blob: b722e9773232bea3ef1bcbf38499edcc8aa653ed [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Datapath implementation.
*
* Copyright (c) 2017-2019, Silicon Laboratories, Inc.
* Copyright (c) 2010, ST-Ericsson
*/
#include <net/mac80211.h>
#include "data_tx.h"
#include "wfx.h"
#include "bh.h"
#include "sta.h"
#include "queue.h"
#include "debug.h"
#include "traces.h"
#include "hif_tx_mib.h"
#define WFX_INVALID_RATE_ID (0xFF)
#define WFX_LINK_ID_NO_ASSOC 15
#define WFX_LINK_ID_GC_TIMEOUT ((unsigned long)(10 * HZ))
static int wfx_get_hw_rate(struct wfx_dev *wdev,
const struct ieee80211_tx_rate *rate)
{
if (rate->idx < 0)
return -1;
if (rate->flags & IEEE80211_TX_RC_MCS) {
if (rate->idx > 7) {
WARN(1, "wrong rate->idx value: %d", rate->idx);
return -1;
}
return rate->idx + 14;
}
// WFx only support 2GHz, else band information should be retrieved
// from ieee80211_tx_info
return wdev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates[rate->idx].hw_value;
}
/* TX policy cache implementation */
static void wfx_tx_policy_build(struct wfx_vif *wvif, struct tx_policy *policy,
struct ieee80211_tx_rate *rates)
{
int i;
size_t count;
struct wfx_dev *wdev = wvif->wdev;
WARN(rates[0].idx < 0, "invalid rate policy");
memset(policy, 0, sizeof(*policy));
for (i = 1; i < IEEE80211_TX_MAX_RATES; i++)
if (rates[i].idx < 0)
break;
count = i;
/* HACK!!! Device has problems (at least) switching from
* 54Mbps CTS to 1Mbps. This switch takes enormous amount
* of time (100-200 ms), leading to valuable throughput drop.
* As a workaround, additional g-rates are injected to the
* policy.
*/
if (count == 2 && !(rates[0].flags & IEEE80211_TX_RC_MCS) &&
rates[0].idx > 4 && rates[0].count > 2 &&
rates[1].idx < 2) {
int mid_rate = (rates[0].idx + 4) >> 1;
/* Decrease number of retries for the initial rate */
rates[0].count -= 2;
if (mid_rate != 4) {
/* Keep fallback rate at 1Mbps. */
rates[3] = rates[1];
/* Inject 1 transmission on lowest g-rate */
rates[2].idx = 4;
rates[2].count = 1;
rates[2].flags = rates[1].flags;
/* Inject 1 transmission on mid-rate */
rates[1].idx = mid_rate;
rates[1].count = 1;
/* Fallback to 1 Mbps is a really bad thing,
* so let's try to increase probability of
* successful transmission on the lowest g rate
* even more
*/
if (rates[0].count >= 3) {
--rates[0].count;
++rates[2].count;
}
/* Adjust amount of rates defined */
count += 2;
} else {
/* Keep fallback rate at 1Mbps. */
rates[2] = rates[1];
/* Inject 2 transmissions on lowest g-rate */
rates[1].idx = 4;
rates[1].count = 2;
/* Adjust amount of rates defined */
count += 1;
}
}
for (i = 0; i < IEEE80211_TX_MAX_RATES; ++i) {
int rateid;
u8 count;
if (rates[i].idx < 0)
break;
WARN_ON(rates[i].count > 15);
rateid = wfx_get_hw_rate(wdev, &rates[i]);
// Pack two values in each byte of policy->rates
count = rates[i].count;
if (rateid % 2)
count <<= 4;
policy->rates[rateid / 2] |= count;
}
}
