| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/include/asm/kvm_host.h: |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #ifndef __ARM64_KVM_HOST_H__ |
| #define __ARM64_KVM_HOST_H__ |
| |
| #include <linux/bitmap.h> |
| #include <linux/types.h> |
| #include <linux/jump_label.h> |
| #include <linux/kvm_types.h> |
| #include <linux/percpu.h> |
| #include <asm/arch_gicv3.h> |
| #include <asm/barrier.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cputype.h> |
| #include <asm/daifflags.h> |
| #include <asm/fpsimd.h> |
| #include <asm/kvm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_mmio.h> |
| #include <asm/thread_info.h> |
| |
| #define __KVM_HAVE_ARCH_INTC_INITIALIZED |
| |
| #define KVM_USER_MEM_SLOTS 512 |
| #define KVM_HALT_POLL_NS_DEFAULT 500000 |
| |
| #include <kvm/arm_vgic.h> |
| #include <kvm/arm_arch_timer.h> |
| #include <kvm/arm_pmu.h> |
| |
| #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS |
| |
| #define KVM_VCPU_MAX_FEATURES 7 |
| |
| #define KVM_REQ_SLEEP \ |
| KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) |
| #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) |
| #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) |
| |
| DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); |
| |
| extern unsigned int kvm_sve_max_vl; |
| int kvm_arm_init_sve(void); |
| |
| int __attribute_const__ kvm_target_cpu(void); |
| int kvm_reset_vcpu(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); |
| int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext); |
| void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start); |
| |
| struct kvm_vmid { |
| /* The VMID generation used for the virt. memory system */ |
| u64 vmid_gen; |
| u32 vmid; |
| }; |
| |
| struct kvm_arch { |
| struct kvm_vmid vmid; |
| |
| /* stage2 entry level table */ |
| pgd_t *pgd; |
| phys_addr_t pgd_phys; |
| |
| /* VTCR_EL2 value for this VM */ |
| u64 vtcr; |
| |
| /* The last vcpu id that ran on each physical CPU */ |
| int __percpu *last_vcpu_ran; |
| |
| /* The maximum number of vCPUs depends on the used GIC model */ |
| int max_vcpus; |
| |
| /* Interrupt controller */ |
| struct vgic_dist vgic; |
| |
| /* Mandated version of PSCI */ |
| u32 psci_version; |
| |
| /* |
| * If we encounter a data abort without valid instruction syndrome |
| * information, report this to user space. User space can (and |
| * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is |
| * supported. |
| */ |
| bool return_nisv_io_abort_to_user; |
| }; |
| |
| #define KVM_NR_MEM_OBJS 40 |
| |
| /* |
| * We don't want allocation failures within the mmu code, so we preallocate |
| * enough memory for a single page fault in a cache. |
| */ |
| struct kvm_mmu_memory_cache { |
| int nobjs; |
| void *objects[KVM_NR_MEM_OBJS]; |
| }; |
| |
| struct kvm_vcpu_fault_info { |
| u32 esr_el2; /* Hyp Syndrom Register */ |
| u64 far_el2; /* Hyp Fault Address Register */ |
| u64 hpfar_el2; /* Hyp IPA Fault Address Register */ |
| u64 disr_el1; /* Deferred [SError] Status Register */ |
| }; |
| |
| /* |
| * 0 is reserved as an invalid value. |
| * Order should be kept in sync with the save/restore code. |
| */ |
| enum vcpu_sysreg { |
| __INVALID_SYSREG__, |
| MPIDR_EL1, /* MultiProcessor Affinity Register */ |
| CSSELR_EL1, /* Cache Size Selection Register */ |
| SCTLR_EL1, /* System Control Register */ |
| ACTLR_EL1, /* Auxiliary Control Register */ |
| CPACR_EL1, /* Coprocessor Access Control */ |
| ZCR_EL1, /* SVE Control */ |
| TTBR0_EL1, /* Translation Table Base Register 0 */ |
| TTBR1_EL1, /* Translation Table Base Register 1 */ |
| TCR_EL1, /* Translation Control Register */ |
| ESR_EL1, /* Exception Syndrome Register */ |
| AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ |
| AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ |
| FAR_EL1, /* Fault Address Register */ |
| MAIR_EL1, /* Memory Attribute Indirection Register */ |
| VBAR_EL1, /* Vector Base Address Register */ |
| CONTEXTIDR_EL1, /* Context ID Register */ |
| TPIDR_EL0, /* Thread ID, User R/W */ |
| TPIDRRO_EL0, /* Thread ID, User R/O */ |
| TPIDR_EL1, /* Thread ID, Privileged */ |
| AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ |
| CNTKCTL_EL1, /* Timer Control Register (EL1) */ |
| PAR_EL1, /* Physical Address Register */ |
| MDSCR_EL1, /* Monitor Debug System Control Register */ |
| MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ |
| DISR_EL1, /* Deferred Interrupt Status Register */ |
| |
| /* Performance Monitors Registers */ |
| PMCR_EL0, /* Control Register */ |
| PMSELR_EL0, /* Event Counter Selection Register */ |
| PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ |
| PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, |
| PMCCNTR_EL0, /* Cycle Counter Register */ |
| PMEVTYPER0_EL0, /* Event Type Register (0-30) */ |
| PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, |
| PMCCFILTR_EL0, /* Cycle Count Filter Register */ |
| PMCNTENSET_EL0, /* Count Enable Set Register */ |
| PMINTENSET_EL1, /* Interrupt Enable Set Register */ |
| PMOVSSET_EL0, /* Overflow Flag Status Set Register */ |
| PMSWINC_EL0, /* Software Increment Register */ |
| PMUSERENR_EL0, /* User Enable Register */ |
| |
| /* Pointer Authentication Registers in a strict increasing order. */ |
| APIAKEYLO_EL1, |
| APIAKEYHI_EL1, |
| APIBKEYLO_EL1, |
| APIBKEYHI_EL1, |
| APDAKEYLO_EL1, |
| APDAKEYHI_EL1, |
| APDBKEYLO_EL1, |
| APDBKEYHI_EL1, |
| APGAKEYLO_EL1, |
| APGAKEYHI_EL1, |
| |
| /* 32bit specific registers. Keep them at the end of the range */ |
| DACR32_EL2, /* Domain Access Control Register */ |
| IFSR32_EL2, /* Instruction Fault Status Register */ |
| FPEXC32_EL2, /* Floating-Point Exception Control Register */ |
| DBGVCR32_EL2, /* Debug Vector Catch Register */ |
| |
| NR_SYS_REGS /* Nothing after this line! */ |
| }; |
| |
| /* 32bit mapping */ |
| #define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */ |
| #define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */ |
| #define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */ |
| #define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */ |
| #define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */ |
| #define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */ |
| #define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */ |
| #define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */ |
| #define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */ |
| #define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */ |
| #define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */ |
| #define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */ |
| #define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */ |
| #define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */ |
| #define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */ |
| #define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */ |
| #define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */ |
| #define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */ |
| #define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */ |
| #define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */ |
| #define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */ |
| #define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */ |
| #define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */ |
| #define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */ |
| #define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */ |
| #define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */ |
| #define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */ |
| #define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */ |
| #define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */ |
| |
| #define cp14_DBGDSCRext (MDSCR_EL1 * 2) |
| #define cp14_DBGBCR0 (DBGBCR0_EL1 * 2) |
| #define cp14_DBGBVR0 (DBGBVR0_EL1 * 2) |
| #define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1) |
| #define cp14_DBGWCR0 (DBGWCR0_EL1 * 2) |
| #define cp14_DBGWVR0 (DBGWVR0_EL1 * 2) |
| #define cp14_DBGDCCINT (MDCCINT_EL1 * 2) |
| |
| #define NR_COPRO_REGS (NR_SYS_REGS * 2) |
| |
| struct kvm_cpu_context { |
| struct kvm_regs gp_regs; |
| union { |
| u64 sys_regs[NR_SYS_REGS]; |
| u32 copro[NR_COPRO_REGS]; |
| }; |
| |
| struct kvm_vcpu *__hyp_running_vcpu; |
| }; |
| |
| struct kvm_pmu_events { |
| u32 events_host; |
| u32 events_guest; |
| }; |
| |
| struct kvm_host_data { |
| struct kvm_cpu_context host_ctxt; |
| struct kvm_pmu_events pmu_events; |
| }; |
| |
| typedef struct kvm_host_data kvm_host_data_t; |
| |
| struct vcpu_reset_state { |
| unsigned long pc; |
| unsigned long r0; |
| bool be; |
| bool reset; |
| }; |
| |
| struct kvm_vcpu_arch { |
| struct kvm_cpu_context ctxt; |
| void *sve_state; |
| unsigned int sve_max_vl; |
| |
| /* HYP configuration */ |
| u64 hcr_el2; |
| u32 mdcr_el2; |
| |
| /* Exception Information */ |
| struct kvm_vcpu_fault_info fault; |
| |
| /* State of various workarounds, see kvm_asm.h for bit assignment */ |
| u64 workaround_flags; |
| |
| /* Miscellaneous vcpu state flags */ |
| u64 flags; |
| |
| /* |
| * We maintain more than a single set of debug registers to support |
