|  | /* | 
|  | * Generic implementation of hash-based key value mappings. | 
|  | */ | 
|  | #include "cache.h" | 
|  | #include "hashmap.h" | 
|  |  | 
|  | #define FNV32_BASE ((unsigned int) 0x811c9dc5) | 
|  | #define FNV32_PRIME ((unsigned int) 0x01000193) | 
|  |  | 
|  | unsigned int strhash(const char *str) | 
|  | { | 
|  | unsigned int c, hash = FNV32_BASE; | 
|  | while ((c = (unsigned char) *str++)) | 
|  | hash = (hash * FNV32_PRIME) ^ c; | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | unsigned int strihash(const char *str) | 
|  | { | 
|  | unsigned int c, hash = FNV32_BASE; | 
|  | while ((c = (unsigned char) *str++)) { | 
|  | if (c >= 'a' && c <= 'z') | 
|  | c -= 'a' - 'A'; | 
|  | hash = (hash * FNV32_PRIME) ^ c; | 
|  | } | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | unsigned int memhash(const void *buf, size_t len) | 
|  | { | 
|  | unsigned int hash = FNV32_BASE; | 
|  | unsigned char *ucbuf = (unsigned char *) buf; | 
|  | while (len--) { | 
|  | unsigned int c = *ucbuf++; | 
|  | hash = (hash * FNV32_PRIME) ^ c; | 
|  | } | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | unsigned int memihash(const void *buf, size_t len) | 
|  | { | 
|  | unsigned int hash = FNV32_BASE; | 
|  | unsigned char *ucbuf = (unsigned char *) buf; | 
|  | while (len--) { | 
|  | unsigned int c = *ucbuf++; | 
|  | if (c >= 'a' && c <= 'z') | 
|  | c -= 'a' - 'A'; | 
|  | hash = (hash * FNV32_PRIME) ^ c; | 
|  | } | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Incoporate another chunk of data into a memihash | 
|  | * computation. | 
|  | */ | 
|  | unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len) | 
|  | { | 
|  | unsigned int hash = hash_seed; | 
|  | unsigned char *ucbuf = (unsigned char *) buf; | 
|  | while (len--) { | 
|  | unsigned int c = *ucbuf++; | 
|  | if (c >= 'a' && c <= 'z') | 
|  | c -= 'a' - 'A'; | 
|  | hash = (hash * FNV32_PRIME) ^ c; | 
|  | } | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | #define HASHMAP_INITIAL_SIZE 64 | 
|  | /* grow / shrink by 2^2 */ | 
|  | #define HASHMAP_RESIZE_BITS 2 | 
|  | /* load factor in percent */ | 
|  | #define HASHMAP_LOAD_FACTOR 80 | 
|  |  | 
|  | static void alloc_table(struct hashmap *map, unsigned int size) | 
|  | { | 
|  | map->tablesize = size; | 
|  | map->table = xcalloc(size, sizeof(struct hashmap_entry *)); | 
|  |  | 
|  | /* calculate resize thresholds for new size */ | 
|  | map->grow_at = (unsigned int) ((uint64_t) size * HASHMAP_LOAD_FACTOR / 100); | 
|  | if (size <= HASHMAP_INITIAL_SIZE) | 
|  | map->shrink_at = 0; | 
|  | else | 
|  | /* | 
|  | * The shrink-threshold must be slightly smaller than | 
|  | * (grow-threshold / resize-factor) to prevent erratic resizing, | 
|  | * thus we divide by (resize-factor + 1). | 
|  | */ | 
|  | map->shrink_at = map->grow_at / ((1 << HASHMAP_RESIZE_BITS) + 1); | 
|  | } | 
|  |  | 
|  | static inline int entry_equals(const struct hashmap *map, | 
|  | const struct hashmap_entry *e1, const struct hashmap_entry *e2, | 
|  | const void *keydata) | 
|  | { | 
|  | return (e1 == e2) || | 
|  | (e1->hash == e2->hash && | 
|  | !map->cmpfn(map->cmpfn_data, e1, e2, keydata)); | 
|  | } | 
|  |  | 
|  | static inline unsigned int bucket(const struct hashmap *map, | 
|  | const struct hashmap_entry *key) | 
|  | { | 
