blob: f083360e4ba67f126b3e719e81a5f21f9b3903cc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*******************************************************************************
This contains the functions to handle the normal descriptors.
Copyright (C) 2007-2009 STMicroelectronics Ltd
Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
*******************************************************************************/
#include <linux/stmmac.h>
#include "common.h"
#include "descs_com.h"
static int ndesc_get_tx_status(void *data, struct stmmac_extra_stats *x,
struct dma_desc *p, void __iomem *ioaddr)
{
struct net_device_stats *stats = (struct net_device_stats *)data;
unsigned int tdes0 = le32_to_cpu(p->des0);
unsigned int tdes1 = le32_to_cpu(p->des1);
int ret = tx_done;
/* Get tx owner first */
if (unlikely(tdes0 & TDES0_OWN))
return tx_dma_own;
/* Verify tx error by looking at the last segment. */
if (likely(!(tdes1 & TDES1_LAST_SEGMENT)))
return tx_not_ls;
if (unlikely(tdes0 & TDES0_ERROR_SUMMARY)) {
if (unlikely(tdes0 & TDES0_UNDERFLOW_ERROR)) {
x->tx_underflow++;
stats->tx_fifo_errors++;
}
if (unlikely(tdes0 & TDES0_NO_CARRIER)) {
x->tx_carrier++;
stats->tx_carrier_errors++;
}
if (unlikely(tdes0 & TDES0_LOSS_CARRIER)) {
x->tx_losscarrier++;
stats->tx_carrier_errors++;
}
if (unlikely((tdes0 & TDES0_EXCESSIVE_DEFERRAL) ||
(tdes0 & TDES0_EXCESSIVE_COLLISIONS) ||
(tdes0 & TDES0_LATE_COLLISION))) {
unsigned int collisions;
collisions = (tdes0 & TDES0_COLLISION_COUNT_MASK) >> 3;
stats->collisions += collisions;
}
ret = tx_err;
}
if (tdes0 & TDES0_VLAN_FRAME)
x->tx_vlan++;
if (unlikely(tdes0 & TDES0_DEFERRED))
x->tx_deferred++;
return ret;
}
static int ndesc_get_tx_len(struct dma_desc *p)
{
return (le32_to_cpu(p->des1) & RDES1_BUFFER1_SIZE_MASK);
}
/* This function verifies if each incoming frame has some errors
* and, if required, updates the multicast statistics.
* In case of success, it returns good_frame because the GMAC device
* is supposed to be able to compute the csum in HW. */
static int ndesc_get_rx_status(void *data, struct stmmac_extra_stats *x,
struct dma_desc *p)
{
int ret = good_frame;
unsigned int rdes0 = le32_to_cpu(p->des0);
struct net_device_stats *stats = (struct net_device_stats *)data;
if (unlikely(rdes0 & RDES0_OWN))
return dma_own;
if (unlikely(!(rdes0 & RDES0_LAST_DESCRIPTOR))) {
stats->rx_length_errors++;
return discard_frame;
}
if (unlikely(rdes0 & RDES0_ERROR_SUMMARY)) {
if (unlikely(rdes0 & RDES0_DESCRIPTOR_ERROR))
x->rx_desc++;
if (unlikely(rdes0 & RDES0_SA_FILTER_FAIL))
x->sa_filter_fail++;
if (unlikely(rdes0 & RDES0_OVERFLOW_ERROR))
x->overflow_error++;
if (unlikely(rdes0 & RDES0_IPC_CSUM_ERROR))
x->ipc_csum_error++;
if (unlikely(rdes0 & RDES0_COLLISION)) {
x->rx_collision++;
stats->collisions++;
}
if (unlikely(rdes0 & RDES0_CRC_ERROR)) {
x->rx_crc_errors++;
stats->rx_crc_errors++;
}
ret = discard_frame;
}
if (unlikely(rdes0 & RDES0_DRIBBLING))
x->dribbling_bit++;
if (unlikely(rdes0 & RDES0_LENGTH_ERROR)) {
x->rx_length++;
ret = discard_frame;
}
if (unlikely(rdes0 & RDES0_MII_ERROR)) {
x->rx_mii++;
ret = discard_frame;
}
#ifdef STMMAC_VLAN_TAG_USED
if (rdes0 & RDES0_VLAN_TAG)
x->vlan_tag++;
#endif
return ret;
}
static void ndesc_init_rx_desc(struct dma_desc *p, int disable_rx_ic, int mode,
int end, int bfsize)
{
int bfsize1;
p->des0 |= cpu_to_le32(RDES0_OWN);
bfsize1 = min(bfsize, BUF_SIZE_2KiB - 1);
p->des1 |= cpu_to_le32(bfsize1 & RDES1_BUFFER1_SIZE_MASK);
if (mode == STMMAC_CHAIN_MODE)
ndesc_rx_set_on_chain(p, end);
else
ndesc_rx_set_on_ring(p, end, bfsize);
if (disable_rx_ic)
p->des1 |= cpu_to_le32(RDES1_DISABLE_IC);
}
static void ndesc_init_tx_desc(struct dma_desc *p, int mode, int end)
{
p->des0 &= cpu_to_le32(~TDES0_OWN);
if (mode == STMMAC_CHAIN_MODE)
ndesc_tx_set_on_chain(p);
else
ndesc_end_tx_desc_on_ring(p, end);
}
static int ndesc_get_tx_owner(struct dma_desc *p)
{
return (le32_to_cpu(p->des0) & TDES0_OWN) >> 31;
}
static void ndesc_set_tx_owner(struct dma_desc *p)
{