| * debugging the guest from the host and to maintain separate host and |
| * guest state during world switches. vcpu_debug_state are the debug |
| * registers of the vcpu as the guest sees them. host_debug_state are |
| * the host registers which are saved and restored during |
| * world switches. external_debug_state contains the debug |
| * values we want to debug the guest. This is set via the |
| * KVM_SET_GUEST_DEBUG ioctl. |
| * |
| * debug_ptr points to the set of debug registers that should be loaded |
| * onto the hardware when running the guest. |
| */ |
| struct kvm_guest_debug_arch *debug_ptr; |
| struct kvm_guest_debug_arch vcpu_debug_state; |
| struct kvm_guest_debug_arch external_debug_state; |
| |
| /* Pointer to host CPU context */ |
| struct kvm_cpu_context *host_cpu_context; |
| |
| struct thread_info *host_thread_info; /* hyp VA */ |
| struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ |
| |
| struct { |
| /* {Break,watch}point registers */ |
| struct kvm_guest_debug_arch regs; |
| /* Statistical profiling extension */ |
| u64 pmscr_el1; |
| } host_debug_state; |
| |
| /* VGIC state */ |
| struct vgic_cpu vgic_cpu; |
| struct arch_timer_cpu timer_cpu; |
| struct kvm_pmu pmu; |
| |
| /* |
| * Anything that is not used directly from assembly code goes |
| * here. |
| */ |
| |
| /* |
| * Guest registers we preserve during guest debugging. |
| * |
| * These shadow registers are updated by the kvm_handle_sys_reg |
| * trap handler if the guest accesses or updates them while we |
| * are using guest debug. |
| */ |
| struct { |
| u32 mdscr_el1; |
| } guest_debug_preserved; |
| |
| /* vcpu power-off state */ |
| bool power_off; |
| |
| /* Don't run the guest (internal implementation need) */ |
| bool pause; |
| |
| /* IO related fields */ |
| struct kvm_decode mmio_decode; |
| |
| /* Cache some mmu pages needed inside spinlock regions */ |
| struct kvm_mmu_memory_cache mmu_page_cache; |
| |
| /* Target CPU and feature flags */ |
| int target; |
| DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); |
| |
| /* Detect first run of a vcpu */ |
| bool has_run_once; |
| |
| /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ |
| u64 vsesr_el2; |
| |
| /* Additional reset state */ |
| struct vcpu_reset_state reset_state; |
| |
| /* True when deferrable sysregs are loaded on the physical CPU, |
| * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */ |
| bool sysregs_loaded_on_cpu; |
| |
| /* Guest PV state */ |
| struct { |
| u64 steal; |
| u64 last_steal; |
| gpa_t base; |
| } steal; |
| }; |
| |
| /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ |
| #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \ |
| sve_ffr_offset((vcpu)->arch.sve_max_vl))) |
| |
| #define vcpu_sve_state_size(vcpu) ({ \ |
| size_t __size_ret; \ |
| unsigned int __vcpu_vq; \ |
| \ |
| if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ |
| __size_ret = 0; \ |
| } else { \ |
| __vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl); \ |
| __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ |
| } \ |
| \ |
| __size_ret; \ |
| }) |
| |
| /* vcpu_arch flags field values: */ |
| #define KVM_ARM64_DEBUG_DIRTY (1 << 0) |
| #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ |
| #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ |
| #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */ |
| #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ |
| #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */ |
| #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */ |
| #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */ |
| |
| #define vcpu_has_sve(vcpu) (system_supports_sve() && \ |
| ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE)) |
| |
| #define vcpu_has_ptrauth(vcpu) ((system_supports_address_auth() || \ |
| system_supports_generic_auth()) && \ |
| ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)) |
| |
| #define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs) |
| |
| /* |
| * Only use __vcpu_sys_reg if you know you want the memory backed version of a |
| * register, and not the one most recently accessed by a running VCPU. For |
| * example, for userspace access or for system registers that are never context |
| * switched, but only emulated. |
| */ |
| #define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)]) |
| |
| u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); |
| void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); |
| |
| /* |
| * CP14 and CP15 live in the same array, as they are backed by the |
| * same system registers. |
| */ |
| #define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r)]) |