static bool tx_policy_is_equal(const struct tx_policy *a,
const struct tx_policy *b)
{
return !memcmp(a->rates, b->rates, sizeof(a->rates));
}
static int wfx_tx_policy_find(struct tx_policy_cache *cache,
struct tx_policy *wanted)
{
struct tx_policy *it;
list_for_each_entry(it, &cache->used, link)
if (tx_policy_is_equal(wanted, it))
return it - cache->cache;
list_for_each_entry(it, &cache->free, link)
if (tx_policy_is_equal(wanted, it))
return it - cache->cache;
return -1;
}
static void wfx_tx_policy_use(struct tx_policy_cache *cache,
struct tx_policy *entry)
{
++entry->usage_count;
list_move(&entry->link, &cache->used);
}
static int wfx_tx_policy_release(struct tx_policy_cache *cache,
struct tx_policy *entry)
{
int ret = --entry->usage_count;
if (!ret)
list_move(&entry->link, &cache->free);
return ret;
}
static int wfx_tx_policy_get(struct wfx_vif *wvif,
struct ieee80211_tx_rate *rates,
bool *renew)
{
int idx;
struct tx_policy_cache *cache = &wvif->tx_policy_cache;
struct tx_policy wanted;
wfx_tx_policy_build(wvif, &wanted, rates);
spin_lock_bh(&cache->lock);
if (WARN_ON(list_empty(&cache->free))) {
spin_unlock_bh(&cache->lock);
return WFX_INVALID_RATE_ID;
}
idx = wfx_tx_policy_find(cache, &wanted);
if (idx >= 0) {
*renew = false;
} else {
struct tx_policy *entry;
*renew = true;
/* If policy is not found create a new one
* using the oldest entry in "free" list
*/
entry = list_entry(cache->free.prev, struct tx_policy, link);
memcpy(entry->rates, wanted.rates, sizeof(entry->rates));
entry->uploaded = 0;
entry->usage_count = 0;
idx = entry - cache->cache;
}
wfx_tx_policy_use(cache, &cache->cache[idx]);
if (list_empty(&cache->free)) {
/* Lock TX queues. */
wfx_tx_queues_lock(wvif->wdev);
}
spin_unlock_bh(&cache->lock);
return idx;
}
static void wfx_tx_policy_put(struct wfx_vif *wvif, int idx)
{
int usage, locked;
struct tx_policy_cache *cache = &wvif->tx_policy_cache;
spin_lock_bh(&cache->lock);
locked = list_empty(&cache->free);
usage = wfx_tx_policy_release(cache, &cache->cache[idx]);
if (locked && !usage) {
/* Unlock TX queues. */
wfx_tx_queues_unlock(wvif->wdev);
}
spin_unlock_bh(&cache->lock);
}
static int wfx_tx_policy_upload(struct wfx_vif *wvif)
{
int i;
struct tx_policy_cache *cache = &wvif->tx_policy_cache;
struct hif_mib_set_tx_rate_retry_policy *arg =
kzalloc(struct_size(arg,
tx_rate_retry_policy,
HIF_MIB_NUM_TX_RATE_RETRY_POLICIES),
GFP_KERNEL);
struct hif_mib_tx_rate_retry_policy *dst;
spin_lock_bh(&cache->lock);
/* Upload only modified entries. */
for (i = 0; i < HIF_MIB_NUM_TX_RATE_RETRY_POLICIES; ++i) {
struct tx_policy *src = &cache->cache[i];
if (!src->uploaded && memzcmp(src->rates, sizeof(src->rates))) {
dst = arg->tx_rate_retry_policy +
arg->num_tx_rate_policies;
dst->policy_index = i;
dst->short_retry_count = 255;
dst->long_retry_count = 255;
dst->first_rate_sel = 1;
dst->terminate = 1;
dst->count_init = 1;
memcpy(&dst->rates, src->rates, sizeof(src->rates));
