  | else | 
|  | branch = NULL; | 
|  | tree = create_tree (dfa, tree, branch, OP_ALT); | 
|  | if (BE (tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | return tree; | 
|  | } | 
|  |  | 
|  | /* This function build the following tree, from regular expression | 
|  | <exp1><exp2>: | 
|  | CAT | 
|  | / \ | 
|  | /   \ | 
|  | <exp1> <exp2> | 
|  |  | 
|  | CAT means concatenation.  */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, | 
|  | reg_syntax_t syntax, int nest, reg_errcode_t *err) | 
|  | { | 
|  | bin_tree_t *tree, *exp; | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | tree = parse_expression (regexp, preg, token, syntax, nest, err); | 
|  | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
|  | return NULL; | 
|  |  | 
|  | while (token->type != OP_ALT && token->type != END_OF_RE | 
|  | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | 
|  | { | 
|  | exp = parse_expression (regexp, preg, token, syntax, nest, err); | 
|  | if (BE (*err != REG_NOERROR && exp == NULL, 0)) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | if (tree != NULL && exp != NULL) | 
|  | { | 
|  | tree = create_tree (dfa, tree, exp, CONCAT); | 
|  | if (tree == NULL) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | else if (tree == NULL) | 
|  | tree = exp; | 
|  | /* Otherwise exp == NULL, we don't need to create new tree.  */ | 
|  | } | 
|  | return tree; | 
|  | } | 
|  |  | 
|  | /* This function build the following tree, from regular expression a*: | 
|  | * | 
|  | | | 
|  | a | 
|  | */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, | 
|  | reg_syntax_t syntax, int nest, reg_errcode_t *err) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | bin_tree_t *tree; | 
|  | switch (token->type) | 
|  | { | 
|  | case CHARACTER: | 
|  | tree = create_token_tree (dfa, NULL, NULL, token); | 
|  | if (BE (tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (dfa->mb_cur_max > 1) | 
|  | { | 
|  | while (!re_string_eoi (regexp) | 
|  | && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) | 
|  | { | 
|  | bin_tree_t *mbc_remain; | 
|  | fetch_token (token, regexp, syntax); | 
|  | mbc_remain = create_token_tree (dfa, NULL, NULL, token); | 
|  | tree = create_tree (dfa, tree, mbc_remain, CONCAT); | 
|  | if (BE (mbc_remain == NULL || tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | break; | 
|  | case OP_OPEN_SUBEXP: | 
|  | tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); | 
|  | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
|  | return NULL; | 
|  | break; | 
|  | case OP_OPEN_BRACKET: | 
|  | tree = parse_bracket_exp (regexp, dfa, token, syntax, err); | 
|  | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
|  | return NULL; | 
|  | break; | 
|  | case OP_BACK_REF: | 
|  | if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) | 
|  | { | 
|  | *err = REG_ESUBREG; | 
|  | return NULL; | 
|  | } | 
|  | dfa->used_bkref_map |= 1 << token->opr.idx; | 
|  | tree = create_token_tree (dfa, NULL, NULL, token); | 
|  | if (BE (tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | ++dfa->nbackref; | 
|  | dfa->has_mb_node = 1; | 
|  | break; | 
|  | case OP_OPEN_DUP_NUM: | 
|  | if (syntax & RE_CONTEXT_INVALID_DUP) | 
|  | { | 
|  | *err = REG_BADRPT; | 
|  | return NULL; | 
|  | } | 
|  | /* FALLTHROUGH */ | 
|  | case OP_DUP_ASTERISK: | 
|  | case OP_DUP_PLUS: | 
|  | case OP_DUP_QUESTION: | 
|  | if (syntax & RE_CONTEXT_INVALID_OPS) | 
|  | { | 
|  | *err = REG_BADRPT; | 
|  | return NULL; | 
|  | } | 
|  | else if (syntax & RE_CONTEXT_INDEP_OPS) | 
|  | { | 
|  | fetch_token (token, regexp, syntax); | 
|  | return parse_expression (regexp, preg, token, syntax, nest, err); | 
|  | } | 
|  | /* else fall through  */ | 
|  | case OP_CLOSE_SUBEXP: | 
|  | if ((token->type == OP_CLOSE_SUBEXP) && | 
|  | !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) | 
|  | { | 
|  | *err = REG_ERPAREN; | 
|  | return NULL; | 
|  | } | 
|  | /* else fall through  */ | 
|  | case OP_CLOSE_DUP_NUM: | 
|  | /* We treat it as a normal character.  */ | 
|  |  | 
|  | /* Then we can these characters as normal characters.  */ | 
|  | token->type = CHARACTER; | 
|  | /* mb_partial and word_char bits should be initialized already | 
|  | by peek_token.  */ | 
|  | tree = create_token_tree (dfa, NULL, NULL, token); | 
|  | if (BE (tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | break; | 
|  | case ANCHOR: | 
|  | if ((token->opr.ctx_type | 
|  | & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) | 
|  | && dfa->word_ops_used == 0) | 
|  | init_word_char (dfa); | 
|  | if (token->opr.ctx_type == WORD_DELIM | 
|  | || token->opr.ctx_type == NOT_WORD_DELIM) | 
|  | { | 
|  | bin_tree_t *tree_first, *tree_last; | 
|  | if (token->opr.ctx_type == WORD_DELIM) | 
|  | { | 
|  | token->opr.ctx_type = WORD_FIRST; | 
|  | tree_first = create_token_tree (dfa, NULL, NULL, token); | 
|  | token->opr.ctx_type = WORD_LAST; | 
|  | } | 
|  | else | 
|  | { | 
|  | token->opr.ctx_type = INSIDE_WORD; | 
|  | tree_first = create_token_tree (dfa, NULL, NULL, token); | 
|  | token->opr.ctx_type = INSIDE_NOTWORD; | 
|  | } | 
|  | tree_last = create_token_tree (dfa, NULL, NULL, token); | 
|  | tree = create_tree (dfa, tree_first, tree_last, OP_ALT); | 
|  | if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | tree = create_token_tree (dfa, NULL, NULL, token); | 
|  | if (BE (tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | /* We must return here, since ANCHORs can't be followed | 
|  | by repetition operators. | 
|  | eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", | 
|  | it must not be "<ANCHOR(^)><REPEAT(*)>".  */ | 
|  | fetch_token (token, regexp, syntax); | 
|  | return tree; | 
|  | case OP_PERIOD: | 
|  | tree = create_token_tree (dfa, NULL, NULL, token); | 
|  | if (BE (tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | if (dfa->mb_cur_max > 1) | 
|  | dfa->has_mb_node = 1; | 
|  | break; | 
|  | case OP_WORD: | 
|  | case OP_NOTWORD: | 
|  | tree = build_charclass_op (dfa, regexp->trans, | 
|  | "alnum", | 
|  | "_", | 
|  | token->type == OP_NOTWORD, err); | 
|  | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
|  | return NULL; | 
|  | break; | 
|  | case OP_SPACE: | 
|  | case OP_NOTSPACE: | 
|  | tree = build_charclass_op (dfa, regexp->trans, | 
|  | "space", | 
|  | "", | 
|  | token->type == OP_NOTSPACE, err); | 
|  | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
|  | return NULL; | 
|  | break; | 
|  | case OP_ALT: | 
|  | case END_OF_RE: | 
|  | return NULL; | 
|  | case BACK_SLASH: | 
|  | *err = REG_EESCAPE; | 
|  | return NULL; | 
|  | default: | 
|  | /* Must not happen?  */ | 
|  | #ifdef DEBUG | 
|  | assert (0); | 
|  | #endif | 
|  | return NULL; | 
|  | } | 
|  | fetch_token (token, regexp, syntax); | 
|  |  | 
|  | while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS | 