| #define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r)]) |
| |
| struct kvm_vm_stat { |
| ulong remote_tlb_flush; |
| }; |
| |
| struct kvm_vcpu_stat { |
| u64 halt_successful_poll; |
| u64 halt_attempted_poll; |
| u64 halt_poll_invalid; |
| u64 halt_wakeup; |
| u64 hvc_exit_stat; |
| u64 wfe_exit_stat; |
| u64 wfi_exit_stat; |
| u64 mmio_exit_user; |
| u64 mmio_exit_kernel; |
| u64 exits; |
| }; |
| |
| int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); |
| unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); |
| int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); |
| int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); |
| int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); |
| int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events); |
| |
| int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events); |
| |
| #define KVM_ARCH_WANT_MMU_NOTIFIER |
| int kvm_unmap_hva_range(struct kvm *kvm, |
| unsigned long start, unsigned long end); |
| int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); |
| int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); |
| int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); |
| |
| struct kvm_vcpu *kvm_arm_get_running_vcpu(void); |
| struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); |
| void kvm_arm_halt_guest(struct kvm *kvm); |
| void kvm_arm_resume_guest(struct kvm *kvm); |
| |
| u64 __kvm_call_hyp(void *hypfn, ...); |
| |
| /* |
| * The couple of isb() below are there to guarantee the same behaviour |
| * on VHE as on !VHE, where the eret to EL1 acts as a context |
| * synchronization event. |
| */ |
| #define kvm_call_hyp(f, ...) \ |
| do { \ |
| if (has_vhe()) { \ |
| f(__VA_ARGS__); \ |
| isb(); \ |
| } else { \ |
| __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \ |
| } \ |
| } while(0) |
| |
| #define kvm_call_hyp_ret(f, ...) \ |
| ({ \ |
| typeof(f(__VA_ARGS__)) ret; \ |
| \ |
| if (has_vhe()) { \ |
| ret = f(__VA_ARGS__); \ |
| isb(); \ |
| } else { \ |
| ret = __kvm_call_hyp(kvm_ksym_ref(f), \ |
| ##__VA_ARGS__); \ |
| } \ |
| \ |
| ret; \ |
| }) |
| |
| void force_vm_exit(const cpumask_t *mask); |
| void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); |
| |
| int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, |
| int exception_index); |
| void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run, |
| int exception_index); |
| |
| int kvm_perf_init(void); |
| int kvm_perf_teardown(void); |
| |
| long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); |
| gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); |
| void kvm_update_stolen_time(struct kvm_vcpu *vcpu); |
| |
| int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| |
| static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) |
| { |
| vcpu_arch->steal.base = GPA_INVALID; |
| } |
| |
| static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) |
| { |
| return (vcpu_arch->steal.base != GPA_INVALID); |
| } |
| |
| void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); |
| |
| struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); |
| |
| DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data); |
| |
| static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) |
| { |
| /* The host's MPIDR is immutable, so let's set it up at boot time */ |
| cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr(); |
| } |
| |
| void __kvm_enable_ssbs(void); |
| |
| static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr, |
| unsigned long hyp_stack_ptr, |
| unsigned long vector_ptr) |
| { |
| /* |
| * Calculate the raw per-cpu offset without a translation from the |
| * kernel's mapping to the linear mapping, and store it in tpidr_el2 |
| * so that we can use adr_l to access per-cpu variables in EL2. |
| */ |
| u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_data) - |
| (u64)kvm_ksym_ref(kvm_host_data)); |
| |
| /* |
| * Call initialization code, and switch to the full blown HYP code. |
| * If the cpucaps haven't been finalized yet, something has gone very |
| * wrong, and hyp will crash and burn when it uses any |
| * cpus_have_const_cap() wrapper. |
| */ |
| BUG_ON(!static_branch_likely(&arm64_const_caps_ready)); |
| __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2); |
| |
| /* |
| * Disabling SSBD on a non-VHE system requires us to enable SSBS |
| * at EL2. |
| */ |
| if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) && |
| arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) { |
| kvm_call_hyp(__kvm_enable_ssbs); |
| } |
| } |
| |