|  | return key->hash & (map->tablesize - 1); | 
|  | } | 
|  |  | 
|  | int hashmap_bucket(const struct hashmap *map, unsigned int hash) | 
|  | { | 
|  | return hash & (map->tablesize - 1); | 
|  | } | 
|  |  | 
|  | static void rehash(struct hashmap *map, unsigned int newsize) | 
|  | { | 
|  | unsigned int i, oldsize = map->tablesize; | 
|  | struct hashmap_entry **oldtable = map->table; | 
|  |  | 
|  | alloc_table(map, newsize); | 
|  | for (i = 0; i < oldsize; i++) { | 
|  | struct hashmap_entry *e = oldtable[i]; | 
|  | while (e) { | 
|  | struct hashmap_entry *next = e->next; | 
|  | unsigned int b = bucket(map, e); | 
|  | e->next = map->table[b]; | 
|  | map->table[b] = e; | 
|  | e = next; | 
|  | } | 
|  | } | 
|  | free(oldtable); | 
|  | } | 
|  |  | 
|  | static inline struct hashmap_entry **find_entry_ptr(const struct hashmap *map, | 
|  | const struct hashmap_entry *key, const void *keydata) | 
|  | { | 
|  | struct hashmap_entry **e = &map->table[bucket(map, key)]; | 
|  | while (*e && !entry_equals(map, *e, key, keydata)) | 
|  | e = &(*e)->next; | 
|  | return e; | 
|  | } | 
|  |  | 
|  | static int always_equal(const void *unused_cmp_data, | 
|  | const struct hashmap_entry *unused1, | 
|  | const struct hashmap_entry *unused2, | 
|  | const void *unused_keydata) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function, | 
|  | const void *cmpfn_data, size_t initial_size) | 
|  | { | 
|  | unsigned int size = HASHMAP_INITIAL_SIZE; | 
|  |  | 
|  | memset(map, 0, sizeof(*map)); | 
|  |  | 
|  | map->cmpfn = equals_function ? equals_function : always_equal; | 
|  | map->cmpfn_data = cmpfn_data; | 
|  |  | 
|  | /* calculate initial table size and allocate the table */ | 
|  | initial_size = (unsigned int) ((uint64_t) initial_size * 100 | 
|  | / HASHMAP_LOAD_FACTOR); | 
|  | while (initial_size > size) | 
|  | size <<= HASHMAP_RESIZE_BITS; | 
|  | alloc_table(map, size); | 
|  |  | 
|  | /* | 
|  | * Keep track of the number of items in the map and | 
|  | * allow the map to automatically grow as necessary. | 
|  | */ | 
|  | map->do_count_items = 1; | 
|  | } | 
|  |  | 
|  | void hashmap_free_(struct hashmap *map, ssize_t entry_offset) | 
|  | { | 
|  | if (!map || !map->table) | 
|  | return; | 
|  | if (entry_offset >= 0) { /* called by hashmap_free_entries */ | 
|  | struct hashmap_iter iter; | 
|  | struct hashmap_entry *e; | 
|  |  | 
|  | hashmap_iter_init(map, &iter); | 
|  | while ((e = hashmap_iter_next(&iter))) | 
|  | /* | 
|  | * like container_of, but using caller-calculated | 
|  | * offset (caller being hashmap_free_entries) | 
|  | */ | 
|  | free((char *)e - entry_offset); | 
|  | } | 
|  | free(map->table); | 
|  | memset(map, 0, sizeof(*map)); | 
|  | } | 
|  |  | 
|  | struct hashmap_entry *hashmap_get(const struct hashmap *map, | 
|  | const struct hashmap_entry *key, | 
|  | const void *keydata) | 
|  | { | 
|  | return *find_entry_ptr(map, key, keydata); | 
|  | } | 
|  |  | 
|  | struct hashmap_entry *hashmap_get_next(const struct hashmap *map, | 
|  | const struct hashmap_entry *entry) | 
|  | { | 
|  | struct hashmap_entry *e = entry->next; | 
|  | for (; e; e = e->next) | 
|  | if (entry_equals(map, entry, e, NULL)) | 
|  | return e; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void hashmap_add(struct hashmap *map, struct hashmap_entry *entry) | 
