blob: a2e57e62af30adc05e562ca734f3891ceda33fe2 [file] [log] [blame]
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2011-2012 Intel Corporation
*/
/*
* This file implements HW context support. On gen5+ a HW context consists of an
* opaque GPU object which is referenced at times of context saves and restores.
* With RC6 enabled, the context is also referenced as the GPU enters and exists
* from RC6 (GPU has it's own internal power context, except on gen5). Though
* something like a context does exist for the media ring, the code only
* supports contexts for the render ring.
*
* In software, there is a distinction between contexts created by the user,
* and the default HW context. The default HW context is used by GPU clients
* that do not request setup of their own hardware context. The default
* context's state is never restored to help prevent programming errors. This
* would happen if a client ran and piggy-backed off another clients GPU state.
* The default context only exists to give the GPU some offset to load as the
* current to invoke a save of the context we actually care about. In fact, the
* code could likely be constructed, albeit in a more complicated fashion, to
* never use the default context, though that limits the driver's ability to
* swap out, and/or destroy other contexts.
*
* All other contexts are created as a request by the GPU client. These contexts
* store GPU state, and thus allow GPU clients to not re-emit state (and
* potentially query certain state) at any time. The kernel driver makes
* certain that the appropriate commands are inserted.
*
* The context life cycle is semi-complicated in that context BOs may live
* longer than the context itself because of the way the hardware, and object
* tracking works. Below is a very crude representation of the state machine
* describing the context life.
* refcount pincount active
* S0: initial state 0 0 0
* S1: context created 1 0 0
* S2: context is currently running 2 1 X
* S3: GPU referenced, but not current 2 0 1
* S4: context is current, but destroyed 1 1 0
* S5: like S3, but destroyed 1 0 1
*
* The most common (but not all) transitions:
* S0->S1: client creates a context
* S1->S2: client submits execbuf with context
* S2->S3: other clients submits execbuf with context
* S3->S1: context object was retired
* S3->S2: clients submits another execbuf
* S2->S4: context destroy called with current context
* S3->S5->S0: destroy path
* S4->S5->S0: destroy path on current context
*
* There are two confusing terms used above:
* The "current context" means the context which is currently running on the
* GPU. The GPU has loaded its state already and has stored away the gtt
* offset of the BO. The GPU is not actively referencing the data at this
* offset, but it will on the next context switch. The only way to avoid this
* is to do a GPU reset.
*
* An "active context' is one which was previously the "current context" and is
* on the active list waiting for the next context switch to occur. Until this
* happens, the object must remain at the same gtt offset. It is therefore
* possible to destroy a context, but it is still active.
*
*/
#include <linux/log2.h>
#include <linux/nospec.h>
#include <drm/i915_drm.h>
#include "gt/gen6_ppgtt.h"
#include "gt/intel_context.h"
#include "gt/intel_engine_heartbeat.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_user.h"
#include "gt/intel_lrc_reg.h"
#include "gt/intel_ring.h"
#include "i915_gem_context.h"
#include "i915_globals.h"
#include "i915_trace.h"
#include "i915_user_extensions.h"
#define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1
static struct i915_global_gem_context {
struct i915_global base;
struct kmem_cache *slab_luts;
} global;
struct i915_lut_handle *i915_lut_handle_alloc(void)
{
return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
}
void i915_lut_handle_free(struct i915_lut_handle *lut)
{
return kmem_cache_free(global.slab_luts, lut);
}
static void lut_close(struct i915_gem_context *ctx)
{
struct radix_tree_iter iter;
void __rcu **slot;
lockdep_assert_held(&ctx->mutex);
rcu_read_lock();
radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
struct i915_vma *vma = rcu_dereference_raw(*slot);
struct drm_i915_gem_object *obj = vma->obj;
struct i915_lut_handle *lut;
if (!kref_get_unless_zero(&obj->base.refcount))
continue;
rcu_read_unlock();
i915_gem_object_lock(obj);
list_for_each_entry(lut, &obj->lut_list, obj_link) {
if (lut->ctx != ctx)
continue;
if (lut->handle != iter.index)
continue;
list_del(&lut->obj_link);
break;
}
i915_gem_object_unlock(obj);
rcu_read_lock();
if (&lut->obj_link != &obj->lut_list) {
i915_lut_handle_free(lut);
radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
if (atomic_dec_and_test(&vma->open_count) &&
!i915_vma_is_ggtt(vma))
i915_vma_close(vma);
i915_gem_object_put(obj);
}
i915_gem_object_put(obj);
}
rcu_read_unlock();
}
static struct intel_context *
lookup_user_engine(struct i915_gem_context *ctx,
unsigned long flags,
const struct i915_engine_class_instance *ci)
#define LOOKUP_USER_INDEX BIT(0)
{
int idx;
if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
return ERR_PTR(-EINVAL);
if (!i915_gem_context_user_engines(ctx)) {
struct intel_engine_cs *engine;
engine = intel_engine_lookup_user(ctx->i915,
ci->engine_class,
ci->engine_instance);
if (!engine)
return ERR_PTR(-EINVAL);
idx = engine->legacy_idx;
} else {
idx = ci->engine_instance;
}
return i915_gem_context_get_engine(ctx, idx);
}
static struct i915_address_space *
context_get_vm_rcu(struct i915_gem_context *ctx)
{
GEM_BUG_ON(!rcu_access_pointer(ctx->vm));
do {
struct i915_address_space *vm;
/*
* We do not allow downgrading from full-ppgtt [to a shared
* global gtt], so ctx->vm cannot become NULL.
