blob: 7c8ff9792f7b4ad0190335c0bdb4e5ca688a2b5b [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014 Intel Corporation
*/
#include <linux/circ_buf.h>
#include "gem/i915_gem_context.h"
#include "gt/gen8_engine_cs.h"
#include "gt/intel_breadcrumbs.h"
#include "gt/intel_context.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_lrc.h"
#include "gt/intel_mocs.h"
#include "gt/intel_ring.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
#include "i915_trace.h"
/**
* DOC: GuC-based command submission
*
* IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC
* firmware is moving to an updated submission interface and we plan to
* turn submission back on when that lands. The below documentation (and related
* code) matches the old submission model and will be updated as part of the
* upgrade to the new flow.
*
* GuC stage descriptor:
* During initialization, the driver allocates a static pool of 1024 such
* descriptors, and shares them with the GuC. Currently, we only use one
* descriptor. This stage descriptor lets the GuC know about the workqueue and
* process descriptor. Theoretically, it also lets the GuC know about our HW
* contexts (context ID, etc...), but we actually employ a kind of submission
* where the GuC uses the LRCA sent via the work item instead. This is called
* a "proxy" submission.
*
* The Scratch registers:
* There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
* a value to the action register (SOFT_SCRATCH_0) along with any data. It then
* triggers an interrupt on the GuC via another register write (0xC4C8).
* Firmware writes a success/fail code back to the action register after
* processes the request. The kernel driver polls waiting for this update and
* then proceeds.
*
* Work Items:
* There are several types of work items that the host may place into a
* workqueue, each with its own requirements and limitations. Currently only
* WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
* represents in-order queue. The kernel driver packs ring tail pointer and an
* ELSP context descriptor dword into Work Item.
* See guc_add_request()
*
*/
#define GUC_REQUEST_SIZE 64 /* bytes */
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static struct guc_stage_desc *__get_stage_desc(struct intel_guc *guc, u32 id)
{
struct guc_stage_desc *base = guc->stage_desc_pool_vaddr;
return &base[id];
}
static int guc_stage_desc_pool_create(struct intel_guc *guc)
{
u32 size = PAGE_ALIGN(sizeof(struct guc_stage_desc) *
GUC_MAX_STAGE_DESCRIPTORS);
return intel_guc_allocate_and_map_vma(guc, size, &guc->stage_desc_pool,
&guc->stage_desc_pool_vaddr);
}
static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
{
i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
}
/*
* Initialise/clear the stage descriptor shared with the GuC firmware.
*
* This descriptor tells the GuC where (in GGTT space) to find the important
* data structures related to work submission (process descriptor, write queue,
* etc).
*/
static void guc_stage_desc_init(struct intel_guc *guc)
{
struct guc_stage_desc *desc;
/* we only use 1 stage desc, so hardcode it to 0 */
desc = __get_stage_desc(guc, 0);
memset(desc, 0, sizeof(*desc));
desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
GUC_STAGE_DESC_ATTR_KERNEL;
desc->stage_id = 0;
desc->priority = GUC_CLIENT_PRIORITY_KMD_NORMAL;
desc->wq_size = GUC_WQ_SIZE;
}
static void guc_stage_desc_fini(struct intel_guc *guc)
{
struct guc_stage_desc *desc;
desc = __get_stage_desc(guc, 0);
memset(desc, 0, sizeof(*desc));
}
static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
{
/* Leaving stub as this function will be used in future patches */
}
/*
* When we're doing submissions using regular execlists backend, writing to
* ELSP from CPU side is enough to make sure that writes to ringbuffer pages
* pinned in mappable aperture portion of GGTT are visible to command streamer.
* Writes done by GuC on our behalf are not guaranteeing such ordering,
* therefore, to ensure the flush, we're issuing a POSTING READ.
*/
static void flush_ggtt_writes(struct i915_vma *vma)
{
if (i915_vma_is_map_and_fenceable(vma))
intel_uncore_posting_read_fw(vma->vm->gt->uncore,
GUC_STATUS);
}
static void guc_submit(struct intel_engine_cs *engine,
struct i915_request **out,
struct i915_request **end)
{
struct intel_guc *guc = &engine->gt->uc.guc;
do {
struct i915_request *rq = *out++;
flush_ggtt_writes(rq->ring->vma);
guc_add_request(guc, rq);
} while (out != end);
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority;
}
static struct i915_request *schedule_in(struct i915_request *rq, int idx)
{
trace_i915_request_in(rq, idx);
/*
* Currently we are not tracking the rq->context being inflight
* (ce->inflight = rq->engine). It is only used by the execlists
* backend at the moment, a similar counting strategy would be
* required if we generalise the inflight tracking.