src->uploaded = 1;
arg->num_tx_rate_policies++;
}
}
spin_unlock_bh(&cache->lock);
hif_set_tx_rate_retry_policy(wvif, arg);
kfree(arg);
return 0;
}
static void wfx_tx_policy_upload_work(struct work_struct *work)
{
struct wfx_vif *wvif =
container_of(work, struct wfx_vif, tx_policy_upload_work);
wfx_tx_policy_upload(wvif);
wfx_tx_unlock(wvif->wdev);
wfx_tx_queues_unlock(wvif->wdev);
}
void wfx_tx_policy_init(struct wfx_vif *wvif)
{
struct tx_policy_cache *cache = &wvif->tx_policy_cache;
int i;
memset(cache, 0, sizeof(*cache));
spin_lock_init(&cache->lock);
INIT_LIST_HEAD(&cache->used);
INIT_LIST_HEAD(&cache->free);
INIT_WORK(&wvif->tx_policy_upload_work, wfx_tx_policy_upload_work);
for (i = 0; i < HIF_MIB_NUM_TX_RATE_RETRY_POLICIES; ++i)
list_add(&cache->cache[i].link, &cache->free);
}
/* Link ID related functions */
static int wfx_alloc_link_id(struct wfx_vif *wvif, const u8 *mac)
{
int i, ret = 0;
unsigned long max_inactivity = 0;
unsigned long now = jiffies;
spin_lock_bh(&wvif->ps_state_lock);
for (i = 0; i < WFX_MAX_STA_IN_AP_MODE; ++i) {
if (!wvif->link_id_db[i].status) {
ret = i + 1;
break;
} else if (wvif->link_id_db[i].status != WFX_LINK_HARD &&
!wvif->wdev->tx_queue_stats.link_map_cache[i + 1]) {
unsigned long inactivity =
now - wvif->link_id_db[i].timestamp;
if (inactivity < max_inactivity)
continue;
max_inactivity = inactivity;
ret = i + 1;
}
}
if (ret) {
struct wfx_link_entry *entry = &wvif->link_id_db[ret - 1];
entry->status = WFX_LINK_RESERVE;
ether_addr_copy(entry->mac, mac);
memset(&entry->buffered, 0, WFX_MAX_TID);
skb_queue_head_init(&entry->rx_queue);
wfx_tx_lock(wvif->wdev);
if (!schedule_work(&wvif->link_id_work))
wfx_tx_unlock(wvif->wdev);
} else {
dev_info(wvif->wdev->dev, "no more link-id available\n");
}
spin_unlock_bh(&wvif->ps_state_lock);
return ret;
}
int wfx_find_link_id(struct wfx_vif *wvif, const u8 *mac)
{
int i, ret = 0;
spin_lock_bh(&wvif->ps_state_lock);
for (i = 0; i < WFX_MAX_STA_IN_AP_MODE; ++i) {
if (ether_addr_equal(mac, wvif->link_id_db[i].mac) &&
wvif->link_id_db[i].status) {
wvif->link_id_db[i].timestamp = jiffies;
ret = i + 1;
break;
}
}
spin_unlock_bh(&wvif->ps_state_lock);
return ret;
}
static int wfx_map_link(struct wfx_vif *wvif,
struct wfx_link_entry *link_entry, int sta_id)
{
int ret;
ret = hif_map_link(wvif, link_entry->mac, 0, sta_id);
if (ret == 0)
/* Save the MAC address currently associated with the peer
* for future unmap request
*/
ether_addr_copy(link_entry->old_mac, link_entry->mac);
return ret;
}
int wfx_unmap_link(struct wfx_vif *wvif, int sta_id)
{
u8 *mac_addr = NULL;
if (sta_id)
mac_addr = wvif->link_id_db[sta_id - 1].old_mac;
return hif_map_link(wvif, mac_addr, 1, sta_id);
}
void wfx_link_id_gc_work(struct work_struct *work)
{
struct wfx_vif *wvif =
container_of(work, struct wfx_vif, link_id_gc_work.work);
unsigned long now = jiffies;
unsigned long next_gc = -1;