|  | || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) | 
|  | { | 
|  | tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); | 
|  | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | 
|  | return NULL; | 
|  | /* In BRE consecutive duplications are not allowed.  */ | 
|  | if ((syntax & RE_CONTEXT_INVALID_DUP) | 
|  | && (token->type == OP_DUP_ASTERISK | 
|  | || token->type == OP_OPEN_DUP_NUM)) | 
|  | { | 
|  | *err = REG_BADRPT; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return tree; | 
|  | } | 
|  |  | 
|  | /* This function build the following tree, from regular expression | 
|  | (<reg_exp>): | 
|  | SUBEXP | 
|  | | | 
|  | <reg_exp> | 
|  | */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | 
|  | reg_syntax_t syntax, int nest, reg_errcode_t *err) | 
|  | { | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | bin_tree_t *tree; | 
|  | size_t cur_nsub; | 
|  | cur_nsub = preg->re_nsub++; | 
|  |  | 
|  | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); | 
|  |  | 
|  | /* The subexpression may be a null string.  */ | 
|  | if (token->type == OP_CLOSE_SUBEXP) | 
|  | tree = NULL; | 
|  | else | 
|  | { | 
|  | tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); | 
|  | if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) | 
|  | *err = REG_EPAREN; | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (cur_nsub <= '9' - '1') | 
|  | dfa->completed_bkref_map |= 1 << cur_nsub; | 
|  |  | 
|  | tree = create_tree (dfa, tree, NULL, SUBEXP); | 
|  | if (BE (tree == NULL, 0)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  | tree->token.opr.idx = cur_nsub; | 
|  | return tree; | 
|  | } | 
|  |  | 
|  | /* This function parse repetition operators like "*", "+", "{1,3}" etc.  */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, | 
|  | re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) | 
|  | { | 
|  | bin_tree_t *tree = NULL, *old_tree = NULL; | 
|  | int i, start, end, start_idx = re_string_cur_idx (regexp); | 
|  | #ifndef RE_TOKEN_INIT_BUG | 
|  | re_token_t start_token = *token; | 
|  | #else | 
|  | re_token_t start_token; | 
|  |  | 
|  | memcpy ((void *) &start_token, (void *) token, sizeof start_token); | 
|  | #endif | 
|  |  | 
|  | if (token->type == OP_OPEN_DUP_NUM) | 
|  | { | 
|  | end = 0; | 
|  | start = fetch_number (regexp, token, syntax); | 
|  | if (start == -1) | 
|  | { | 
|  | if (token->type == CHARACTER && token->opr.c == ',') | 
|  | start = 0; /* We treat "{,m}" as "{0,m}".  */ | 
|  | else | 
|  | { | 
|  | *err = REG_BADBR; /* <re>{} is invalid.  */ | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | if (BE (start != -2, 1)) | 
|  | { | 
|  | /* We treat "{n}" as "{n,n}".  */ | 
|  | end = ((token->type == OP_CLOSE_DUP_NUM) ? start | 
|  | : ((token->type == CHARACTER && token->opr.c == ',') | 
|  | ? fetch_number (regexp, token, syntax) : -2)); | 
|  | } | 
|  | if (BE (start == -2 || end == -2, 0)) | 
|  | { | 
|  | /* Invalid sequence.  */ | 
|  | if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0)) | 
|  | { | 
|  | if (token->type == END_OF_RE) | 
|  | *err = REG_EBRACE; | 
|  | else | 
|  | *err = REG_BADBR; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* If the syntax bit is set, rollback.  */ | 
|  | re_string_set_index (regexp, start_idx); | 
|  | *token = start_token; | 
|  | token->type = CHARACTER; | 
|  | /* mb_partial and word_char bits should be already initialized by | 
|  | peek_token.  */ | 
|  | return elem; | 
|  | } | 
|  |  | 
|  | if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0)) | 
|  | { | 
|  | /* First number greater than second.  */ | 
|  | *err = REG_BADBR; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | start = (token->type == OP_DUP_PLUS) ? 1 : 0; | 
|  | end = (token->type == OP_DUP_QUESTION) ? 1 : -1; | 
|  | } | 
|  |  | 
|  | fetch_token (token, regexp, syntax); | 
|  |  | 
|  | if (BE (elem == NULL, 0)) | 
|  | return NULL; | 
|  | if (BE (start == 0 && end == 0, 0)) | 
|  | { | 
|  | postorder (elem, free_tree, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}".  */ | 
|  | if (BE (start > 0, 0)) | 
|  | { | 
|  | tree = elem; | 
|  | for (i = 2; i <= start; ++i) | 
|  | { | 
|  | elem = duplicate_tree (elem, dfa); | 
|  | tree = create_tree (dfa, tree, elem, CONCAT); | 
|  | if (BE (elem == NULL || tree == NULL, 0)) | 
|  | goto parse_dup_op_espace; | 
|  | } | 
|  |  | 
|  | if (start == end) | 
|  | return tree; | 
|  |  | 
|  | /* Duplicate ELEM before it is marked optional.  */ | 
|  | elem = duplicate_tree (elem, dfa); | 
|  | old_tree = tree; | 
|  | } | 
|  | else | 
|  | old_tree = NULL; | 
|  |  | 
|  | if (elem->token.type == SUBEXP) | 
|  | postorder (elem, mark_opt_subexp, (void *) (intptr_t) elem->token.opr.idx); | 
|  |  | 
|  | tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT)); | 
|  | if (BE (tree == NULL, 0)) | 
|  | goto parse_dup_op_espace; | 
|  |  | 
|  | /* This loop is actually executed only when end != -1, | 
|  | to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?...  We have | 
|  | already created the start+1-th copy.  */ | 
|  | for (i = start + 2; i <= end; ++i) | 
|  | { | 
|  | elem = duplicate_tree (elem, dfa); | 
|  | tree = create_tree (dfa, tree, elem, CONCAT); | 
|  | if (BE (elem == NULL || tree == NULL, 0)) | 
|  | goto parse_dup_op_espace; | 
|  |  | 
|  | tree = create_tree (dfa, tree, NULL, OP_ALT); | 
|  | if (BE (tree == NULL, 0)) | 
|  | goto parse_dup_op_espace; | 
|  | } | 
|  |  | 
|  | if (old_tree) | 
|  | tree = create_tree (dfa, old_tree, tree, CONCAT); | 
|  |  | 
|  | return tree; | 
|  |  | 
|  | parse_dup_op_espace: | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Size of the names for collating symbol/equivalence_class/character_class. | 
|  | I'm not sure, but maybe enough.  */ | 
|  | #define BRACKET_NAME_BUF_SIZE 32 | 
|  |  | 
|  | #ifndef _LIBC | 
|  | /* Local function for parse_bracket_exp only used in case of NOT _LIBC. | 
|  | Build the range expression which starts from START_ELEM, and ends | 
|  | at END_ELEM.  The result are written to MBCSET and SBCSET. | 
|  | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | 
|  | mbcset->range_ends, is a pointer argument since we may | 
|  | update it.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | # ifdef RE_ENABLE_I18N | 
|  | build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc, | 
|  | bracket_elem_t *start_elem, bracket_elem_t *end_elem) | 
|  | # else /* not RE_ENABLE_I18N */ | 
|  | build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem, | 
|  | bracket_elem_t *end_elem) | 
|  | # endif /* not RE_ENABLE_I18N */ | 
|  | { | 
|  | unsigned int start_ch, end_ch; | 
|  | /* Equivalence Classes and Character Classes can't be a range start/end.  */ | 
|  | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | 