| static inline bool kvm_arch_requires_vhe(void) |
| { |
| /* |
| * The Arm architecture specifies that implementation of SVE |
| * requires VHE also to be implemented. The KVM code for arm64 |
| * relies on this when SVE is present: |
| */ |
| if (system_supports_sve()) |
| return true; |
| |
| /* Some implementations have defects that confine them to VHE */ |
| if (cpus_have_cap(ARM64_WORKAROUND_1165522)) |
| return true; |
| |
| return false; |
| } |
| |
| void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); |
| |
| static inline void kvm_arch_hardware_unsetup(void) {} |
| static inline void kvm_arch_sync_events(struct kvm *kvm) {} |
| static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} |
| static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} |
| |
| void kvm_arm_init_debug(void); |
| void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); |
| void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); |
| void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); |
| int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| |
| static inline void __cpu_init_stage2(void) {} |
| |
| /* Guest/host FPSIMD coordination helpers */ |
| int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); |
| |
| static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) |
| { |
| return (!has_vhe() && attr->exclude_host); |
| } |
| |
| #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */ |
| static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) |
| { |
| return kvm_arch_vcpu_run_map_fp(vcpu); |
| } |
| |
| void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); |
| void kvm_clr_pmu_events(u32 clr); |
| |
| void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu); |
| void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); |
| #else |
| static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} |
| static inline void kvm_clr_pmu_events(u32 clr) {} |
| #endif |
| |
| static inline void kvm_arm_vhe_guest_enter(void) |
| { |
| local_daif_mask(); |
| |
| /* |
| * Having IRQs masked via PMR when entering the guest means the GIC |
| * will not signal the CPU of interrupts of lower priority, and the |
| * only way to get out will be via guest exceptions. |
| * Naturally, we want to avoid this. |
| * |
| * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a |
| * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU. |
| */ |
| pmr_sync(); |
| } |
| |
| static inline void kvm_arm_vhe_guest_exit(void) |
| { |
| /* |
| * local_daif_restore() takes care to properly restore PSTATE.DAIF |
| * and the GIC PMR if the host is using IRQ priorities. |
| */ |
| local_daif_restore(DAIF_PROCCTX_NOIRQ); |
| |
| /* |
| * When we exit from the guest we change a number of CPU configuration |
| * parameters, such as traps. Make sure these changes take effect |
| * before running the host or additional guests. |
| */ |
| isb(); |
| } |
| |
| #define KVM_BP_HARDEN_UNKNOWN -1 |
| #define KVM_BP_HARDEN_WA_NEEDED 0 |
| #define KVM_BP_HARDEN_NOT_REQUIRED 1 |
| |
| static inline int kvm_arm_harden_branch_predictor(void) |
| { |
| switch (get_spectre_v2_workaround_state()) { |
| case ARM64_BP_HARDEN_WA_NEEDED: |
| return KVM_BP_HARDEN_WA_NEEDED; |
| case ARM64_BP_HARDEN_NOT_REQUIRED: |
| return KVM_BP_HARDEN_NOT_REQUIRED; |
| case ARM64_BP_HARDEN_UNKNOWN: |
| default: |
| return KVM_BP_HARDEN_UNKNOWN; |
| } |
| } |
| |
| #define KVM_SSBD_UNKNOWN -1 |
| #define KVM_SSBD_FORCE_DISABLE 0 |
| #define KVM_SSBD_KERNEL 1 |
| #define KVM_SSBD_FORCE_ENABLE 2 |
| #define KVM_SSBD_MITIGATED 3 |
| |
| static inline int kvm_arm_have_ssbd(void) |
| { |
| switch (arm64_get_ssbd_state()) { |
| case ARM64_SSBD_FORCE_DISABLE: |
| return KVM_SSBD_FORCE_DISABLE; |
| case ARM64_SSBD_KERNEL: |
| return KVM_SSBD_KERNEL; |
| case ARM64_SSBD_FORCE_ENABLE: |
| return KVM_SSBD_FORCE_ENABLE; |
| case ARM64_SSBD_MITIGATED: |
| return KVM_SSBD_MITIGATED; |
| case ARM64_SSBD_UNKNOWN: |
| default: |
| return KVM_SSBD_UNKNOWN; |
| } |
| } |
| |
| void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu); |
| void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu); |
| |
| void kvm_set_ipa_limit(void); |
| |
| #define __KVM_HAVE_ARCH_VM_ALLOC |
| struct kvm *kvm_arch_alloc_vm(void); |
| void kvm_arch_free_vm(struct kvm *kvm); |
| |
| int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type); |
| |
| int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); |
| bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); |
| |
| #define kvm_arm_vcpu_sve_finalized(vcpu) \ |
| ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED) |
| |
| #endif /* __ARM64_KVM_HOST_H__ */ |