long ttl;
u32 mask;
int i;
if (wvif->state != WFX_STATE_AP)
return;
wfx_tx_lock_flush(wvif->wdev);
spin_lock_bh(&wvif->ps_state_lock);
for (i = 0; i < WFX_MAX_STA_IN_AP_MODE; ++i) {
bool need_reset = false;
mask = BIT(i + 1);
if (wvif->link_id_db[i].status == WFX_LINK_RESERVE ||
(wvif->link_id_db[i].status == WFX_LINK_HARD &&
!(wvif->link_id_map & mask))) {
if (wvif->link_id_map & mask) {
wvif->sta_asleep_mask &= ~mask;
wvif->pspoll_mask &= ~mask;
need_reset = true;
}
wvif->link_id_map |= mask;
if (wvif->link_id_db[i].status != WFX_LINK_HARD)
wvif->link_id_db[i].status = WFX_LINK_SOFT;
spin_unlock_bh(&wvif->ps_state_lock);
if (need_reset)
wfx_unmap_link(wvif, i + 1);
wfx_map_link(wvif, &wvif->link_id_db[i], i + 1);
next_gc = min(next_gc, WFX_LINK_ID_GC_TIMEOUT);
spin_lock_bh(&wvif->ps_state_lock);
} else if (wvif->link_id_db[i].status == WFX_LINK_SOFT) {
ttl = wvif->link_id_db[i].timestamp - now +
WFX_LINK_ID_GC_TIMEOUT;
if (ttl <= 0) {
need_reset = true;
wvif->link_id_db[i].status = WFX_LINK_OFF;
wvif->link_id_map &= ~mask;
wvif->sta_asleep_mask &= ~mask;
wvif->pspoll_mask &= ~mask;
spin_unlock_bh(&wvif->ps_state_lock);
wfx_unmap_link(wvif, i + 1);
spin_lock_bh(&wvif->ps_state_lock);
} else {
next_gc = min_t(unsigned long, next_gc, ttl);
}
}
if (need_reset)
skb_queue_purge(&wvif->link_id_db[i].rx_queue);
}
spin_unlock_bh(&wvif->ps_state_lock);
if (next_gc != -1)
schedule_delayed_work(&wvif->link_id_gc_work, next_gc);
wfx_tx_unlock(wvif->wdev);
}
void wfx_link_id_work(struct work_struct *work)
{
struct wfx_vif *wvif =
container_of(work, struct wfx_vif, link_id_work);
wfx_tx_flush(wvif->wdev);
wfx_link_id_gc_work(&wvif->link_id_gc_work.work);
wfx_tx_unlock(wvif->wdev);
}
/* Tx implementation */
static bool ieee80211_is_action_back(struct ieee80211_hdr *hdr)
{
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)hdr;
if (!ieee80211_is_action(mgmt->frame_control))
return false;
if (mgmt->u.action.category != WLAN_CATEGORY_BACK)
return false;
return true;
}
static void wfx_tx_manage_pm(struct wfx_vif *wvif, struct ieee80211_hdr *hdr,
struct wfx_tx_priv *tx_priv,
struct ieee80211_sta *sta)
{
u32 mask = ~BIT(tx_priv->raw_link_id);
spin_lock_bh(&wvif->ps_state_lock);
if (ieee80211_is_auth(hdr->frame_control)) {
wvif->sta_asleep_mask &= mask;
wvif->pspoll_mask &= mask;
}
if (tx_priv->link_id == WFX_LINK_ID_AFTER_DTIM &&
!wvif->mcast_buffered) {
wvif->mcast_buffered = true;
if (wvif->sta_asleep_mask)
schedule_work(&wvif->mcast_start_work);
}
if (tx_priv->raw_link_id) {
wvif->link_id_db[tx_priv->raw_link_id - 1].timestamp = jiffies;
if (tx_priv->tid < WFX_MAX_TID)
wvif->link_id_db[tx_priv->raw_link_id - 1].buffered[tx_priv->tid]++;
}
spin_unlock_bh(&wvif->ps_state_lock);
if (sta)
ieee80211_sta_set_buffered(sta, tx_priv->tid, true);
}
static u8 wfx_tx_get_raw_link_id(struct wfx_vif *wvif,
struct ieee80211_sta *sta,
struct ieee80211_hdr *hdr)
{