*/
__intel_gt_pm_get(rq->engine->gt);
return i915_request_get(rq);
}
static void schedule_out(struct i915_request *rq)
{
trace_i915_request_out(rq);
intel_gt_pm_put_async(rq->engine->gt);
i915_request_put(rq);
}
static void __guc_dequeue(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request **first = execlists->inflight;
struct i915_request ** const last_port = first + execlists->port_mask;
struct i915_request *last = first[0];
struct i915_request **port;
bool submit = false;
struct rb_node *rb;
lockdep_assert_held(&engine->active.lock);
if (last) {
if (*++first)
return;
last = NULL;
}
/*
* We write directly into the execlists->inflight queue and don't use
* the execlists->pending queue, as we don't have a distinct switch
* event.
*/
port = first;
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
struct i915_request *rq, *rn;
priolist_for_each_request_consume(rq, rn, p) {
if (last && rq->context != last->context) {
if (port == last_port)
goto done;
*port = schedule_in(last,
port - execlists->inflight);
port++;
}
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
submit = true;
last = rq;
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
done:
execlists->queue_priority_hint =
rb ? to_priolist(rb)->priority : INT_MIN;
if (submit) {
*port = schedule_in(last, port - execlists->inflight);
*++port = NULL;
guc_submit(engine, first, port);
}
execlists->active = execlists->inflight;
}
static void guc_submission_tasklet(struct tasklet_struct *t)
{
struct intel_engine_cs * const engine =
from_tasklet(engine, t, execlists.tasklet);
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request **port, *rq;
unsigned long flags;
spin_lock_irqsave(&engine->active.lock, flags);
for (port = execlists->inflight; (rq = *port); port++) {
if (!i915_request_completed(rq))
break;
schedule_out(rq);
}
if (port != execlists->inflight) {
int idx = port - execlists->inflight;
int rem = ARRAY_SIZE(execlists->inflight) - idx;
memmove(execlists->inflight, port, rem * sizeof(*port));
}
__guc_dequeue(engine);
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
if (iir & GT_RENDER_USER_INTERRUPT) {
intel_engine_signal_breadcrumbs(engine);
tasklet_hi_schedule(&engine->execlists.tasklet);
}
}
static void guc_reset_prepare(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
ENGINE_TRACE(engine, "\n");
/*
* Prevent request submission to the hardware until we have
* completed the reset in i915_gem_reset_finish(). If a request
* is completed by one engine, it may then queue a request
* to a second via its execlists->tasklet *just* as we are
* calling engine->init_hw() and also writing the ELSP.
* Turning off the execlists->tasklet until the reset is over
* prevents the race.
*/
__tasklet_disable_sync_once(&execlists->tasklet);
}
static void guc_reset_state(struct intel_context *ce,
struct intel_engine_cs *engine,
u32 head,
bool scrub)
{
GEM_BUG_ON(!intel_context_is_pinned(ce));
/*
* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
if (scrub)
lrc_init_regs(ce, engine, true);
/* Rerun the request; its payload has been neutered (if guilty). */
lrc_update_regs(ce, engine, head);
}
static void guc_reset_rewind(struct intel_engine_cs *engine, bool stalled)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq;
unsigned long flags;
spin_lock_irqsave(&engine->active.lock, flags);
/* Push back any incomplete requests for replay after the reset. */
rq = execlists_unwind_incomplete_requests(execlists);
if (!rq)
goto out_unlock;
if (!i915_request_started(rq))
stalled = false;
__i915_request_reset(rq, stalled);
guc_reset_state(rq->context, engine, rq->head, stalled);
out_unlock:
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void guc_reset_cancel(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq, *rn;
struct rb_node *rb;
unsigned long flags;
ENGINE_TRACE(engine, "\n");
/*
* Before we call engine->cancel_requests(), we should have exclusive
* access to the submission state. This is arranged for us by the
* caller disabling the interrupt generation, the tasklet and other
* threads that may then access the same state, giving us a free hand
* to reset state. However, we still need to let lockdep be aware that
* we know this state may be accessed in hardirq context, so we
* disable the irq around this manipulation and we want to keep
* the spinlock focused on its duties and not accidentally conflate
* coverage to the submission's irq state. (Similarly, although we
* shouldn't need to disable irq around the manipulation of the
* submission's irq state, we also wish to remind ourselves that
* it is irq state.)