*/
vm = rcu_dereference(ctx->vm);
if (!kref_get_unless_zero(&vm->ref))
continue;
/*
* This ppgtt may have be reallocated between
* the read and the kref, and reassigned to a third
* context. In order to avoid inadvertent sharing
* of this ppgtt with that third context (and not
* src), we have to confirm that we have the same
* ppgtt after passing through the strong memory
* barrier implied by a successful
* kref_get_unless_zero().
*
* Once we have acquired the current ppgtt of ctx,
* we no longer care if it is released from ctx, as
* it cannot be reallocated elsewhere.
*/
if (vm == rcu_access_pointer(ctx->vm))
return rcu_pointer_handoff(vm);
i915_vm_put(vm);
} while (1);
}
static void intel_context_set_gem(struct intel_context *ce,
struct i915_gem_context *ctx)
{
GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
RCU_INIT_POINTER(ce->gem_context, ctx);
if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
ce->ring = __intel_context_ring_size(SZ_16K);
if (rcu_access_pointer(ctx->vm)) {
struct i915_address_space *vm;
rcu_read_lock();
vm = context_get_vm_rcu(ctx); /* hmm */
rcu_read_unlock();
i915_vm_put(ce->vm);
ce->vm = vm;
}
GEM_BUG_ON(ce->timeline);
if (ctx->timeline)
ce->timeline = intel_timeline_get(ctx->timeline);
if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
intel_engine_has_semaphores(ce->engine))
__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
}
static void __free_engines(struct i915_gem_engines *e, unsigned int count)
{
while (count--) {
if (!e->engines[count])
continue;
RCU_INIT_POINTER(e->engines[count]->gem_context, NULL);
intel_context_put(e->engines[count]);
}
kfree(e);
}
static void free_engines(struct i915_gem_engines *e)
{
__free_engines(e, e->num_engines);
}
static void free_engines_rcu(struct rcu_head *rcu)
{
free_engines(container_of(rcu, struct i915_gem_engines, rcu));
}
static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
{
const struct intel_gt *gt = &ctx->i915->gt;
struct intel_engine_cs *engine;
struct i915_gem_engines *e;
enum intel_engine_id id;
e = kzalloc(struct_size(e, engines, I915_NUM_ENGINES), GFP_KERNEL);
if (!e)
return ERR_PTR(-ENOMEM);
init_rcu_head(&e->rcu);
for_each_engine(engine, gt, id) {
struct intel_context *ce;
if (engine->legacy_idx == INVALID_ENGINE)
continue;
GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
GEM_BUG_ON(e->engines[engine->legacy_idx]);
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
__free_engines(e, e->num_engines + 1);
return ERR_CAST(ce);
}
intel_context_set_gem(ce, ctx);
e->engines[engine->legacy_idx] = ce;
e->num_engines = max(e->num_engines, engine->legacy_idx);
}
e->num_engines++;
return e;
}
static void i915_gem_context_free(struct i915_gem_context *ctx)
{
GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
spin_lock(&ctx->i915->gem.contexts.lock);
list_del(&ctx->link);
spin_unlock(&ctx->i915->gem.contexts.lock);
free_engines(rcu_access_pointer(ctx->engines));
mutex_destroy(&ctx->engines_mutex);
if (ctx->timeline)
intel_timeline_put(ctx->timeline);
put_pid(ctx->pid);
mutex_destroy(&ctx->mutex);
kfree_rcu(ctx, rcu);
}
static void contexts_free_all(struct llist_node *list)
{
struct i915_gem_context *ctx, *cn;
llist_for_each_entry_safe(ctx, cn, list, free_link)
i915_gem_context_free(ctx);
}
static void contexts_flush_free(struct i915_gem_contexts *gc)
{
contexts_free_all(llist_del_all(&gc->free_list));
}
static void contexts_free_worker(struct work_struct *work)
{
struct i915_gem_contexts *gc =
container_of(work, typeof(*gc), free_work);
contexts_flush_free(gc);
}
void i915_gem_context_release(struct kref *ref)
{
struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
trace_i915_context_free(ctx);
if (llist_add(&ctx->free_link, &gc->free_list))
schedule_work(&gc->free_work);
}
static inline struct i915_gem_engines *
__context_engines_static(const struct i915_gem_context *ctx)
{
return rcu_dereference_protected(ctx->engines, true);
}
static bool __reset_engine(struct intel_engine_cs *engine)
{
struct intel_gt *gt = engine->gt;
bool success = false;
if (!intel_has_reset_engine(gt))
return false;
if (!test_and_set_bit(I915_RESET_ENGINE + engine->id,
&gt->reset.flags)) {
success = intel_engine_reset(engine, NULL) == 0;
clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
&gt->reset.flags);
}
return success;
}
static void __reset_context(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
intel_gt_handle_error(engine->gt, engine->mask, 0,
"context closure in %s", ctx->name);
}
static bool __cancel_engine(struct intel_engine_cs *engine)
{
/*
* Send a "high priority pulse" down the engine to cause the
* current request to be momentarily preempted. (If it fails to
* be preempted, it will be reset). As we have marked our context
* as banned, any incomplete request, including any running, will
* be skipped following the preemption.
*
* If there is no hangchecking (one of the reasons why we try to
* cancel the context) and no forced preemption, there may be no
* means by which we reset the GPU and evict the persistent hog.
* Ergo if we are unable to inject a preemptive pulse that can
* kill the banned context, we fallback to doing a local reset
* instead.
*/
if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) &&
!intel_engine_pulse(engine))
return true;
/* If we are unable to send a pulse, try resetting this engine. */
return __reset_engine(engine);
}
static struct intel_engine_cs *__active_engine(struct i915_request *rq)
{
struct intel_engine_cs *engine, *locked;
/*
* Serialise with __i915_request_submit() so that it sees
* is-banned?, or we know the request is already inflight.