struct wfx_sta_priv *sta_priv =
sta ? (struct wfx_sta_priv *) &sta->drv_priv : NULL;
const u8 *da = ieee80211_get_DA(hdr);
int ret;
if (sta_priv && sta_priv->link_id)
return sta_priv->link_id;
if (wvif->vif->type != NL80211_IFTYPE_AP)
return 0;
if (is_multicast_ether_addr(da))
return 0;
ret = wfx_find_link_id(wvif, da);
if (!ret)
ret = wfx_alloc_link_id(wvif, da);
if (!ret) {
dev_err(wvif->wdev->dev, "no more link-id available\n");
return WFX_LINK_ID_NO_ASSOC;
}
return ret;
}
static void wfx_tx_fixup_rates(struct ieee80211_tx_rate *rates)
{
int i;
bool finished;
// Firmware is not able to mix rates with differents flags
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
if (rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
rates[i].flags |= IEEE80211_TX_RC_SHORT_GI;
if (!(rates[0].flags & IEEE80211_TX_RC_SHORT_GI))
rates[i].flags &= ~IEEE80211_TX_RC_SHORT_GI;
if (!(rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS))
rates[i].flags &= ~IEEE80211_TX_RC_USE_RTS_CTS;
}
// Sort rates and remove duplicates
do {
finished = true;
for (i = 0; i < IEEE80211_TX_MAX_RATES - 1; i++) {
if (rates[i + 1].idx == rates[i].idx &&
rates[i].idx != -1) {
rates[i].count =
max_t(int, rates[i].count,
rates[i + 1].count);
rates[i + 1].idx = -1;
rates[i + 1].count = 0;
finished = false;
}
if (rates[i + 1].idx > rates[i].idx) {
swap(rates[i + 1], rates[i]);
finished = false;
}
}
} while (!finished);
// All retries use long GI
for (i = 1; i < IEEE80211_TX_MAX_RATES; i++)
rates[i].flags &= ~IEEE80211_TX_RC_SHORT_GI;
}
static u8 wfx_tx_get_rate_id(struct wfx_vif *wvif,
struct ieee80211_tx_info *tx_info)
{
bool tx_policy_renew = false;
u8 rate_id;
rate_id = wfx_tx_policy_get(wvif,
tx_info->driver_rates, &tx_policy_renew);
WARN(rate_id == WFX_INVALID_RATE_ID, "unable to get a valid Tx policy");
if (tx_policy_renew) {
/* FIXME: It's not so optimal to stop TX queues every now and
* then. Better to reimplement task scheduling with a counter.
*/
wfx_tx_lock(wvif->wdev);
wfx_tx_queues_lock(wvif->wdev);
if (!schedule_work(&wvif->tx_policy_upload_work)) {
wfx_tx_queues_unlock(wvif->wdev);
wfx_tx_unlock(wvif->wdev);
}
}
return rate_id;
}
static struct hif_ht_tx_parameters wfx_tx_get_tx_parms(struct wfx_dev *wdev, struct ieee80211_tx_info *tx_info)
{
struct ieee80211_tx_rate *rate = &tx_info->driver_rates[0];
struct hif_ht_tx_parameters ret = { };
if (!(rate->flags & IEEE80211_TX_RC_MCS))
ret.frame_format = HIF_FRAME_FORMAT_NON_HT;
else if (!(rate->flags & IEEE80211_TX_RC_GREEN_FIELD))
ret.frame_format = HIF_FRAME_FORMAT_MIXED_FORMAT_HT;
else
ret.frame_format = HIF_FRAME_FORMAT_GF_HT_11N;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
ret.short_gi = 1;
if (tx_info->flags & IEEE80211_TX_CTL_STBC)
ret.stbc = 0; // FIXME: Not yet supported by firmware?
return ret;
}
static u8 wfx_tx_get_tid(struct ieee80211_hdr *hdr)
{
// FIXME: ieee80211_get_tid(hdr) should be sufficient for all cases.