|  | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | 
|  | 0)) | 
|  | return REG_ERANGE; | 
|  |  | 
|  | /* We can handle no multi character collating elements without libc | 
|  | support.  */ | 
|  | if (BE ((start_elem->type == COLL_SYM | 
|  | && strlen ((char *) start_elem->opr.name) > 1) | 
|  | || (end_elem->type == COLL_SYM | 
|  | && strlen ((char *) end_elem->opr.name) > 1), 0)) | 
|  | return REG_ECOLLATE; | 
|  |  | 
|  | # ifdef RE_ENABLE_I18N | 
|  | { | 
|  | wchar_t wc; | 
|  | wint_t start_wc; | 
|  | wint_t end_wc; | 
|  | wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | 
|  |  | 
|  | start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch | 
|  | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | 
|  | : 0)); | 
|  | end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch | 
|  | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | 
|  | : 0)); | 
|  | #ifdef GAWK | 
|  | /* | 
|  | * Fedora Core 2, maybe others, have broken `btowc' that returns -1 | 
|  | * for any value > 127. Sigh. Note that `start_ch' and `end_ch' are | 
|  | * unsigned, so we don't have sign extension problems. | 
|  | */ | 
|  | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | 
|  | ? start_ch : start_elem->opr.wch); | 
|  | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | 
|  | ? end_ch : end_elem->opr.wch); | 
|  | #else | 
|  | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | 
|  | ? __btowc (start_ch) : start_elem->opr.wch); | 
|  | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | 
|  | ? __btowc (end_ch) : end_elem->opr.wch); | 
|  | #endif | 
|  | if (start_wc == WEOF || end_wc == WEOF) | 
|  | return REG_ECOLLATE; | 
|  | cmp_buf[0] = start_wc; | 
|  | cmp_buf[4] = end_wc; | 
|  | if (wcscoll (cmp_buf, cmp_buf + 4) > 0) | 
|  | return REG_ERANGE; | 
|  |  | 
|  | /* Got valid collation sequence values, add them as a new entry. | 
|  | However, for !_LIBC we have no collation elements: if the | 
|  | character set is single byte, the single byte character set | 
|  | that we build below suffices.  parse_bracket_exp passes | 
|  | no MBCSET if dfa->mb_cur_max == 1.  */ | 
|  | if (mbcset) | 
|  | { | 
|  | /* Check the space of the arrays.  */ | 
|  | if (BE (*range_alloc == mbcset->nranges, 0)) | 
|  | { | 
|  | /* There is not enough space, need realloc.  */ | 
|  | wchar_t *new_array_start, *new_array_end; | 
|  | int new_nranges; | 
|  |  | 
|  | /* +1 in case of mbcset->nranges is 0.  */ | 
|  | new_nranges = 2 * mbcset->nranges + 1; | 
|  | /* Use realloc since mbcset->range_starts and mbcset->range_ends | 
|  | are NULL if *range_alloc == 0.  */ | 
|  | new_array_start = re_realloc (mbcset->range_starts, wchar_t, | 
|  | new_nranges); | 
|  | new_array_end = re_realloc (mbcset->range_ends, wchar_t, | 
|  | new_nranges); | 
|  |  | 
|  | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | mbcset->range_starts = new_array_start; | 
|  | mbcset->range_ends = new_array_end; | 
|  | *range_alloc = new_nranges; | 
|  | } | 
|  |  | 
|  | mbcset->range_starts[mbcset->nranges] = start_wc; | 
|  | mbcset->range_ends[mbcset->nranges++] = end_wc; | 
|  | } | 
|  |  | 
|  | /* Build the table for single byte characters.  */ | 
|  | for (wc = 0; wc < SBC_MAX; ++wc) | 
|  | { | 
|  | cmp_buf[2] = wc; | 
|  | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | 
|  | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | 
|  | bitset_set (sbcset, wc); | 
|  | } | 
|  | } | 
|  | # else /* not RE_ENABLE_I18N */ | 
|  | { | 
|  | unsigned int ch; | 
|  | start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch | 
|  | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | 
|  | : 0)); | 
|  | end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch | 
|  | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | 
|  | : 0)); | 
|  | if (start_ch > end_ch) | 
|  | return REG_ERANGE; | 
|  | /* Build the table for single byte characters.  */ | 
|  | for (ch = 0; ch < SBC_MAX; ++ch) | 
|  | if (start_ch <= ch  && ch <= end_ch) | 
|  | bitset_set (sbcset, ch); | 
|  | } | 
|  | # endif /* not RE_ENABLE_I18N */ | 
|  | return REG_NOERROR; | 
|  | } | 
|  | #endif /* not _LIBC */ | 
|  |  | 
|  | #ifndef _LIBC | 
|  | /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. | 
|  | Build the collating element which is represented by NAME. | 
|  | The result are written to MBCSET and SBCSET. | 
|  | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | 
|  | pointer argument since we may update it.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | # ifdef RE_ENABLE_I18N | 
|  | build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset, | 
|  | int *coll_sym_alloc, const unsigned char *name) | 
|  | # else /* not RE_ENABLE_I18N */ | 
|  | build_collating_symbol (bitset_t sbcset, const unsigned char *name) | 
|  | # endif /* not RE_ENABLE_I18N */ | 
|  | { | 
|  | size_t name_len = strlen ((const char *) name); | 
|  | if (BE (name_len != 1, 0)) | 
|  | return REG_ECOLLATE; | 
|  | else | 
|  | { | 
|  | bitset_set (sbcset, name[0]); | 
|  | return REG_NOERROR; | 
|  | } | 
|  | } | 
|  | #endif /* not _LIBC */ | 
|  |  | 
|  | /* This function parse bracket expression like "[abc]", "[a-c]", | 
|  | "[[.a-a.]]" etc.  */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, | 
|  | reg_syntax_t syntax, reg_errcode_t *err) | 
|  | { | 
|  | #ifdef _LIBC | 
|  | const unsigned char *collseqmb; | 
|  | const char *collseqwc; | 
|  | uint32_t nrules; | 
|  | int32_t table_size; | 
|  | const int32_t *symb_table; | 
|  | const unsigned char *extra; | 
|  |  | 
|  | /* Local function for parse_bracket_exp used in _LIBC environment. | 
|  | Seek the collating symbol entry correspondings to NAME. | 
|  | Return the index of the symbol in the SYMB_TABLE.  */ | 
|  |  | 
|  | auto inline int32_t | 
|  | __attribute ((always_inline)) | 
|  | seek_collating_symbol_entry (name, name_len) | 
|  | const unsigned char *name; | 
|  | size_t name_len; | 
|  | { | 
|  | int32_t hash = elem_hash ((const char *) name, name_len); | 
|  | int32_t elem = hash % table_size; | 
|  | if (symb_table[2 * elem] != 0) | 
|  | { | 
|  | int32_t second = hash % (table_size - 2) + 1; | 
|  |  | 
|  | do | 
|  | { | 
|  | /* First compare the hashing value.  */ | 
|  | if (symb_table[2 * elem] == hash | 
|  | /* Compare the length of the name.  */ | 
|  | && name_len == extra[symb_table[2 * elem + 1]] | 
|  | /* Compare the name.  */ | 
|  | && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], | 
|  | name_len) == 0) | 
|  | { | 
|  | /* Yep, this is the entry.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Next entry.  */ | 
|  | elem += second; | 
|  | } | 
|  | while (symb_table[2 * elem] != 0); | 
|  | } | 
|  | return elem; | 
|  | } | 
|  |  | 
|  | /* Local function for parse_bracket_exp used in _LIBC environment. | 
|  | Look up the collation sequence value of BR_ELEM. | 