p->des0 |= cpu_to_le32(TDES0_OWN);
}
static void ndesc_set_rx_owner(struct dma_desc *p, int disable_rx_ic)
{
p->des0 |= cpu_to_le32(RDES0_OWN);
}
static int ndesc_get_tx_ls(struct dma_desc *p)
{
return (le32_to_cpu(p->des1) & TDES1_LAST_SEGMENT) >> 30;
}
static void ndesc_release_tx_desc(struct dma_desc *p, int mode)
{
int ter = (le32_to_cpu(p->des1) & TDES1_END_RING) >> 25;
memset(p, 0, offsetof(struct dma_desc, des2));
if (mode == STMMAC_CHAIN_MODE)
ndesc_tx_set_on_chain(p);
else
ndesc_end_tx_desc_on_ring(p, ter);
}
static void ndesc_prepare_tx_desc(struct dma_desc *p, int is_fs, int len,
bool csum_flag, int mode, bool tx_own,
bool ls, unsigned int tot_pkt_len)
{
unsigned int tdes1 = le32_to_cpu(p->des1);
if (is_fs)
tdes1 |= TDES1_FIRST_SEGMENT;
else
tdes1 &= ~TDES1_FIRST_SEGMENT;
if (likely(csum_flag))
tdes1 |= (TX_CIC_FULL) << TDES1_CHECKSUM_INSERTION_SHIFT;
else
tdes1 &= ~(TX_CIC_FULL << TDES1_CHECKSUM_INSERTION_SHIFT);
if (ls)
tdes1 |= TDES1_LAST_SEGMENT;
p->des1 = cpu_to_le32(tdes1);
if (mode == STMMAC_CHAIN_MODE)
norm_set_tx_desc_len_on_chain(p, len);
else
norm_set_tx_desc_len_on_ring(p, len);
if (tx_own)
p->des0 |= cpu_to_le32(TDES0_OWN);
}
static void ndesc_set_tx_ic(struct dma_desc *p)
{
p->des1 |= cpu_to_le32(TDES1_INTERRUPT);
}
static int ndesc_get_rx_frame_len(struct dma_desc *p, int rx_coe_type)
{
unsigned int csum = 0;
/* The type-1 checksum offload engines append the checksum at
* the end of frame and the two bytes of checksum are added in
* the length.
* Adjust for that in the framelen for type-1 checksum offload
* engines
*/
if (rx_coe_type == STMMAC_RX_COE_TYPE1)
csum = 2;
return (((le32_to_cpu(p->des0) & RDES0_FRAME_LEN_MASK)
>> RDES0_FRAME_LEN_SHIFT) -
csum);
}
static void ndesc_enable_tx_timestamp(struct dma_desc *p)
{
p->des1 |= cpu_to_le32(TDES1_TIME_STAMP_ENABLE);
}
static int ndesc_get_tx_timestamp_status(struct dma_desc *p)
{
return (le32_to_cpu(p->des0) & TDES0_TIME_STAMP_STATUS) >> 17;
}
static void ndesc_get_timestamp(void *desc, u32 ats, u64 *ts)
{
struct dma_desc *p = (struct dma_desc *)desc;
u64 ns;
ns = le32_to_cpu(p->des2);
/* convert high/sec time stamp value to nanosecond */
ns += le32_to_cpu(p->des3) * 1000000000ULL;
*ts = ns;
}
static int ndesc_get_rx_timestamp_status(void *desc, void *next_desc, u32 ats)
{
struct dma_desc *p = (struct dma_desc *)desc;
if ((le32_to_cpu(p->des2) == 0xffffffff) &&
(le32_to_cpu(p->des3) == 0xffffffff))
/* timestamp is corrupted, hence don't store it */
return 0;
else
return 1;
}
static void ndesc_display_ring(void *head, unsigned int size, bool rx)
{
struct dma_desc *p = (struct dma_desc *)head;
int i;
pr_info("%s descriptor ring:\n", rx ? "RX" : "TX");
for (i = 0; i < size; i++) {
u64 x;
x = *(u64 *)p;
pr_info("%03d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
i, (unsigned int)virt_to_phys(p),
(unsigned int)x, (unsigned int)(x >> 32),
p->des2, p->des3);
p++;
}
pr_info("\n");
}
static void ndesc_get_addr(struct dma_desc *p, unsigned int *addr)
{
*addr = le32_to_cpu(p->des2);
}
static void ndesc_set_addr(struct dma_desc *p, dma_addr_t addr)
{
p->des2 = cpu_to_le32(addr);
}
static void ndesc_clear(struct dma_desc *p)
{
p->des2 = 0;
}
const struct stmmac_desc_ops ndesc_ops = {
.tx_status = ndesc_get_tx_status,
.rx_status = ndesc_get_rx_status,
.get_tx_len = ndesc_get_tx_len,
.init_rx_desc = ndesc_init_rx_desc,
.init_tx_desc = ndesc_init_tx_desc,
.get_tx_owner = ndesc_get_tx_owner,
.release_tx_desc = ndesc_release_tx_desc,
.prepare_tx_desc = ndesc_prepare_tx_desc,
.set_tx_ic = ndesc_set_tx_ic,
.get_tx_ls = ndesc_get_tx_ls,
.set_tx_owner = ndesc_set_tx_owner,
.set_rx_owner = ndesc_set_rx_owner,
.get_rx_frame_len = ndesc_get_rx_frame_len,
.enable_tx_timestamp = ndesc_enable_tx_timestamp,
.get_tx_timestamp_status = ndesc_get_tx_timestamp_status,
.get_timestamp = ndesc_get_timestamp,
.get_rx_timestamp_status = ndesc_get_rx_timestamp_status,
.display_ring = ndesc_display_ring,
.get_addr = ndesc_get_addr,
.set_addr = ndesc_set_addr,
.clear = ndesc_clear,
};