*/
spin_lock_irqsave(&engine->active.lock, flags);
/* Mark all executing requests as skipped. */
list_for_each_entry(rq, &engine->active.requests, sched.link) {
i915_request_set_error_once(rq, -EIO);
i915_request_mark_complete(rq);
}
/* Flush the queued requests to the timeline list (for retiring). */
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
priolist_for_each_request_consume(rq, rn, p) {
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
/* Remaining _unready_ requests will be nop'ed when submitted */
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void guc_reset_finish(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
if (__tasklet_enable(&execlists->tasklet))
/* And kick in case we missed a new request submission. */
tasklet_hi_schedule(&execlists->tasklet);
ENGINE_TRACE(engine, "depth->%d\n",
atomic_read(&execlists->tasklet.count));
}
/*
* Set up the memory resources to be shared with the GuC (via the GGTT)
* at firmware loading time.
*/
int intel_guc_submission_init(struct intel_guc *guc)
{
int ret;
if (guc->stage_desc_pool)
return 0;
ret = guc_stage_desc_pool_create(guc);
if (ret)
return ret;
/*
* Keep static analysers happy, let them know that we allocated the
* vma after testing that it didn't exist earlier.
*/
GEM_BUG_ON(!guc->stage_desc_pool);
return 0;
}
void intel_guc_submission_fini(struct intel_guc *guc)
{
if (guc->stage_desc_pool) {
guc_stage_desc_pool_destroy(guc);
}
}
static int guc_context_alloc(struct intel_context *ce)
{
return lrc_alloc(ce, ce->engine);
}
static int guc_context_pre_pin(struct intel_context *ce,
struct i915_gem_ww_ctx *ww,
void **vaddr)
{
return lrc_pre_pin(ce, ce->engine, ww, vaddr);
}
static int guc_context_pin(struct intel_context *ce, void *vaddr)
{
return lrc_pin(ce, ce->engine, vaddr);
}
static const struct intel_context_ops guc_context_ops = {
.alloc = guc_context_alloc,
.pre_pin = guc_context_pre_pin,
.pin = guc_context_pin,
.unpin = lrc_unpin,
.post_unpin = lrc_post_unpin,
.enter = intel_context_enter_engine,
.exit = intel_context_exit_engine,
.reset = lrc_reset,
.destroy = lrc_destroy,
};
static int guc_request_alloc(struct i915_request *request)
{
int ret;
GEM_BUG_ON(!intel_context_is_pinned(request->context));
/*
* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += GUC_REQUEST_SIZE;
/*
* Note that after this point, we have committed to using
* this request as it is being used to both track the
* state of engine initialisation and liveness of the
* golden renderstate above. Think twice before you try
* to cancel/unwind this request now.
*/
/* Unconditionally invalidate GPU caches and TLBs. */
ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
if (ret)
return ret;
request->reserved_space -= GUC_REQUEST_SIZE;
return 0;
}
static inline void queue_request(struct intel_engine_cs *engine,
struct i915_request *rq,
int prio)
{
GEM_BUG_ON(!list_empty(&rq->sched.link));
list_add_tail(&rq->sched.link,
i915_sched_lookup_priolist(engine, prio));
set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
}
static void guc_submit_request(struct i915_request *rq)
{
struct intel_engine_cs *engine = rq->engine;
unsigned long flags;
/* Will be called from irq-context when using foreign fences. */
spin_lock_irqsave(&engine->active.lock, flags);
queue_request(engine, rq, rq_prio(rq));
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
GEM_BUG_ON(list_empty(&rq->sched.link));
tasklet_hi_schedule(&engine->execlists.tasklet);
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void sanitize_hwsp(struct intel_engine_cs *engine)
{
struct intel_timeline *tl;
list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
intel_timeline_reset_seqno(tl);
}
static void guc_sanitize(struct intel_engine_cs *engine)
{
/*
* Poison residual state on resume, in case the suspend didn't!