|  | Return the value if succeeded, UINT_MAX otherwise.  */ | 
|  |  | 
|  | auto inline unsigned int | 
|  | __attribute ((always_inline)) | 
|  | lookup_collation_sequence_value (br_elem) | 
|  | bracket_elem_t *br_elem; | 
|  | { | 
|  | if (br_elem->type == SB_CHAR) | 
|  | { | 
|  | /* | 
|  | if (MB_CUR_MAX == 1) | 
|  | */ | 
|  | if (nrules == 0) | 
|  | return collseqmb[br_elem->opr.ch]; | 
|  | else | 
|  | { | 
|  | wint_t wc = __btowc (br_elem->opr.ch); | 
|  | return __collseq_table_lookup (collseqwc, wc); | 
|  | } | 
|  | } | 
|  | else if (br_elem->type == MB_CHAR) | 
|  | { | 
|  | if (nrules != 0) | 
|  | return __collseq_table_lookup (collseqwc, br_elem->opr.wch); | 
|  | } | 
|  | else if (br_elem->type == COLL_SYM) | 
|  | { | 
|  | size_t sym_name_len = strlen ((char *) br_elem->opr.name); | 
|  | if (nrules != 0) | 
|  | { | 
|  | int32_t elem, idx; | 
|  | elem = seek_collating_symbol_entry (br_elem->opr.name, | 
|  | sym_name_len); | 
|  | if (symb_table[2 * elem] != 0) | 
|  | { | 
|  | /* We found the entry.  */ | 
|  | idx = symb_table[2 * elem + 1]; | 
|  | /* Skip the name of collating element name.  */ | 
|  | idx += 1 + extra[idx]; | 
|  | /* Skip the byte sequence of the collating element.  */ | 
|  | idx += 1 + extra[idx]; | 
|  | /* Adjust for the alignment.  */ | 
|  | idx = (idx + 3) & ~3; | 
|  | /* Skip the multibyte collation sequence value.  */ | 
|  | idx += sizeof (unsigned int); | 
|  | /* Skip the wide char sequence of the collating element.  */ | 
|  | idx += sizeof (unsigned int) * | 
|  | (1 + *(unsigned int *) (extra + idx)); | 
|  | /* Return the collation sequence value.  */ | 
|  | return *(unsigned int *) (extra + idx); | 
|  | } | 
|  | else if (symb_table[2 * elem] == 0 && sym_name_len == 1) | 
|  | { | 
|  | /* No valid character.  Match it as a single byte | 
|  | character.  */ | 
|  | return collseqmb[br_elem->opr.name[0]]; | 
|  | } | 
|  | } | 
|  | else if (sym_name_len == 1) | 
|  | return collseqmb[br_elem->opr.name[0]]; | 
|  | } | 
|  | return UINT_MAX; | 
|  | } | 
|  |  | 
|  | /* Local function for parse_bracket_exp used in _LIBC environment. | 
|  | Build the range expression which starts from START_ELEM, and ends | 
|  | at END_ELEM.  The result are written to MBCSET and SBCSET. | 
|  | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | 
|  | mbcset->range_ends, is a pointer argument since we may | 
|  | update it.  */ | 
|  |  | 
|  | auto inline reg_errcode_t | 
|  | __attribute ((always_inline)) | 
|  | build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem) | 
|  | re_charset_t *mbcset; | 
|  | int *range_alloc; | 
|  | bitset_t sbcset; | 
|  | bracket_elem_t *start_elem, *end_elem; | 
|  | { | 
|  | unsigned int ch; | 
|  | uint32_t start_collseq; | 
|  | uint32_t end_collseq; | 
|  |  | 
|  | /* Equivalence Classes and Character Classes can't be a range | 
|  | start/end.  */ | 
|  | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | 
|  | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | 
|  | 0)) | 
|  | return REG_ERANGE; | 
|  |  | 
|  | start_collseq = lookup_collation_sequence_value (start_elem); | 
|  | end_collseq = lookup_collation_sequence_value (end_elem); | 
|  | /* Check start/end collation sequence values.  */ | 
|  | if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) | 
|  | return REG_ECOLLATE; | 
|  | if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) | 
|  | return REG_ERANGE; | 
|  |  | 
|  | /* Got valid collation sequence values, add them as a new entry. | 
|  | However, if we have no collation elements, and the character set | 
|  | is single byte, the single byte character set that we | 
|  | build below suffices. */ | 
|  | if (nrules > 0 || dfa->mb_cur_max > 1) | 
|  | { | 
|  | /* Check the space of the arrays.  */ | 
|  | if (BE (*range_alloc == mbcset->nranges, 0)) | 
|  | { | 
|  | /* There is not enough space, need realloc.  */ | 
|  | uint32_t *new_array_start; | 
|  | uint32_t *new_array_end; | 
|  | int new_nranges; | 
|  |  | 
|  | /* +1 in case of mbcset->nranges is 0.  */ | 
|  | new_nranges = 2 * mbcset->nranges + 1; | 
|  | new_array_start = re_realloc (mbcset->range_starts, uint32_t, | 
|  | new_nranges); | 
|  | new_array_end = re_realloc (mbcset->range_ends, uint32_t, | 
|  | new_nranges); | 
|  |  | 
|  | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | mbcset->range_starts = new_array_start; | 
|  | mbcset->range_ends = new_array_end; | 
|  | *range_alloc = new_nranges; | 
|  | } | 
|  |  | 
|  | mbcset->range_starts[mbcset->nranges] = start_collseq; | 
|  | mbcset->range_ends[mbcset->nranges++] = end_collseq; | 
|  | } | 
|  |  | 
|  | /* Build the table for single byte characters.  */ | 
|  | for (ch = 0; ch < SBC_MAX; ch++) | 
|  | { | 
|  | uint32_t ch_collseq; | 
|  | /* | 
|  | if (MB_CUR_MAX == 1) | 
|  | */ | 
|  | if (nrules == 0) | 
|  | ch_collseq = collseqmb[ch]; | 
|  | else | 
|  | ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); | 
|  | if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) | 
|  | bitset_set (sbcset, ch); | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Local function for parse_bracket_exp used in _LIBC environment. | 
|  | Build the collating element which is represented by NAME. | 
|  | The result are written to MBCSET and SBCSET. | 
|  | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | 
|  | pointer argument since we may update it.  */ | 
|  |  | 
|  | auto inline reg_errcode_t | 
|  | __attribute ((always_inline)) | 
|  | build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name) | 
|  | re_charset_t *mbcset; | 
|  | int *coll_sym_alloc; | 
|  | bitset_t sbcset; | 
|  | const unsigned char *name; | 
|  | { | 
|  | int32_t elem, idx; | 
|  | size_t name_len = strlen ((const char *) name); | 
|  | if (nrules != 0) | 
|  | { | 
|  | elem = seek_collating_symbol_entry (name, name_len); | 
|  | if (symb_table[2 * elem] != 0) | 
|  | { | 
|  | /* We found the entry.  */ | 
|  | idx = symb_table[2 * elem + 1]; | 
|  | /* Skip the name of collating element name.  */ | 
|  | idx += 1 + extra[idx]; | 
|  | } | 
|  | else if (symb_table[2 * elem] == 0 && name_len == 1) | 
|  | { | 
|  | /* No valid character, treat it as a normal | 
|  | character.  */ | 
|  | bitset_set (sbcset, name[0]); | 
|  | return REG_NOERROR; | 
|  | } | 
|  | else | 
|  | return REG_ECOLLATE; | 
|  |  | 
|  | /* Got valid collation sequence, add it as a new entry.  */ | 
|  | /* Check the space of the arrays.  */ | 
|  | if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) | 
|  | { | 
|  | /* Not enough, realloc it.  */ | 
|  | /* +1 in case of mbcset->ncoll_syms is 0.  */ | 
|  | int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; | 
|  | /* Use realloc since mbcset->coll_syms is NULL | 
|  | if *alloc == 0.  */ | 
|  | int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t, | 