*/
locked = READ_ONCE(rq->engine);
spin_lock_irq(&locked->active.lock);
while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
spin_unlock(&locked->active.lock);
spin_lock(&engine->active.lock);
locked = engine;
}
engine = NULL;
if (i915_request_is_active(rq) && !rq->fence.error)
engine = rq->engine;
spin_unlock_irq(&locked->active.lock);
return engine;
}
static struct intel_engine_cs *active_engine(struct intel_context *ce)
{
struct intel_engine_cs *engine = NULL;
struct i915_request *rq;
if (!ce->timeline)
return NULL;
mutex_lock(&ce->timeline->mutex);
list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
if (i915_request_completed(rq))
break;
/* Check with the backend if the request is inflight */
engine = __active_engine(rq);
if (engine)
break;
}
mutex_unlock(&ce->timeline->mutex);
return engine;
}
static void kill_context(struct i915_gem_context *ctx)
{
struct i915_gem_engines_iter it;
struct intel_context *ce;
/*
* Map the user's engine back to the actual engines; one virtual
* engine will be mapped to multiple engines, and using ctx->engine[]
* the same engine may be have multiple instances in the user's map.
* However, we only care about pending requests, so only include
* engines on which there are incomplete requests.
*/
for_each_gem_engine(ce, __context_engines_static(ctx), it) {
struct intel_engine_cs *engine;
if (intel_context_set_banned(ce))
continue;
/*
* Check the current active state of this context; if we
* are currently executing on the GPU we need to evict
* ourselves. On the other hand, if we haven't yet been
* submitted to the GPU or if everything is complete,
* we have nothing to do.
*/
engine = active_engine(ce);
/* First attempt to gracefully cancel the context */
if (engine && !__cancel_engine(engine))
/*
* If we are unable to send a preemptive pulse to bump
* the context from the GPU, we have to resort to a full
* reset. We hope the collateral damage is worth it.
*/
__reset_context(ctx, engine);
}
}
static void set_closed_name(struct i915_gem_context *ctx)
{
char *s;
/* Replace '[]' with '<>' to indicate closed in debug prints */
s = strrchr(ctx->name, '[');
if (!s)
return;
*s = '<';
s = strchr(s + 1, ']');
if (s)
*s = '>';
}
static void context_close(struct i915_gem_context *ctx)
{
struct i915_address_space *vm;
i915_gem_context_set_closed(ctx);
set_closed_name(ctx);
mutex_lock(&ctx->mutex);
vm = i915_gem_context_vm(ctx);
if (vm)
i915_vm_close(vm);
ctx->file_priv = ERR_PTR(-EBADF);
/*
* The LUT uses the VMA as a backpointer to unref the object,
* so we need to clear the LUT before we close all the VMA (inside
* the ppgtt).
*/
lut_close(ctx);
mutex_unlock(&ctx->mutex);
/*
* If the user has disabled hangchecking, we can not be sure that
* the batches will ever complete after the context is closed,
* keeping the context and all resources pinned forever. So in this
* case we opt to forcibly kill off all remaining requests on
* context close.
*/
if (!i915_gem_context_is_persistent(ctx) ||
!i915_modparams.enable_hangcheck)
kill_context(ctx);
i915_gem_context_put(ctx);
}
static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
{
if (i915_gem_context_is_persistent(ctx) == state)
return 0;
if (state) {
/*
* Only contexts that are short-lived [that will expire or be
* reset] are allowed to survive past termination. We require
* hangcheck to ensure that the persistent requests are healthy.
*/
if (!i915_modparams.enable_hangcheck)
return -EINVAL;
i915_gem_context_set_persistence(ctx);
} else {
/* To cancel a context we use "preempt-to-idle" */
if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
return -ENODEV;
i915_gem_context_clear_persistence(ctx);
}
return 0;
}
static struct i915_gem_context *
__create_context(struct drm_i915_private *i915)
{
struct i915_gem_context *ctx;
struct i915_gem_engines *e;
int err;
int i;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
kref_init(&ctx->ref);
ctx->i915 = i915;
ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
mutex_init(&ctx->mutex);
mutex_init(&ctx->engines_mutex);
e = default_engines(ctx);
if (IS_ERR(e)) {
err = PTR_ERR(e);
goto err_free;
}
RCU_INIT_POINTER(ctx->engines, e);
INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
/* NB: Mark all slices as needing a remap so that when the context first
* loads it will restore whatever remap state already exists. If there
* is no remap info, it will be a NOP. */
ctx->remap_slice = ALL_L3_SLICES(i915);
i915_gem_context_set_bannable(ctx);
i915_gem_context_set_recoverable(ctx);
__context_set_persistence(ctx, true /* cgroup hook? */);
for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;
spin_lock(&i915->gem.contexts.lock);
list_add_tail(&ctx->link, &i915->gem.contexts.list);
spin_unlock(&i915->gem.contexts.lock);
return ctx;
err_free:
kfree(ctx);
return ERR_PTR(err);
}
static void
context_apply_all(struct i915_gem_context *ctx,
void (*fn)(struct intel_context *ce, void *data),
void *data)
{
struct i915_gem_engines_iter it;
struct intel_context *ce;
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
fn(ce, data);
i915_gem_context_unlock_engines(ctx);
}
static void __apply_ppgtt(struct intel_context *ce, void *vm)
{
i915_vm_put(ce->vm);
