|  | /* | 
|  | * Based on: Jonker, R., & Volgenant, A. (1987). <i>A shortest augmenting path | 
|  | * algorithm for dense and sparse linear assignment problems</i>. Computing, | 
|  | * 38(4), 325-340. | 
|  | */ | 
|  | #include "git-compat-util.h" | 
|  | #include "linear-assignment.h" | 
|  |  | 
|  | #define COST(column, row) cost[(column) + column_count * (row)] | 
|  |  | 
|  | /* | 
|  | * The parameter `cost` is the cost matrix: the cost to assign column j to row | 
|  | * i is `cost[j + column_count * i]. | 
|  | */ | 
|  | void compute_assignment(int column_count, int row_count, int *cost, | 
|  | int *column2row, int *row2column) | 
|  | { | 
|  | int *v, *d; | 
|  | int *free_row, free_count = 0, saved_free_count, *pred, *col; | 
|  | int i, j, phase; | 
|  |  | 
|  | if (column_count < 2) { | 
|  | memset(column2row, 0, sizeof(int) * column_count); | 
|  | memset(row2column, 0, sizeof(int) * row_count); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memset(column2row, -1, sizeof(int) * column_count); | 
|  | memset(row2column, -1, sizeof(int) * row_count); | 
|  | ALLOC_ARRAY(v, column_count); | 
|  |  | 
|  | /* column reduction */ | 
|  | for (j = column_count - 1; j >= 0; j--) { | 
|  | int i1 = 0; | 
|  |  | 
|  | for (i = 1; i < row_count; i++) | 
|  | if (COST(j, i1) > COST(j, i)) | 
|  | i1 = i; | 
|  | v[j] = COST(j, i1); | 
|  | if (row2column[i1] == -1) { | 
|  | /* row i1 unassigned */ | 
|  | row2column[i1] = j; | 
|  | column2row[j] = i1; | 
|  | } else { | 
|  | if (row2column[i1] >= 0) | 
|  | row2column[i1] = -2 - row2column[i1]; | 
|  | column2row[j] = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* reduction transfer */ | 
|  | ALLOC_ARRAY(free_row, row_count); | 
|  | for (i = 0; i < row_count; i++) { | 
|  | int j1 = row2column[i]; | 
|  | if (j1 == -1) | 
|  | free_row[free_count++] = i; | 
|  | else if (j1 < -1) | 
|  | row2column[i] = -2 - j1; | 
|  | else { | 
|  | int min = COST(!j1, i) - v[!j1]; | 
|  | for (j = 1; j < column_count; j++) | 
|  | if (j != j1 && min > COST(j, i) - v[j]) | 
|  | min = COST(j, i) - v[j]; | 
|  | v[j1] -= min; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (free_count == | 
|  | (column_count < row_count ? row_count - column_count : 0)) { | 
|  | free(v); | 
|  | free(free_row); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* augmenting row reduction */ | 
|  | for (phase = 0; phase < 2; phase++) { | 
|  | int k = 0; | 
|  |  | 
|  | saved_free_count = free_count; | 
|  | free_count = 0; | 
|  | while (k < saved_free_count) { | 
|  | int u1, u2; | 
|  | int j1 = 0, j2, i0; | 
|  |  | 
|  | i = free_row[k++]; | 
|  | u1 = COST(j1, i) - v[j1]; | 
|  | j2 = -1; | 
|  | u2 = INT_MAX; | 
|  | for (j = 1; j < column_count; j++) { | 
|  | int c = COST(j, i) - v[j]; | 
|  | if (u2 > c) { | 
|  | if (u1 < c) { | 
|  | u2 = c; | 
|  | j2 = j; | 
|  | } else { | 
|  | u2 = u1; | 
|  | u1 = c; | 
|  | j2 = j1; | 
|  | j1 = j; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (j2 < 0) { | 
|  | j2 = j1; | 
|  | u2 = u1; | 
|  | } | 
|  |  | 
|  | i0 = column2row[j1]; | 
|  | if (u1 < u2) | 
|  | v[j1] -= u2 - u1; | 
|  | else if (i0 >= 0) { | 
|  | j1 = j2; | 
|  | i0 = column2row[j1]; | 
|  | } | 
|  |  | 
|  | if (i0 >= 0) { | 
|  | if (u1 < u2) | 
|  | free_row[--k] = i0; | 
|  | else | 
|  | free_row[free_count++] = i0; | 
|  | } | 
|  | row2column[i] = j1; | 
|  | column2row[j1] = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* augmentation */ | 
|  | saved_free_count = free_count; | 
|  | ALLOC_ARRAY(d, column_count); | 
|  | ALLOC_ARRAY(pred, column_count); | 
|  | ALLOC_ARRAY(col, column_count); | 
|  | for (free_count = 0; free_count < saved_free_count; free_count++) { | 
|  | int i1 = free_row[free_count], low = 0, up = 0, last, k; | 
|  | int min, c, u1; | 
|  |  | 
|  | for (j = 0; j < column_count; j++) { | 
|  | d[j] = COST(j, i1) - v[j]; | 
|  | pred[j] = i1; | 
|  | col[j] = j; | 
|  | } | 
|  |  | 
|  | j = -1; | 
|  | do { | 
|  | last = low; | 
|  | min = d[col[up++]]; | 
|  | for (k = up; k < column_count; k++) { | 
|  | j = col[k]; | 
|  | c = d[j]; | 
|  | if (c <= min) { | 
|  | if (c < min) { | 
|  | up = low; | 
|  | min = c; | 
|  | } | 
|  | col[k] = col[up]; | 
|  | col[up++] = j; | 
|  | } | 
|  | } | 
|  | for (k = low; k < up; k++) | 
|  | if (column2row[col[k]] == -1) | 
|  | goto update; | 
|  |  | 
|  | /* scan a row */ | 
|  | do { | 
|  | int j1 = col[low++]; | 
|  |  | 
|  | i = column2row[j1]; | 
|  | u1 = COST(j1, i) - v[j1] - min; | 
|  | for (k = up; k < column_count; k++) { | 
|  | j = col[k]; | 
|  | c = COST(j, i) - v[j] - u1; | 
|  | if (c < d[j]) { | 
|  | d[j] = c; | 
|  | pred[j] = i; | 
|  | if (c == min) { | 
|  | if (column2row[j] == -1) | 
|  | goto update; | 
|  | col[k] = col[up]; | 
|  | col[up++] = j; | 
|  | } | 
|  | } | 
|  | } | 
|  | } while (low != up); | 
|  | } while (low == up); | 
|  |  | 
|  | update: | 
|  | /* updating of the column pieces */ | 
|  | for (k = 0; k < last; k++) { | 
|  | int j1 = col[k]; | 
|  | v[j1] += d[j1] - min; | 
|  | } | 
|  |  | 
|  | /* augmentation */ | 
|  | do { | 
|  | if (j < 0) | 
|  | BUG("negative j: %d", j); | 
|  | i = pred[j]; | 
|  | column2row[j] = i; | 
|  | SWAP(j, row2column[i]); | 
|  | } while (i1 != i); | 
|  | } | 
|  |  | 
|  | free(col); | 
|  | free(pred); | 
|  | free(d); | 
|  | free(v); | 
|  | free(free_row); | 
|  | } |