|  | new_coll_sym_alloc); | 
|  | if (BE (new_coll_syms == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | mbcset->coll_syms = new_coll_syms; | 
|  | *coll_sym_alloc = new_coll_sym_alloc; | 
|  | } | 
|  | mbcset->coll_syms[mbcset->ncoll_syms++] = idx; | 
|  | return REG_NOERROR; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (BE (name_len != 1, 0)) | 
|  | return REG_ECOLLATE; | 
|  | else | 
|  | { | 
|  | bitset_set (sbcset, name[0]); | 
|  | return REG_NOERROR; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | re_token_t br_token; | 
|  | re_bitset_ptr_t sbcset; | 
|  | #ifdef RE_ENABLE_I18N | 
|  | re_charset_t *mbcset; | 
|  | int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; | 
|  | int equiv_class_alloc = 0, char_class_alloc = 0; | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | int non_match = 0; | 
|  | bin_tree_t *work_tree; | 
|  | int token_len; | 
|  | int first_round = 1; | 
|  | #ifdef _LIBC | 
|  | collseqmb = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | 
|  | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | if (nrules) | 
|  | { | 
|  | /* | 
|  | if (MB_CUR_MAX > 1) | 
|  | */ | 
|  | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | 
|  | table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); | 
|  | symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_SYMB_TABLEMB); | 
|  | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_SYMB_EXTRAMB); | 
|  | } | 
|  | #endif | 
|  | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (BE (sbcset == NULL || mbcset == NULL, 0)) | 
|  | #else | 
|  | if (BE (sbcset == NULL, 0)) | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | token_len = peek_token_bracket (token, regexp, syntax); | 
|  | if (BE (token->type == END_OF_RE, 0)) | 
|  | { | 
|  | *err = REG_BADPAT; | 
|  | goto parse_bracket_exp_free_return; | 
|  | } | 
|  | if (token->type == OP_NON_MATCH_LIST) | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | mbcset->non_match = 1; | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | non_match = 1; | 
|  | if (syntax & RE_HAT_LISTS_NOT_NEWLINE) | 
|  | bitset_set (sbcset, '\n'); | 
|  | re_string_skip_bytes (regexp, token_len); /* Skip a token.  */ | 
|  | token_len = peek_token_bracket (token, regexp, syntax); | 
|  | if (BE (token->type == END_OF_RE, 0)) | 
|  | { | 
|  | *err = REG_BADPAT; | 
|  | goto parse_bracket_exp_free_return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We treat the first ']' as a normal character.  */ | 
|  | if (token->type == OP_CLOSE_BRACKET) | 
|  | token->type = CHARACTER; | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | bracket_elem_t start_elem, end_elem; | 
|  | unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; | 
|  | unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; | 
|  | reg_errcode_t ret; | 
|  | int token_len2 = 0, is_range_exp = 0; | 
|  | re_token_t token2; | 
|  |  | 
|  | start_elem.opr.name = start_name_buf; | 
|  | ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, | 
|  | syntax, first_round); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | { | 
|  | *err = ret; | 
|  | goto parse_bracket_exp_free_return; | 
|  | } | 
|  | first_round = 0; | 
|  |  | 
|  | /* Get information about the next token.  We need it in any case.  */ | 
|  | token_len = peek_token_bracket (token, regexp, syntax); | 
|  |  | 
|  | /* Do not check for ranges if we know they are not allowed.  */ | 
|  | if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) | 
|  | { | 
|  | if (BE (token->type == END_OF_RE, 0)) | 
|  | { | 
|  | *err = REG_EBRACK; | 
|  | goto parse_bracket_exp_free_return; | 
|  | } | 
|  | if (token->type == OP_CHARSET_RANGE) | 
|  | { | 
|  | re_string_skip_bytes (regexp, token_len); /* Skip '-'.  */ | 
|  | token_len2 = peek_token_bracket (&token2, regexp, syntax); | 
|  | if (BE (token2.type == END_OF_RE, 0)) | 
|  | { | 
|  | *err = REG_EBRACK; | 
|  | goto parse_bracket_exp_free_return; | 
|  | } | 
|  | if (token2.type == OP_CLOSE_BRACKET) | 
|  | { | 
|  | /* We treat the last '-' as a normal character.  */ | 
|  | re_string_skip_bytes (regexp, -token_len); | 
|  | token->type = CHARACTER; | 
|  | } | 
|  | else | 
|  | is_range_exp = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_range_exp == 1) | 
|  | { | 
|  | end_elem.opr.name = end_name_buf; | 
|  | ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, | 
|  | dfa, syntax, 1); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | { | 
|  | *err = ret; | 
|  | goto parse_bracket_exp_free_return; | 
|  | } | 
|  |  | 
|  | token_len = peek_token_bracket (token, regexp, syntax); | 
|  |  | 
|  | #ifdef _LIBC | 
|  | *err = build_range_exp (sbcset, mbcset, &range_alloc, | 
|  | &start_elem, &end_elem); | 
|  | #else | 
|  | # ifdef RE_ENABLE_I18N | 
|  | *err = build_range_exp (sbcset, | 
|  | dfa->mb_cur_max > 1 ? mbcset : NULL, | 
|  | &range_alloc, &start_elem, &end_elem); | 
|  | # else | 
|  | *err = build_range_exp (sbcset, &start_elem, &end_elem); | 
|  | # endif | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | goto parse_bracket_exp_free_return; | 
|  | } | 
|  | else | 
|  | { | 
|  | switch (start_elem.type) | 
|  | { | 
|  | case SB_CHAR: | 
|  | bitset_set (sbcset, start_elem.opr.ch); | 
|  | break; | 
|  | #ifdef RE_ENABLE_I18N | 
|  | case MB_CHAR: | 
|  | /* Check whether the array has enough space.  */ | 
|  | if (BE (mbchar_alloc == mbcset->nmbchars, 0)) | 
|  | { | 
|  | wchar_t *new_mbchars; | 
|  | /* Not enough, realloc it.  */ | 
|  | /* +1 in case of mbcset->nmbchars is 0.  */ | 
|  | mbchar_alloc = 2 * mbcset->nmbchars + 1; | 
|  | /* Use realloc since array is NULL if *alloc == 0.  */ | 
|  | new_mbchars = re_realloc (mbcset->mbchars, wchar_t, | 
|  | mbchar_alloc); | 
|  | if (BE (new_mbchars == NULL, 0)) | 
|  | goto parse_bracket_exp_espace; | 
|  | mbcset->mbchars = new_mbchars; | 
|  | } | 
|  | mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; | 
|  | break; | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | case EQUIV_CLASS: | 
|  | *err = build_equiv_class (sbcset, | 
|  | #ifdef RE_ENABLE_I18N | 
|  | mbcset, &equiv_class_alloc, | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | start_elem.opr.name); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | goto parse_bracket_exp_free_return; | 
|  | break; | 
|  | case COLL_SYM: | 
|  | *err = build_collating_symbol (sbcset, | 
|  | #ifdef RE_ENABLE_I18N | 
|  | mbcset, &coll_sym_alloc, | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | start_elem.opr.name); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | goto parse_bracket_exp_free_return; | 
|  | break; | 
|  | case CHAR_CLASS: | 
|  | *err = build_charclass (regexp->trans, sbcset, | 
|  | #ifdef RE_ENABLE_I18N | 