ce->vm = i915_vm_get(vm);
}
static struct i915_address_space *
__set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
{
struct i915_address_space *old = i915_gem_context_vm(ctx);
GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));
rcu_assign_pointer(ctx->vm, i915_vm_open(vm));
context_apply_all(ctx, __apply_ppgtt, vm);
return old;
}
static void __assign_ppgtt(struct i915_gem_context *ctx,
struct i915_address_space *vm)
{
if (vm == rcu_access_pointer(ctx->vm))
return;
vm = __set_ppgtt(ctx, vm);
if (vm)
i915_vm_close(vm);
}
static void __set_timeline(struct intel_timeline **dst,
struct intel_timeline *src)
{
struct intel_timeline *old = *dst;
*dst = src ? intel_timeline_get(src) : NULL;
if (old)
intel_timeline_put(old);
}
static void __apply_timeline(struct intel_context *ce, void *timeline)
{
__set_timeline(&ce->timeline, timeline);
}
static void __assign_timeline(struct i915_gem_context *ctx,
struct intel_timeline *timeline)
{
__set_timeline(&ctx->timeline, timeline);
context_apply_all(ctx, __apply_timeline, timeline);
}
static struct i915_gem_context *
i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
{
struct i915_gem_context *ctx;
if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
!HAS_EXECLISTS(i915))
return ERR_PTR(-EINVAL);
/* Reap the stale contexts */
contexts_flush_free(&i915->gem.contexts);
ctx = __create_context(i915);
if (IS_ERR(ctx))
return ctx;
if (HAS_FULL_PPGTT(i915)) {
struct i915_ppgtt *ppgtt;
ppgtt = i915_ppgtt_create(&i915->gt);
if (IS_ERR(ppgtt)) {
DRM_DEBUG_DRIVER("PPGTT setup failed (%ld)\n",
PTR_ERR(ppgtt));
context_close(ctx);
return ERR_CAST(ppgtt);
}
mutex_lock(&ctx->mutex);
__assign_ppgtt(ctx, &ppgtt->vm);
mutex_unlock(&ctx->mutex);
i915_vm_put(&ppgtt->vm);
}
if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
struct intel_timeline *timeline;
timeline = intel_timeline_create(&i915->gt, NULL);
if (IS_ERR(timeline)) {
context_close(ctx);
return ERR_CAST(timeline);
}
__assign_timeline(ctx, timeline);
intel_timeline_put(timeline);
}
trace_i915_context_create(ctx);
return ctx;
}
static void init_contexts(struct i915_gem_contexts *gc)
{
spin_lock_init(&gc->lock);
INIT_LIST_HEAD(&gc->list);
INIT_WORK(&gc->free_work, contexts_free_worker);
init_llist_head(&gc->free_list);
}
void i915_gem_init__contexts(struct drm_i915_private *i915)
{
init_contexts(&i915->gem.contexts);
DRM_DEBUG_DRIVER("%s context support initialized\n",
DRIVER_CAPS(i915)->has_logical_contexts ?
"logical" : "fake");
}
void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
{
flush_work(&i915->gem.contexts.free_work);
}
static int vm_idr_cleanup(int id, void *p, void *data)
{
i915_vm_put(p);
return 0;
}
static int gem_context_register(struct i915_gem_context *ctx,
struct drm_i915_file_private *fpriv,
u32 *id)
{
struct i915_address_space *vm;
int ret;
ctx->file_priv = fpriv;
mutex_lock(&ctx->mutex);
vm = i915_gem_context_vm(ctx);
if (vm)
WRITE_ONCE(vm->file, fpriv); /* XXX */
mutex_unlock(&ctx->mutex);
ctx->pid = get_task_pid(current, PIDTYPE_PID);
snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
current->comm, pid_nr(ctx->pid));
/* And finally expose ourselves to userspace via the idr */
ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
if (ret)
put_pid(fetch_and_zero(&ctx->pid));
return ret;
}
int i915_gem_context_open(struct drm_i915_private *i915,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_gem_context *ctx;
int err;
u32 id;
xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
mutex_init(&file_priv->vm_idr_lock);
idr_init_base(&file_priv->vm_idr, 1);
ctx = i915_gem_create_context(i915, 0);
if (IS_ERR(ctx)) {
err = PTR_ERR(ctx);
goto err;
}
err = gem_context_register(ctx, file_priv, &id);
if (err < 0)
goto err_ctx;
GEM_BUG_ON(id);
return 0;
err_ctx:
context_close(ctx);
err:
idr_destroy(&file_priv->vm_idr);
xa_destroy(&file_priv->context_xa);
mutex_destroy(&file_priv->vm_idr_lock);
return err;
}
void i915_gem_context_close(struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_private *i915 = file_priv->dev_priv;
struct i915_gem_context *ctx;
unsigned long idx;
xa_for_each(&file_priv->context_xa, idx, ctx)
context_close(ctx);
xa_destroy(&file_priv->context_xa);
idr_for_each(&file_priv->vm_idr, vm_idr_cleanup, NULL);
idr_destroy(&file_priv->vm_idr);
mutex_destroy(&file_priv->vm_idr_lock);
contexts_flush_free(&i915->gem.contexts);
}
int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_vm_control *args = data;
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_ppgtt *ppgtt;
int err;
if (!HAS_FULL_PPGTT(i915))
return -ENODEV;
if (args->flags)
return -EINVAL;
ppgtt = i915_ppgtt_create(&i915->gt);
if (IS_ERR(ppgtt))
return PTR_ERR(ppgtt);
ppgtt->vm.file = file_priv;
if (args->extensions) {
err = i915_user_extensions(u64_to_user_ptr(args->extensions),
NULL, 0,
ppgtt);
if (err)
goto err_put;
}
err = mutex_lock_interruptible(&file_priv->vm_idr_lock);
if (err)
goto err_put;
err = idr_alloc(&file_priv->vm_idr, &ppgtt->vm, 0, 0, GFP_KERNEL);
if (err < 0)
goto err_unlock;
GEM_BUG_ON(err == 0); /* reserved for invalid/unassigned ppgtt */
mutex_unlock(&file_priv->vm_idr_lock);
args->vm_id = err;
return 0;
err_unlock:
mutex_unlock(&file_priv->vm_idr_lock);