|  | { | 
|  | unsigned int b = bucket(map, entry); | 
|  |  | 
|  | /* add entry */ | 
|  | entry->next = map->table[b]; | 
|  | map->table[b] = entry; | 
|  |  | 
|  | /* fix size and rehash if appropriate */ | 
|  | if (map->do_count_items) { | 
|  | map->private_size++; | 
|  | if (map->private_size > map->grow_at) | 
|  | rehash(map, map->tablesize << HASHMAP_RESIZE_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct hashmap_entry *hashmap_remove(struct hashmap *map, | 
|  | const struct hashmap_entry *key, | 
|  | const void *keydata) | 
|  | { | 
|  | struct hashmap_entry *old; | 
|  | struct hashmap_entry **e = find_entry_ptr(map, key, keydata); | 
|  | if (!*e) | 
|  | return NULL; | 
|  |  | 
|  | /* remove existing entry */ | 
|  | old = *e; | 
|  | *e = old->next; | 
|  | old->next = NULL; | 
|  |  | 
|  | /* fix size and rehash if appropriate */ | 
|  | if (map->do_count_items) { | 
|  | map->private_size--; | 
|  | if (map->private_size < map->shrink_at) | 
|  | rehash(map, map->tablesize >> HASHMAP_RESIZE_BITS); | 
|  | } | 
|  |  | 
|  | return old; | 
|  | } | 
|  |  | 
|  | struct hashmap_entry *hashmap_put(struct hashmap *map, | 
|  | struct hashmap_entry *entry) | 
|  | { | 
|  | struct hashmap_entry *old = hashmap_remove(map, entry, NULL); | 
|  | hashmap_add(map, entry); | 
|  | return old; | 
|  | } | 
|  |  | 
|  | void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter) | 
|  | { | 
|  | iter->map = map; | 
|  | iter->tablepos = 0; | 
|  | iter->next = NULL; | 
|  | } | 
|  |  | 
|  | struct hashmap_entry *hashmap_iter_next(struct hashmap_iter *iter) | 
|  | { | 
|  | struct hashmap_entry *current = iter->next; | 
|  | for (;;) { | 
|  | if (current) { | 
|  | iter->next = current->next; | 
|  | return current; | 
|  | } | 
|  |  | 
|  | if (iter->tablepos >= iter->map->tablesize) | 
|  | return NULL; | 
|  |  | 
|  | current = iter->map->table[iter->tablepos++]; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct pool_entry { | 
|  | struct hashmap_entry ent; | 
|  | size_t len; | 
|  | unsigned char data[FLEX_ARRAY]; | 
|  | }; | 
|  |  | 
|  | static int pool_entry_cmp(const void *unused_cmp_data, | 
|  | const struct hashmap_entry *eptr, | 
|  | const struct hashmap_entry *entry_or_key, | 
|  | const void *keydata) | 
|  | { | 
|  | const struct pool_entry *e1, *e2; | 
|  |  | 
|  | e1 = container_of(eptr, const struct pool_entry, ent); | 
|  | e2 = container_of(entry_or_key, const struct pool_entry, ent); | 
|  |  | 
|  | return e1->data != keydata && | 
|  | (e1->len != e2->len || memcmp(e1->data, keydata, e1->len)); | 
|  | } | 
|  |  | 
|  | const void *memintern(const void *data, size_t len) | 
|  | { | 
|  | static struct hashmap map; | 
|  | struct pool_entry key, *e; | 
|  |  | 
|  | /* initialize string pool hashmap */ | 
|  | if (!map.tablesize) | 
|  | hashmap_init(&map, pool_entry_cmp, NULL, 0); | 
|  |  | 
|  | /* lookup interned string in pool */ | 
|  | hashmap_entry_init(&key.ent, memhash(data, len)); | 
|  | key.len = len; | 
|  | e = hashmap_get_entry(&map, &key, ent, data); | 
|  | if (!e) { | 
|  | /* not found: create it */ | 
|  | FLEX_ALLOC_MEM(e, data, data, len); | 
|  | hashmap_entry_init(&e->ent, key.ent.hash); | 
|  | e->len = len; | 
|  | hashmap_add(&map, &e->ent); | 
|  | } | 
|  | return e->data; | 
|  | } |