|  | mbcset, &char_class_alloc, | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | (const char *) start_elem.opr.name, syntax); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | goto parse_bracket_exp_free_return; | 
|  | break; | 
|  | default: | 
|  | assert (0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (BE (token->type == END_OF_RE, 0)) | 
|  | { | 
|  | *err = REG_EBRACK; | 
|  | goto parse_bracket_exp_free_return; | 
|  | } | 
|  | if (token->type == OP_CLOSE_BRACKET) | 
|  | break; | 
|  | } | 
|  |  | 
|  | re_string_skip_bytes (regexp, token_len); /* Skip a token.  */ | 
|  |  | 
|  | /* If it is non-matching list.  */ | 
|  | if (non_match) | 
|  | bitset_not (sbcset); | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* Ensure only single byte characters are set.  */ | 
|  | if (dfa->mb_cur_max > 1) | 
|  | bitset_mask (sbcset, dfa->sb_char); | 
|  |  | 
|  | if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes | 
|  | || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes | 
|  | || mbcset->non_match))) | 
|  | { | 
|  | bin_tree_t *mbc_tree; | 
|  | int sbc_idx; | 
|  | /* Build a tree for complex bracket.  */ | 
|  | dfa->has_mb_node = 1; | 
|  | br_token.type = COMPLEX_BRACKET; | 
|  | br_token.opr.mbcset = mbcset; | 
|  | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
|  | if (BE (mbc_tree == NULL, 0)) | 
|  | goto parse_bracket_exp_espace; | 
|  | for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) | 
|  | if (sbcset[sbc_idx]) | 
|  | break; | 
|  | /* If there are no bits set in sbcset, there is no point | 
|  | of having both SIMPLE_BRACKET and COMPLEX_BRACKET.  */ | 
|  | if (sbc_idx < BITSET_WORDS) | 
|  | { | 
|  | /* Build a tree for simple bracket.  */ | 
|  | br_token.type = SIMPLE_BRACKET; | 
|  | br_token.opr.sbcset = sbcset; | 
|  | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
|  | if (BE (work_tree == NULL, 0)) | 
|  | goto parse_bracket_exp_espace; | 
|  |  | 
|  | /* Then join them by ALT node.  */ | 
|  | work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); | 
|  | if (BE (work_tree == NULL, 0)) | 
|  | goto parse_bracket_exp_espace; | 
|  | } | 
|  | else | 
|  | { | 
|  | re_free (sbcset); | 
|  | work_tree = mbc_tree; | 
|  | } | 
|  | } | 
|  | else | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | free_charset (mbcset); | 
|  | #endif | 
|  | /* Build a tree for simple bracket.  */ | 
|  | br_token.type = SIMPLE_BRACKET; | 
|  | br_token.opr.sbcset = sbcset; | 
|  | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
|  | if (BE (work_tree == NULL, 0)) | 
|  | goto parse_bracket_exp_espace; | 
|  | } | 
|  | return work_tree; | 
|  |  | 
|  | parse_bracket_exp_espace: | 
|  | *err = REG_ESPACE; | 
|  | parse_bracket_exp_free_return: | 
|  | re_free (sbcset); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | free_charset (mbcset); | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Parse an element in the bracket expression.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, | 
|  | re_token_t *token, int token_len, re_dfa_t *dfa, | 
|  | reg_syntax_t syntax, int accept_hyphen) | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | int cur_char_size; | 
|  | cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); | 
|  | if (cur_char_size > 1) | 
|  | { | 
|  | elem->type = MB_CHAR; | 
|  | elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); | 
|  | re_string_skip_bytes (regexp, cur_char_size); | 
|  | return REG_NOERROR; | 
|  | } | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | re_string_skip_bytes (regexp, token_len); /* Skip a token.  */ | 
|  | if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS | 
|  | || token->type == OP_OPEN_EQUIV_CLASS) | 
|  | return parse_bracket_symbol (elem, regexp, token); | 
|  | if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) | 
|  | { | 
|  | /* A '-' must only appear as anything but a range indicator before | 
|  | the closing bracket.  Everything else is an error.  */ | 
|  | re_token_t token2; | 
|  | (void) peek_token_bracket (&token2, regexp, syntax); | 
|  | if (token2.type != OP_CLOSE_BRACKET) | 
|  | /* The actual error value is not standardized since this whole | 
|  | case is undefined.  But ERANGE makes good sense.  */ | 
|  | return REG_ERANGE; | 
|  | } | 
|  | elem->type = SB_CHAR; | 
|  | elem->opr.ch = token->opr.c; | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Parse a bracket symbol in the bracket expression.  Bracket symbols are | 
|  | such as [:<character_class>:], [.<collating_element>.], and | 
|  | [=<equivalent_class>=].  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, | 
|  | re_token_t *token) | 
|  | { | 
|  | unsigned char ch, delim = token->opr.c; | 
|  | int i = 0; | 
|  | if (re_string_eoi(regexp)) | 
|  | return REG_EBRACK; | 
|  | for (;; ++i) | 
|  | { | 
|  | if (i >= BRACKET_NAME_BUF_SIZE) | 
|  | return REG_EBRACK; | 
|  | if (token->type == OP_OPEN_CHAR_CLASS) | 
|  | ch = re_string_fetch_byte_case (regexp); | 
|  | else | 
|  | ch = re_string_fetch_byte (regexp); | 
|  | if (re_string_eoi(regexp)) | 
|  | return REG_EBRACK; | 
|  | if (ch == delim && re_string_peek_byte (regexp, 0) == ']') | 
|  | break; | 
|  | elem->opr.name[i] = ch; | 
|  | } | 
|  | re_string_skip_bytes (regexp, 1); | 
|  | elem->opr.name[i] = '\0'; | 
|  | switch (token->type) | 
|  | { | 
|  | case OP_OPEN_COLL_ELEM: | 
|  | elem->type = COLL_SYM; | 
|  | break; | 
|  | case OP_OPEN_EQUIV_CLASS: | 
|  | elem->type = EQUIV_CLASS; | 
|  | break; | 
|  | case OP_OPEN_CHAR_CLASS: | 
|  | elem->type = CHAR_CLASS; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Helper function for parse_bracket_exp. | 
|  | Build the equivalence class which is represented by NAME. | 
|  | The result are written to MBCSET and SBCSET. | 
|  | EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, | 
|  | is a pointer argument since we may update it.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | #ifdef RE_ENABLE_I18N | 
|  | build_equiv_class (bitset_t sbcset, re_charset_t *mbcset, | 
|  | int *equiv_class_alloc, const unsigned char *name) | 
|  | #else /* not RE_ENABLE_I18N */ | 
|  | build_equiv_class (bitset_t sbcset, const unsigned char *name) | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | { | 
|  | #ifdef _LIBC | 
|  | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | if (nrules != 0) | 
|  | { | 
|  | const int32_t *table, *indirect; | 
|  | const unsigned char *weights, *extra, *cp; | 
|  | unsigned char char_buf[2]; | 
|  | int32_t idx1, idx2; | 
|  | unsigned int ch; | 
|  | size_t len; | 
|  | /* This #include defines a local function!  */ | 
|  | # include <locale/weight.h> | 
|  | /* Calculate the index for equivalence class.  */ | 
|  | cp = name; | 
|  | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | 
|  | weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_WEIGHTMB); | 
|  | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_EXTRAMB); | 