err_put:
i915_vm_put(&ppgtt->vm);
return err;
}
int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_gem_vm_control *args = data;
struct i915_address_space *vm;
int err;
u32 id;
if (args->flags)
return -EINVAL;
if (args->extensions)
return -EINVAL;
id = args->vm_id;
if (!id)
return -ENOENT;
err = mutex_lock_interruptible(&file_priv->vm_idr_lock);
if (err)
return err;
vm = idr_remove(&file_priv->vm_idr, id);
mutex_unlock(&file_priv->vm_idr_lock);
if (!vm)
return -ENOENT;
i915_vm_put(vm);
return 0;
}
struct context_barrier_task {
struct i915_active base;
void (*task)(void *data);
void *data;
};
__i915_active_call
static void cb_retire(struct i915_active *base)
{
struct context_barrier_task *cb = container_of(base, typeof(*cb), base);
if (cb->task)
cb->task(cb->data);
i915_active_fini(&cb->base);
kfree(cb);
}
I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
static int context_barrier_task(struct i915_gem_context *ctx,
intel_engine_mask_t engines,
bool (*skip)(struct intel_context *ce, void *data),
int (*emit)(struct i915_request *rq, void *data),
void (*task)(void *data),
void *data)
{
struct context_barrier_task *cb;
struct i915_gem_engines_iter it;
struct intel_context *ce;
int err = 0;
GEM_BUG_ON(!task);
cb = kmalloc(sizeof(*cb), GFP_KERNEL);
if (!cb)
return -ENOMEM;
i915_active_init(&cb->base, NULL, cb_retire);
err = i915_active_acquire(&cb->base);
if (err) {
kfree(cb);
return err;
}
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
struct i915_request *rq;
if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
ce->engine->mask)) {
err = -ENXIO;
break;
}
if (!(ce->engine->mask & engines))
continue;
if (skip && skip(ce, data))
continue;
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
err = 0;
if (emit)
err = emit(rq, data);
if (err == 0)
err = i915_active_add_request(&cb->base, rq);
i915_request_add(rq);
if (err)
break;
}
i915_gem_context_unlock_engines(ctx);
cb->task = err ? NULL : task; /* caller needs to unwind instead */
cb->data = data;
i915_active_release(&cb->base);
return err;
}
static int get_ppgtt(struct drm_i915_file_private *file_priv,
struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct i915_address_space *vm;
int ret;
if (!rcu_access_pointer(ctx->vm))
return -ENODEV;
rcu_read_lock();
vm = context_get_vm_rcu(ctx);
rcu_read_unlock();
ret = mutex_lock_interruptible(&file_priv->vm_idr_lock);
if (ret)
goto err_put;
ret = idr_alloc(&file_priv->vm_idr, vm, 0, 0, GFP_KERNEL);
GEM_BUG_ON(!ret);
if (ret < 0)
goto err_unlock;
i915_vm_open(vm);
args->size = 0;
args->value = ret;
ret = 0;
err_unlock:
mutex_unlock(&file_priv->vm_idr_lock);
err_put:
i915_vm_put(vm);
return ret;
}
static void set_ppgtt_barrier(void *data)
{
struct i915_address_space *old = data;
if (INTEL_GEN(old->i915) < 8)
gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
i915_vm_close(old);
}
static int emit_ppgtt_update(struct i915_request *rq, void *data)
{
struct i915_address_space *vm = rq->context->vm;
struct intel_engine_cs *engine = rq->engine;
u32 base = engine->mmio_base;
u32 *cs;
int i;
if (i915_vm_is_4lvl(vm)) {
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_LOAD_REGISTER_IMM(2);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
*cs++ = upper_32_bits(pd_daddr);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
*cs++ = lower_32_bits(pd_daddr);
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
int err;
/* Magic required to prevent forcewake errors! */
err = engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
return err;
cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
for (i = GEN8_3LVL_PDPES; i--; ) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
*cs++ = upper_32_bits(pd_daddr);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
*cs++ = lower_32_bits(pd_daddr);
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
}
return 0;
}
static bool skip_ppgtt_update(struct intel_context *ce, void *data)
{
if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
return true;
if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
return false;
if (!atomic_read(&ce->pin_count))
return true;
/* ppGTT is not part of the legacy context image */
if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm)))
return true;
return false;
}
static int set_ppgtt(struct drm_i915_file_private *file_priv,
struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct i915_address_space *vm, *old;
int err;
if (args->size)
return -EINVAL;
if (!rcu_access_pointer(ctx->vm))
return -ENODEV;
if (upper_32_bits(args->value))
return -ENOENT;
rcu_read_lock();
vm = idr_find(&file_priv->vm_idr, args->value);
if (vm && !kref_get_unless_zero(&vm->ref))
vm = NULL;
rcu_read_unlock();
if (!vm)
return -ENOENT;
err = mutex_lock_interruptible(&ctx->mutex);
if (err)
goto out;
if (i915_gem_context_is_closed(ctx)) {
err = -ENOENT;
goto unlock;
}
if (vm == rcu_access_pointer(ctx->vm))
goto unlock;
/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
lut_close(ctx);
old = __set_ppgtt(ctx, vm);
/*
* We need to flush any requests using the current ppgtt before
* we release it as the requests do not hold a reference themselves,
* only indirectly through the context.