if (!ieee80211_is_data(hdr->frame_control))
return WFX_MAX_TID;
if (ieee80211_is_data_qos(hdr->frame_control))
return ieee80211_get_tid(hdr);
else
return 0;
}
static int wfx_tx_get_icv_len(struct ieee80211_key_conf *hw_key)
{
int mic_space;
if (!hw_key)
return 0;
mic_space = (hw_key->cipher == WLAN_CIPHER_SUITE_TKIP) ? 8 : 0;
return hw_key->icv_len + mic_space;
}
static int wfx_tx_inner(struct wfx_vif *wvif, struct ieee80211_sta *sta,
struct sk_buff *skb)
{
struct hif_msg *hif_msg;
struct hif_req_tx *req;
struct wfx_tx_priv *tx_priv;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int queue_id = tx_info->hw_queue;
size_t offset = (size_t) skb->data & 3;
int wmsg_len = sizeof(struct hif_msg) +
sizeof(struct hif_req_tx) + offset;
WARN(queue_id >= IEEE80211_NUM_ACS, "unsupported queue_id");
wfx_tx_fixup_rates(tx_info->driver_rates);
// From now tx_info->control is unusable
memset(tx_info->rate_driver_data, 0, sizeof(struct wfx_tx_priv));
// Fill tx_priv
tx_priv = (struct wfx_tx_priv *)tx_info->rate_driver_data;
tx_priv->tid = wfx_tx_get_tid(hdr);
tx_priv->raw_link_id = wfx_tx_get_raw_link_id(wvif, sta, hdr);
tx_priv->link_id = tx_priv->raw_link_id;
if (ieee80211_has_protected(hdr->frame_control))
tx_priv->hw_key = hw_key;
if (tx_info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)
tx_priv->link_id = WFX_LINK_ID_AFTER_DTIM;
if (sta && (sta->uapsd_queues & BIT(queue_id)))
tx_priv->link_id = WFX_LINK_ID_UAPSD;
// Fill hif_msg
WARN(skb_headroom(skb) < wmsg_len, "not enough space in skb");
WARN(offset & 1, "attempt to transmit an unaligned frame");
skb_put(skb, wfx_tx_get_icv_len(tx_priv->hw_key));
skb_push(skb, wmsg_len);
memset(skb->data, 0, wmsg_len);
hif_msg = (struct hif_msg *)skb->data;
hif_msg->len = cpu_to_le16(skb->len);
hif_msg->id = HIF_REQ_ID_TX;
hif_msg->interface = wvif->id;
if (skb->len > wvif->wdev->hw_caps.size_inp_ch_buf) {
dev_warn(wvif->wdev->dev, "requested frame size (%d) is larger than maximum supported (%d)\n",
skb->len, wvif->wdev->hw_caps.size_inp_ch_buf);
skb_pull(skb, wmsg_len);
return -EIO;
}
// Fill tx request
req = (struct hif_req_tx *)hif_msg->body;
req->packet_id = queue_id << 16 |
IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl));
req->data_flags.fc_offset = offset;
req->queue_id.peer_sta_id = tx_priv->raw_link_id;
// Queue index are inverted between firmware and Linux
req->queue_id.queue_id = 3 - queue_id;
req->ht_tx_parameters = wfx_tx_get_tx_parms(wvif->wdev, tx_info);
req->tx_flags.retry_policy_index = wfx_tx_get_rate_id(wvif, tx_info);
// Auxiliary operations
wfx_tx_manage_pm(wvif, hdr, tx_priv, sta);
wfx_tx_queue_put(wvif->wdev, &wvif->wdev->tx_queue[queue_id], skb);
wfx_bh_request_tx(wvif->wdev);
return 0;
}
void wfx_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct wfx_dev *wdev = hw->priv;
struct wfx_vif *wvif;
struct ieee80211_sta *sta = control ? control->sta : NULL;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
size_t driver_data_room = FIELD_SIZEOF(struct ieee80211_tx_info,
rate_driver_data);
compiletime_assert(sizeof(struct wfx_tx_priv) <= driver_data_room,
"struct tx_priv is too large");
WARN(skb->next || skb->prev, "skb is already member of a list");
// control.vif can be NULL for injected frames
if (tx_info->control.vif)
wvif = (struct wfx_vif *)tx_info->control.vif->drv_priv;
else
wvif = wvif_iterate(wdev, NULL);
if (WARN_ON(!wvif))
goto drop;
// FIXME: why?
if (ieee80211_is_action_back(hdr)) {
dev_info(wdev->dev, "drop BA action\n");
goto drop;
}
if (wfx_tx_inner(wvif, sta, skb))
goto drop;
return;
drop:
ieee80211_tx_status_irqsafe(wdev->hw, skb);
}
void wfx_tx_confirm_cb(struct wfx_vif *wvif, struct hif_cnf_tx *arg)
{
int i;
int tx_count;
struct sk_buff *skb;
struct ieee80211_tx_rate *rate;
struct ieee80211_tx_info *tx_info;
const struct wfx_tx_priv *tx_priv;
skb = wfx_pending_get(wvif->wdev, arg->packet_id);
if (!skb) {
dev_warn(wvif->wdev->dev,
"received unknown packet_id (%#.8x) from chip\n",
arg->packet_id);
return;
}
tx_info = IEEE80211_SKB_CB(skb);
tx_priv = wfx_skb_tx_priv(skb);
_trace_tx_stats(arg, skb,
wfx_pending_get_pkt_us_delay(wvif->wdev, skb));
// You can touch to tx_priv, but don't touch to tx_info->status.