|  | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_INDIRECTMB); | 
|  | idx1 = findidx (&cp); | 
|  | if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) | 
|  | /* This isn't a valid character.  */ | 
|  | return REG_ECOLLATE; | 
|  |  | 
|  | /* Build single byte matching table for this equivalence class.  */ | 
|  | char_buf[1] = (unsigned char) '\0'; | 
|  | len = weights[idx1 & 0xffffff]; | 
|  | for (ch = 0; ch < SBC_MAX; ++ch) | 
|  | { | 
|  | char_buf[0] = ch; | 
|  | cp = char_buf; | 
|  | idx2 = findidx (&cp); | 
|  | /* | 
|  | idx2 = table[ch]; | 
|  | */ | 
|  | if (idx2 == 0) | 
|  | /* This isn't a valid character.  */ | 
|  | continue; | 
|  | /* Compare only if the length matches and the collation rule | 
|  | index is the same.  */ | 
|  | if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24)) | 
|  | { | 
|  | int cnt = 0; | 
|  |  | 
|  | while (cnt <= len && | 
|  | weights[(idx1 & 0xffffff) + 1 + cnt] | 
|  | == weights[(idx2 & 0xffffff) + 1 + cnt]) | 
|  | ++cnt; | 
|  |  | 
|  | if (cnt > len) | 
|  | bitset_set (sbcset, ch); | 
|  | } | 
|  | } | 
|  | /* Check whether the array has enough space.  */ | 
|  | if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) | 
|  | { | 
|  | /* Not enough, realloc it.  */ | 
|  | /* +1 in case of mbcset->nequiv_classes is 0.  */ | 
|  | int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; | 
|  | /* Use realloc since the array is NULL if *alloc == 0.  */ | 
|  | int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes, | 
|  | int32_t, | 
|  | new_equiv_class_alloc); | 
|  | if (BE (new_equiv_classes == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | mbcset->equiv_classes = new_equiv_classes; | 
|  | *equiv_class_alloc = new_equiv_class_alloc; | 
|  | } | 
|  | mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; | 
|  | } | 
|  | else | 
|  | #endif /* _LIBC */ | 
|  | { | 
|  | if (BE (strlen ((const char *) name) != 1, 0)) | 
|  | return REG_ECOLLATE; | 
|  | bitset_set (sbcset, *name); | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Helper function for parse_bracket_exp. | 
|  | Build the character class which is represented by NAME. | 
|  | The result are written to MBCSET and SBCSET. | 
|  | CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, | 
|  | is a pointer argument since we may update it.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | #ifdef RE_ENABLE_I18N | 
|  | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, | 
|  | re_charset_t *mbcset, int *char_class_alloc, | 
|  | const char *class_name, reg_syntax_t syntax) | 
|  | #else /* not RE_ENABLE_I18N */ | 
|  | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, | 
|  | const char *class_name, reg_syntax_t syntax) | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* In case of REG_ICASE "upper" and "lower" match the both of | 
|  | upper and lower cases.  */ | 
|  | if ((syntax & RE_ICASE) | 
|  | && (strcmp (class_name, "upper") == 0 || strcmp (class_name, "lower") == 0)) | 
|  | class_name = "alpha"; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* Check the space of the arrays.  */ | 
|  | if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) | 
|  | { | 
|  | /* Not enough, realloc it.  */ | 
|  | /* +1 in case of mbcset->nchar_classes is 0.  */ | 
|  | int new_char_class_alloc = 2 * mbcset->nchar_classes + 1; | 
|  | /* Use realloc since array is NULL if *alloc == 0.  */ | 
|  | wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t, | 
|  | new_char_class_alloc); | 
|  | if (BE (new_char_classes == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | mbcset->char_classes = new_char_classes; | 
|  | *char_class_alloc = new_char_class_alloc; | 
|  | } | 
|  | mbcset->char_classes[mbcset->nchar_classes++] = __wctype (class_name); | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  | #define BUILD_CHARCLASS_LOOP(ctype_func)	\ | 
|  | do {						\ | 
|  | if (BE (trans != NULL, 0))			\ | 
|  | {						\ | 
|  | for (i = 0; i < SBC_MAX; ++i)		\ | 
|  | if (ctype_func (i))			\ | 
|  | bitset_set (sbcset, trans[i]);	\ | 
|  | }						\ | 
|  | else					\ | 
|  | {						\ | 
|  | for (i = 0; i < SBC_MAX; ++i)		\ | 
|  | if (ctype_func (i))			\ | 
|  | bitset_set (sbcset, i);		\ | 
|  | }						\ | 
|  | } while (0) | 
|  |  | 
|  | if (strcmp (class_name, "alnum") == 0) | 
|  | BUILD_CHARCLASS_LOOP (isalnum); | 
|  | else if (strcmp (class_name, "cntrl") == 0) | 
|  | BUILD_CHARCLASS_LOOP (iscntrl); | 
|  | else if (strcmp (class_name, "lower") == 0) | 
|  | BUILD_CHARCLASS_LOOP (islower); | 
|  | else if (strcmp (class_name, "space") == 0) | 
|  | BUILD_CHARCLASS_LOOP (isspace); | 
|  | else if (strcmp (class_name, "alpha") == 0) | 
|  | BUILD_CHARCLASS_LOOP (isalpha); | 
|  | else if (strcmp (class_name, "digit") == 0) | 
|  | BUILD_CHARCLASS_LOOP (isdigit); | 
|  | else if (strcmp (class_name, "print") == 0) | 
|  | BUILD_CHARCLASS_LOOP (isprint); | 
|  | else if (strcmp (class_name, "upper") == 0) | 
|  | BUILD_CHARCLASS_LOOP (isupper); | 
|  | else if (strcmp (class_name, "blank") == 0) | 
|  | #ifndef GAWK | 
|  | BUILD_CHARCLASS_LOOP (isblank); | 
|  | #else | 
|  | /* see comments above */ | 
|  | BUILD_CHARCLASS_LOOP (is_blank); | 
|  | #endif | 
|  | else if (strcmp (class_name, "graph") == 0) | 
|  | BUILD_CHARCLASS_LOOP (isgraph); | 
|  | else if (strcmp (class_name, "punct") == 0) | 
|  | BUILD_CHARCLASS_LOOP (ispunct); | 
|  | else if (strcmp (class_name, "xdigit") == 0) | 
|  | BUILD_CHARCLASS_LOOP (isxdigit); | 
|  | else | 
|  | return REG_ECTYPE; | 
|  |  | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | static bin_tree_t * | 
|  | build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans, | 
|  | const char *class_name, | 
|  | const char *extra, int non_match, | 
|  | reg_errcode_t *err) | 
|  | { | 
|  | re_bitset_ptr_t sbcset; | 
|  | #ifdef RE_ENABLE_I18N | 
|  | re_charset_t *mbcset; | 
|  | int alloc = 0; | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | reg_errcode_t ret; | 
|  | re_token_t br_token; | 
|  | bin_tree_t *tree; | 
|  |  | 
|  | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (BE (sbcset == NULL || mbcset == NULL, 0)) | 
|  | #else /* not RE_ENABLE_I18N */ | 
|  | if (BE (sbcset == NULL, 0)) | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (non_match) | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | mbcset->non_match = 1; | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  | } | 
|  |  | 
|  | /* We don't care the syntax in this case.  */ | 
|  | ret = build_charclass (trans, sbcset, | 
|  | #ifdef RE_ENABLE_I18N | 
|  | mbcset, &alloc, | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | class_name, 0); | 
|  |  | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | { | 