*/
err = context_barrier_task(ctx, ALL_ENGINES,
skip_ppgtt_update,
emit_ppgtt_update,
set_ppgtt_barrier,
old);
if (err) {
i915_vm_close(__set_ppgtt(ctx, old));
i915_vm_close(old);
}
unlock:
mutex_unlock(&ctx->mutex);
out:
i915_vm_put(vm);
return err;
}
static int gen8_emit_rpcs_config(struct i915_request *rq,
struct intel_context *ce,
struct intel_sseu sseu)
{
u64 offset;
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
offset = i915_ggtt_offset(ce->state) +
LRC_STATE_PN * PAGE_SIZE +
CTX_R_PWR_CLK_STATE * 4;
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = intel_sseu_make_rpcs(rq->i915, &sseu);
intel_ring_advance(rq, cs);
return 0;
}
static int
gen8_modify_rpcs(struct intel_context *ce, struct intel_sseu sseu)
{
struct i915_request *rq;
int ret;
lockdep_assert_held(&ce->pin_mutex);
/*
* If the context is not idle, we have to submit an ordered request to
* modify its context image via the kernel context (writing to our own
* image, or into the registers directory, does not stick). Pristine
* and idle contexts will be configured on pinning.
*/
if (!intel_context_pin_if_active(ce))
return 0;
rq = intel_engine_create_kernel_request(ce->engine);
if (IS_ERR(rq)) {
ret = PTR_ERR(rq);
goto out_unpin;
}
/* Serialise with the remote context */
ret = intel_context_prepare_remote_request(ce, rq);
if (ret == 0)
ret = gen8_emit_rpcs_config(rq, ce, sseu);
i915_request_add(rq);
out_unpin:
intel_context_unpin(ce);
return ret;
}
static int
intel_context_reconfigure_sseu(struct intel_context *ce, struct intel_sseu sseu)
{
int ret;
GEM_BUG_ON(INTEL_GEN(ce->engine->i915) < 8);
ret = intel_context_lock_pinned(ce);
if (ret)
return ret;
/* Nothing to do if unmodified. */
if (!memcmp(&ce->sseu, &sseu, sizeof(sseu)))
goto unlock;
ret = gen8_modify_rpcs(ce, sseu);
if (!ret)
ce->sseu = sseu;
unlock:
intel_context_unlock_pinned(ce);
return ret;
}
static int
user_to_context_sseu(struct drm_i915_private *i915,
const struct drm_i915_gem_context_param_sseu *user,
struct intel_sseu *context)
{
const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu;
/* No zeros in any field. */
if (!user->slice_mask || !user->subslice_mask ||
!user->min_eus_per_subslice || !user->max_eus_per_subslice)
return -EINVAL;
/* Max > min. */
if (user->max_eus_per_subslice < user->min_eus_per_subslice)
return -EINVAL;
/*
* Some future proofing on the types since the uAPI is wider than the
* current internal implementation.
*/
if (overflows_type(user->slice_mask, context->slice_mask) ||
overflows_type(user->subslice_mask, context->subslice_mask) ||
overflows_type(user->min_eus_per_subslice,
context->min_eus_per_subslice) ||
overflows_type(user->max_eus_per_subslice,
context->max_eus_per_subslice))
return -EINVAL;
/* Check validity against hardware. */
if (user->slice_mask & ~device->slice_mask)
return -EINVAL;
if (user->subslice_mask & ~device->subslice_mask[0])
return -EINVAL;
if (user->max_eus_per_subslice > device->max_eus_per_subslice)
return -EINVAL;
context->slice_mask = user->slice_mask;
context->subslice_mask = user->subslice_mask;
context->min_eus_per_subslice = user->min_eus_per_subslice;
context->max_eus_per_subslice = user->max_eus_per_subslice;
/* Part specific restrictions. */
if (IS_GEN(i915, 11)) {
unsigned int hw_s = hweight8(device->slice_mask);
unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
unsigned int req_s = hweight8(context->slice_mask);
unsigned int req_ss = hweight8(context->subslice_mask);
/*
* Only full subslice enablement is possible if more than one
* slice is turned on.
*/
if (req_s > 1 && req_ss != hw_ss_per_s)
return -EINVAL;
/*
* If more than four (SScount bitfield limit) subslices are
* requested then the number has to be even.
*/
if (req_ss > 4 && (req_ss & 1))
return -EINVAL;
/*
* If only one slice is enabled and subslice count is below the
* device full enablement, it must be at most half of the all
* available subslices.
*/
if (req_s == 1 && req_ss < hw_ss_per_s &&
req_ss > (hw_ss_per_s / 2))
return -EINVAL;
/* ABI restriction - VME use case only. */
/* All slices or one slice only. */
if (req_s != 1 && req_s != hw_s)
return -EINVAL;
/*
* Half subslices or full enablement only when one slice is
* enabled.