tx_count = arg->ack_failures;
if (!arg->status || arg->ack_failures)
tx_count += 1; // Also report success
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
rate = &tx_info->status.rates[i];
if (rate->idx < 0)
break;
if (tx_count < rate->count && arg->status && arg->ack_failures)
dev_dbg(wvif->wdev->dev, "all retries were not consumed: %d != %d\n",
rate->count, tx_count);
if (tx_count <= rate->count && tx_count &&
arg->txed_rate != wfx_get_hw_rate(wvif->wdev, rate))
dev_dbg(wvif->wdev->dev,
"inconsistent tx_info rates: %d != %d\n",
arg->txed_rate,
wfx_get_hw_rate(wvif->wdev, rate));
if (tx_count > rate->count) {
tx_count -= rate->count;
} else if (!tx_count) {
rate->count = 0;
rate->idx = -1;
} else {
rate->count = tx_count;
tx_count = 0;
}
}
if (tx_count)
dev_dbg(wvif->wdev->dev,
"%d more retries than expected\n", tx_count);
skb_trim(skb, skb->len - wfx_tx_get_icv_len(tx_priv->hw_key));
// From now, you can touch to tx_info->status, but do not touch to
// tx_priv anymore
// FIXME: use ieee80211_tx_info_clear_status()
memset(tx_info->rate_driver_data, 0, sizeof(tx_info->rate_driver_data));
memset(tx_info->pad, 0, sizeof(tx_info->pad));
if (!arg->status) {
if (wvif->bss_loss_state &&
arg->packet_id == wvif->bss_loss_confirm_id)
wfx_cqm_bssloss_sm(wvif, 0, 1, 0);
tx_info->status.tx_time =
arg->media_delay - arg->tx_queue_delay;
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
else
tx_info->flags |= IEEE80211_TX_STAT_ACK;
} else if (arg->status == HIF_REQUEUE) {
/* "REQUEUE" means "implicit suspend" */
struct hif_ind_suspend_resume_tx suspend = {
.suspend_resume_flags.resume = 0,
.suspend_resume_flags.bc_mc_only = 1,
};
WARN(!arg->tx_result_flags.requeue, "incoherent status and result_flags");
wfx_suspend_resume(wvif, &suspend);
tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
} else {
if (wvif->bss_loss_state &&
arg->packet_id == wvif->bss_loss_confirm_id)
wfx_cqm_bssloss_sm(wvif, 0, 0, 1);
}
wfx_pending_remove(wvif->wdev, skb);
}
static void wfx_notify_buffered_tx(struct wfx_vif *wvif, struct sk_buff *skb,
struct hif_req_tx *req)
{
struct ieee80211_sta *sta;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int tid = wfx_tx_get_tid(hdr);
int raw_link_id = req->queue_id.peer_sta_id;
u8 *buffered;
if (raw_link_id && tid < WFX_MAX_TID) {
buffered = wvif->link_id_db[raw_link_id - 1].buffered;
spin_lock_bh(&wvif->ps_state_lock);
WARN(!buffered[tid], "inconsistent notification");
buffered[tid]--;
spin_unlock_bh(&wvif->ps_state_lock);
if (!buffered[tid]) {
rcu_read_lock();
sta = ieee80211_find_sta(wvif->vif, hdr->addr1);
if (sta)
ieee80211_sta_set_buffered(sta, tid, false);
rcu_read_unlock();
}
}
}
void wfx_skb_dtor(struct wfx_dev *wdev, struct sk_buff *skb)
{
struct hif_msg *hif = (struct hif_msg *)skb->data;
struct hif_req_tx *req = (struct hif_req_tx *)hif->body;
struct wfx_vif *wvif = wdev_to_wvif(wdev, hif->interface);
unsigned int offset = sizeof(struct hif_req_tx) +
sizeof(struct hif_msg) +
req->data_flags.fc_offset;
WARN_ON(!wvif);
skb_pull(skb, offset);
wfx_notify_buffered_tx(wvif, skb, req);
wfx_tx_policy_put(wvif, req->tx_flags.retry_policy_index);
ieee80211_tx_status_irqsafe(wdev->hw, skb);
}