|  | re_free (sbcset); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | free_charset (mbcset); | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | *err = ret; | 
|  | return NULL; | 
|  | } | 
|  | /* \w match '_' also.  */ | 
|  | for (; *extra; extra++) | 
|  | bitset_set (sbcset, *extra); | 
|  |  | 
|  | /* If it is non-matching list.  */ | 
|  | if (non_match) | 
|  | bitset_not (sbcset); | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* Ensure only single byte characters are set.  */ | 
|  | if (dfa->mb_cur_max > 1) | 
|  | bitset_mask (sbcset, dfa->sb_char); | 
|  | #endif | 
|  |  | 
|  | /* Build a tree for simple bracket.  */ | 
|  | br_token.type = SIMPLE_BRACKET; | 
|  | br_token.opr.sbcset = sbcset; | 
|  | tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
|  | if (BE (tree == NULL, 0)) | 
|  | goto build_word_op_espace; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (dfa->mb_cur_max > 1) | 
|  | { | 
|  | bin_tree_t *mbc_tree; | 
|  | /* Build a tree for complex bracket.  */ | 
|  | br_token.type = COMPLEX_BRACKET; | 
|  | br_token.opr.mbcset = mbcset; | 
|  | dfa->has_mb_node = 1; | 
|  | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | 
|  | if (BE (mbc_tree == NULL, 0)) | 
|  | goto build_word_op_espace; | 
|  | /* Then join them by ALT node.  */ | 
|  | tree = create_tree (dfa, tree, mbc_tree, OP_ALT); | 
|  | if (BE (mbc_tree != NULL, 1)) | 
|  | return tree; | 
|  | } | 
|  | else | 
|  | { | 
|  | free_charset (mbcset); | 
|  | return tree; | 
|  | } | 
|  | #else /* not RE_ENABLE_I18N */ | 
|  | return tree; | 
|  | #endif /* not RE_ENABLE_I18N */ | 
|  |  | 
|  | build_word_op_espace: | 
|  | re_free (sbcset); | 
|  | #ifdef RE_ENABLE_I18N | 
|  | free_charset (mbcset); | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* This is intended for the expressions like "a{1,3}". | 
|  | Fetch a number from `input', and return the number. | 
|  | Return -1, if the number field is empty like "{,1}". | 
|  | Return -2, if an error has occurred.  */ | 
|  |  | 
|  | static int | 
|  | fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) | 
|  | { | 
|  | int num = -1; | 
|  | unsigned char c; | 
|  | while (1) | 
|  | { | 
|  | fetch_token (token, input, syntax); | 
|  | c = token->opr.c; | 
|  | if (BE (token->type == END_OF_RE, 0)) | 
|  | return -2; | 
|  | if (token->type == OP_CLOSE_DUP_NUM || c == ',') | 
|  | break; | 
|  | num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2) | 
|  | ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0')); | 
|  | num = (num > RE_DUP_MAX) ? -2 : num; | 
|  | } | 
|  | return num; | 
|  | } | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static void | 
|  | free_charset (re_charset_t *cset) | 
|  | { | 
|  | re_free (cset->mbchars); | 
|  | # ifdef _LIBC | 
|  | re_free (cset->coll_syms); | 
|  | re_free (cset->equiv_classes); | 
|  | re_free (cset->range_starts); | 
|  | re_free (cset->range_ends); | 
|  | # endif | 
|  | re_free (cset->char_classes); | 
|  | re_free (cset); | 
|  | } | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  | /* Functions for binary tree operation.  */ | 
|  |  | 
|  | /* Create a tree node.  */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | 
|  | re_token_type_t type) | 
|  | { | 
|  | re_token_t t; | 
|  | t.type = type; | 
|  | return create_token_tree (dfa, left, right, &t); | 
|  | } | 
|  |  | 
|  | static bin_tree_t * | 
|  | create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | 
|  | const re_token_t *token) | 
|  | { | 
|  | bin_tree_t *tree; | 
|  | if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) | 
|  | { | 
|  | bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); | 
|  |  | 
|  | if (storage == NULL) | 
|  | return NULL; | 
|  | storage->next = dfa->str_tree_storage; | 
|  | dfa->str_tree_storage = storage; | 
|  | dfa->str_tree_storage_idx = 0; | 
|  | } | 
|  | tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; | 
|  |  | 
|  | tree->parent = NULL; | 
|  | tree->left = left; | 
|  | tree->right = right; | 
|  | tree->token = *token; | 
|  | tree->token.duplicated = 0; | 
|  | tree->token.opt_subexp = 0; | 
|  | tree->first = NULL; | 
|  | tree->next = NULL; | 
|  | tree->node_idx = -1; | 
|  |  | 
|  | if (left != NULL) | 
|  | left->parent = tree; | 
|  | if (right != NULL) | 
|  | right->parent = tree; | 
|  | return tree; | 
|  | } | 
|  |  | 
|  | /* Mark the tree SRC as an optional subexpression. | 
|  | To be called from preorder or postorder.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | mark_opt_subexp (void *extra, bin_tree_t *node) | 
|  | { | 
|  | int idx = (int) (intptr_t) extra; | 
|  | if (node->token.type == SUBEXP && node->token.opr.idx == idx) | 
|  | node->token.opt_subexp = 1; | 
|  |  | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Free the allocated memory inside NODE. */ | 
|  |  | 
|  | static void | 
|  | free_token (re_token_t *node) | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (node->type == COMPLEX_BRACKET && node->duplicated == 0) | 
|  | free_charset (node->opr.mbcset); | 
|  | else | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | if (node->type == SIMPLE_BRACKET && node->duplicated == 0) | 
|  | re_free (node->opr.sbcset); | 
|  | } | 
|  |  | 
|  | /* Worker function for tree walking.  Free the allocated memory inside NODE | 
|  | and its children. */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | free_tree (void *extra, bin_tree_t *node) | 
|  | { | 
|  | free_token (&node->token); | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Duplicate the node SRC, and return new node.  This is a preorder | 
|  | visit similar to the one implemented by the generic visitor, but | 
|  | we need more infrastructure to maintain two parallel trees --- so, | 
|  | it's easier to duplicate.  */ | 
|  |  | 
|  | static bin_tree_t * | 
|  | duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) | 
|  | { | 
|  | const bin_tree_t *node; | 
|  | bin_tree_t *dup_root; | 
|  | bin_tree_t **p_new = &dup_root, *dup_node = root->parent; | 
|  |  | 
|  | for (node = root; ; ) | 
|  | { | 
|  | /* Create a new tree and link it back to the current parent.  */ | 
|  | *p_new = create_token_tree (dfa, NULL, NULL, &node->token); | 
|  | if (*p_new == NULL) | 
|  | return NULL; | 
|  | (*p_new)->parent = dup_node; | 
|  | (*p_new)->token.duplicated = 1; | 
|  | dup_node = *p_new; | 
|  |  | 
|  | /* Go to the left node, or up and to the right.  */ | 
|  | if (node->left) | 
|  | { | 
|  | node = node->left; | 
|  | p_new = &dup_node->left; | 
|  | } | 
|  | else | 
|  | { | 
|  | const bin_tree_t *prev = NULL; | 
|  | while (node->right == prev || node->right == NULL) | 
|  | { | 
|  | prev = node; | 
|  | node = node->parent; | 
|  | dup_node = dup_node->parent; | 
|  | if (!node) | 
|  | return dup_root; | 
|  | } | 
|  | node = node->right; | 
|  | p_new = &dup_node->right; | 
|  | } | 
|  | } | 
|  | } |