*/
if (req_s == 1 &&
(req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
return -EINVAL;
/* No EU configuration changes. */
if ((user->min_eus_per_subslice !=
device->max_eus_per_subslice) ||
(user->max_eus_per_subslice !=
device->max_eus_per_subslice))
return -EINVAL;
}
return 0;
}
static int set_sseu(struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct drm_i915_private *i915 = ctx->i915;
struct drm_i915_gem_context_param_sseu user_sseu;
struct intel_context *ce;
struct intel_sseu sseu;
unsigned long lookup;
int ret;
if (args->size < sizeof(user_sseu))
return -EINVAL;
if (!IS_GEN(i915, 11))
return -ENODEV;
if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
sizeof(user_sseu)))
return -EFAULT;
if (user_sseu.rsvd)
return -EINVAL;
if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
return -EINVAL;
lookup = 0;
if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
lookup |= LOOKUP_USER_INDEX;
ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
/* Only render engine supports RPCS configuration. */
if (ce->engine->class != RENDER_CLASS) {
ret = -ENODEV;
goto out_ce;
}
ret = user_to_context_sseu(i915, &user_sseu, &sseu);
if (ret)
goto out_ce;
ret = intel_context_reconfigure_sseu(ce, sseu);
if (ret)
goto out_ce;
args->size = sizeof(user_sseu);
out_ce:
intel_context_put(ce);
return ret;
}
struct set_engines {
struct i915_gem_context *ctx;
struct i915_gem_engines *engines;
};
static int
set_engines__load_balance(struct i915_user_extension __user *base, void *data)
{
struct i915_context_engines_load_balance __user *ext =
container_of_user(base, typeof(*ext), base);
const struct set_engines *set = data;
struct intel_engine_cs *stack[16];
struct intel_engine_cs **siblings;
struct intel_context *ce;
u16 num_siblings, idx;
unsigned int n;
int err;
if (!HAS_EXECLISTS(set->ctx->i915))
return -ENODEV;
if (USES_GUC_SUBMISSION(set->ctx->i915))
return -ENODEV; /* not implement yet */
if (get_user(idx, &ext->engine_index))
return -EFAULT;
if (idx >= set->engines->num_engines) {
DRM_DEBUG("Invalid placement value, %d >= %d\n",
idx, set->engines->num_engines);
return -EINVAL;
}
idx = array_index_nospec(idx, set->engines->num_engines);
if (set->engines->engines[idx]) {
DRM_DEBUG("Invalid placement[%d], already occupied\n", idx);
return -EEXIST;
}
if (get_user(num_siblings, &ext->num_siblings))
return -EFAULT;
err = check_user_mbz(&ext->flags);
if (err)
return err;
err = check_user_mbz(&ext->mbz64);
if (err)
return err;
siblings = stack;
if (num_siblings > ARRAY_SIZE(stack)) {
siblings = kmalloc_array(num_siblings,
sizeof(*siblings),
GFP_KERNEL);
if (!siblings)
return -ENOMEM;
}
for (n = 0; n < num_siblings; n++) {
struct i915_engine_class_instance ci;
if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
err = -EFAULT;
goto out_siblings;
}
siblings[n] = intel_engine_lookup_user(set->ctx->i915,
ci.engine_class,
ci.engine_instance);
if (!siblings[n]) {
DRM_DEBUG("Invalid sibling[%d]: { class:%d, inst:%d }\n",
n, ci.engine_class, ci.engine_instance);
err = -EINVAL;
goto out_siblings;
}
}
ce = intel_execlists_create_virtual(siblings, n);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out_siblings;
}
intel_context_set_gem(ce, set->ctx);
if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
intel_context_put(ce);
err = -EEXIST;
goto out_siblings;
}
out_siblings:
if (siblings != stack)
kfree(siblings);
return err;
}
static int
set_engines__bond(struct i915_user_extension __user *base, void *data)
{
struct i915_context_engines_bond __user *ext =
container_of_user(base, typeof(*ext), base);
const struct set_engines *set = data;
struct i915_engine_class_instance ci;
struct intel_engine_cs *virtual;
struct intel_engine_cs *master;
u16 idx, num_bonds;
int err, n;
if (get_user(idx, &ext->virtual_index))
return -EFAULT;
if (idx >= set->engines->num_engines) {
DRM_DEBUG("Invalid index for virtual engine: %d >= %d\n",
idx, set->engines->num_engines);
return -EINVAL;
}
idx = array_index_nospec(idx, set->engines->num_engines);
if (!set->engines->engines[idx]) {
DRM_DEBUG("Invalid engine at %d\n", idx);
return -EINVAL;
}
virtual = set->engines->engines[idx]->engine;
err = check_user_mbz(&ext->flags);
if (err)
return err;
for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
err = check_user_mbz(&ext->mbz64[n]);
if (err)
return err;
}
if (copy_from_user(&ci, &ext->master, sizeof(ci)))
return -EFAULT;
master = intel_engine_lookup_user(set->ctx->i915,
ci.engine_class, ci.engine_instance);
if (!master) {
DRM_DEBUG("Unrecognised master engine: { class:%u, instance:%u }\n",
ci.engine_class, ci.engine_instance);
return -EINVAL;
}
if (get_user(num_bonds, &ext->num_bonds))
return -EFAULT;
for (n = 0; n < num_bonds; n++) {
struct intel_engine_cs *bond;
if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
return -EFAULT;
bond = intel_engine_lookup_user(set->ctx->i915,
ci.engine_class,
ci.engine_instance);
if (!bond) {
DRM_DEBUG("Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
n, ci.engine_class, ci.engine_instance);
return -EINVAL;
}
/*
* A non-virtual engine has no siblings to choose between; and
* a submit fence will always be directed to the one engine.
*/
if (intel_engine_is_virtual(virtual)) {
err = intel_virtual_engine_attach_bond(virtual,
master,
bond);
if (err)
return err;
}
}
return 0;
}
static const i915_user_extension_fn set_engines__extensions[] = {
[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
};
static int
set_engines(struct i915_gem_context *ctx,
const struct drm_i915_gem_context_param *args)
{
struct i915_context_param_engines __user *user =
u64_to_user_ptr(args->value);
struct set_engines set = { .ctx = ctx };
unsigned int num_engines, n;
u64 extensions;
int err;
if (!args->size) { /* switch back to legacy user_ring_map */
if (!i915_gem_context_user_engines(ctx))
return 0;
set.engines = default_engines(ctx);
if (IS_ERR(set.engines))
return PTR_ERR(set.engines);
goto replace;
}
BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
if (args->size < sizeof(*user) ||
!IS_ALIGNED(args->size, sizeof(*user->engines))) {
DRM_DEBUG("Invalid size for engine array: %d\n",
args->size);
return -EINVAL;
}
/*
* Note that I915_EXEC_RING_MASK limits execbuf to only using the
* first 64 engines defined here.