*
* We have to assume that across suspend/resume (or other loss
* of control) that the contents of our pinned buffers has been
* lost, replaced by garbage. Since this doesn't always happen,
* let's poison such state so that we more quickly spot when
* we falsely assume it has been preserved.
*/
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
/*
* The kernel_context HWSP is stored in the status_page. As above,
* that may be lost on resume/initialisation, and so we need to
* reset the value in the HWSP.
*/
sanitize_hwsp(engine);
/* And scrub the dirty cachelines for the HWSP */
clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
}
static void setup_hwsp(struct intel_engine_cs *engine)
{
intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
ENGINE_WRITE_FW(engine,
RING_HWS_PGA,
i915_ggtt_offset(engine->status_page.vma));
}
static void start_engine(struct intel_engine_cs *engine)
{
ENGINE_WRITE_FW(engine,
RING_MODE_GEN7,
_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
ENGINE_POSTING_READ(engine, RING_MI_MODE);
}
static int guc_resume(struct intel_engine_cs *engine)
{
assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
intel_mocs_init_engine(engine);
intel_breadcrumbs_reset(engine->breadcrumbs);
setup_hwsp(engine);
start_engine(engine);
return 0;
}
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = guc_submit_request;
}
static void guc_release(struct intel_engine_cs *engine)
{
engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
tasklet_kill(&engine->execlists.tasklet);
intel_engine_cleanup_common(engine);
lrc_fini_wa_ctx(engine);
}
static void guc_default_vfuncs(struct intel_engine_cs *engine)
{
/* Default vfuncs which can be overridden by each engine. */
engine->resume = guc_resume;
engine->cops = &guc_context_ops;
engine->request_alloc = guc_request_alloc;
engine->schedule = i915_schedule;
engine->reset.prepare = guc_reset_prepare;
engine->reset.rewind = guc_reset_rewind;
engine->reset.cancel = guc_reset_cancel;
engine->reset.finish = guc_reset_finish;
engine->emit_flush = gen8_emit_flush_xcs;
engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
if (GRAPHICS_VER(engine->i915) >= 12) {
engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
engine->emit_flush = gen12_emit_flush_xcs;
}
engine->set_default_submission = guc_set_default_submission;
engine->flags |= I915_ENGINE_HAS_PREEMPTION;
/*
* TODO: GuC supports timeslicing and semaphores as well, but they're
* handled by the firmware so some minor tweaks are required before
* enabling.
*
* engine->flags |= I915_ENGINE_HAS_TIMESLICES;
* engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
*/
engine->emit_bb_start = gen8_emit_bb_start;
}
static void rcs_submission_override(struct intel_engine_cs *engine)
{
switch (GRAPHICS_VER(engine->i915)) {
case 12:
engine->emit_flush = gen12_emit_flush_rcs;
engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
break;
case 11:
engine->emit_flush = gen11_emit_flush_rcs;
engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
break;
default:
engine->emit_flush = gen8_emit_flush_rcs;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
break;
}
}
static inline void guc_default_irqs(struct intel_engine_cs *engine)
{
engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
intel_engine_set_irq_handler(engine, cs_irq_handler);
}
int intel_guc_submission_setup(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
/*
* The setup relies on several assumptions (e.g. irqs always enabled)
* that are only valid on gen11+
*/
GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
tasklet_setup(&engine->execlists.tasklet, guc_submission_tasklet);
guc_default_vfuncs(engine);
guc_default_irqs(engine);
if (engine->class == RENDER_CLASS)
rcs_submission_override(engine);
lrc_init_wa_ctx(engine);
/* Finally, take ownership and responsibility for cleanup! */
engine->sanitize = guc_sanitize;
engine->release = guc_release;
return 0;
}
void intel_guc_submission_enable(struct intel_guc *guc)
{
guc_stage_desc_init(guc);
}
void intel_guc_submission_disable(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
GEM_BUG_ON(gt->awake); /* GT should be parked first */
/* Note: By the time we're here, GuC may have already been reset */
guc_stage_desc_fini(guc);
}
static bool __guc_submission_selected(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
if (!intel_guc_submission_is_supported(guc))
return false;
return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
}
void intel_guc_submission_init_early(struct intel_guc *guc)
{
guc->submission_selected = __guc_submission_selected(guc);
}