*/
num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
set.engines = kmalloc(struct_size(set.engines, engines, num_engines),
GFP_KERNEL);
if (!set.engines)
return -ENOMEM;
init_rcu_head(&set.engines->rcu);
for (n = 0; n < num_engines; n++) {
struct i915_engine_class_instance ci;
struct intel_engine_cs *engine;
struct intel_context *ce;
if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
__free_engines(set.engines, n);
return -EFAULT;
}
if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
set.engines->engines[n] = NULL;
continue;
}
engine = intel_engine_lookup_user(ctx->i915,
ci.engine_class,
ci.engine_instance);
if (!engine) {
DRM_DEBUG("Invalid engine[%d]: { class:%d, instance:%d }\n",
n, ci.engine_class, ci.engine_instance);
__free_engines(set.engines, n);
return -ENOENT;
}
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
__free_engines(set.engines, n);
return PTR_ERR(ce);
}
intel_context_set_gem(ce, ctx);
set.engines->engines[n] = ce;
}
set.engines->num_engines = num_engines;
err = -EFAULT;
if (!get_user(extensions, &user->extensions))
err = i915_user_extensions(u64_to_user_ptr(extensions),
set_engines__extensions,
ARRAY_SIZE(set_engines__extensions),
&set);
if (err) {
free_engines(set.engines);
return err;
}
replace:
mutex_lock(&ctx->engines_mutex);
if (args->size)
i915_gem_context_set_user_engines(ctx);
else
i915_gem_context_clear_user_engines(ctx);
set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
mutex_unlock(&ctx->engines_mutex);
call_rcu(&set.engines->rcu, free_engines_rcu);
return 0;
}
static struct i915_gem_engines *
__copy_engines(struct i915_gem_engines *e)
{
struct i915_gem_engines *copy;
unsigned int n;
copy = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
if (!copy)
return ERR_PTR(-ENOMEM);
init_rcu_head(&copy->rcu);
for (n = 0; n < e->num_engines; n++) {
if (e->engines[n])
copy->engines[n] = intel_context_get(e->engines[n]);
else
copy->engines[n] = NULL;
}
copy->num_engines = n;
return copy;
}
static int
get_engines(struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct i915_context_param_engines __user *user;
struct i915_gem_engines *e;
size_t n, count, size;
int err = 0;
err = mutex_lock_interruptible(&ctx->engines_mutex);
if (err)
return err;
e = NULL;
if (i915_gem_context_user_engines(ctx))
e = __copy_engines(i915_gem_context_engines(ctx));
mutex_unlock(&ctx->engines_mutex);
if (IS_ERR_OR_NULL(e)) {
args->size = 0;
return PTR_ERR_OR_ZERO(e);
}
count = e->num_engines;
/* Be paranoid in case we have an impedance mismatch */
if (!check_struct_size(user, engines, count, &size)) {
err = -EINVAL;
goto err_free;
}
if (overflows_type(size, args->size)) {
err = -EINVAL;
goto err_free;
}
if (!args->size) {
args->size = size;
goto err_free;
}
if (args->size < size) {
err = -EINVAL;
goto err_free;
}
user = u64_to_user_ptr(args->value);
if (!access_ok(user, size)) {
err = -EFAULT;
goto err_free;
}
if (put_user(0, &user->extensions)) {
err = -EFAULT;
goto err_free;
}
for (n = 0; n < count; n++) {
struct i915_engine_class_instance ci = {
.engine_class = I915_ENGINE_CLASS_INVALID,
.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
};
if (e->engines[n]) {
ci.engine_class = e->engines[n]->engine->uabi_class;
ci.engine_instance = e->engines[n]->engine->uabi_instance;
}
if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
err = -EFAULT;
goto err_free;
}
}
args->size = size;
err_free:
free_engines(e);
return err;
}
static int
set_persistence(struct i915_gem_context *ctx,
const struct drm_i915_gem_context_param *args)
{
if (args->size)
return -EINVAL;
return __context_set_persistence(ctx, args->value);
}
static void __apply_priority(struct intel_context *ce, void *arg)
{
struct i915_gem_context *ctx = arg;
if (!intel_engine_has_semaphores(ce->engine))
return;
if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
intel_context_set_use_semaphores(ce);
else
intel_context_clear_use_semaphores(ce);
}
static int set_priority(struct i915_gem_context *ctx,
const struct drm_i915_gem_context_param *args)
{
s64 priority = args->value;
if (args->size)
return -EINVAL;
if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
return -ENODEV;
if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
priority < I915_CONTEXT_MIN_USER_PRIORITY)
return -EINVAL;
if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
!capable(CAP_SYS_NICE))
return -EPERM;
ctx->sched.priority = I915_USER_PRIORITY(priority);
context_apply_all(ctx, __apply_priority, ctx);
return 0;
}
static int ctx_setparam(struct drm_i915_file_private *fpriv,
struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
int ret = 0;
switch (args->param) {
case I915_CONTEXT_PARAM_NO_ZEROMAP:
if (args->size)
ret = -EINVAL;
else if (args->value)
set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
else
clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
break;
case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
if (args->size)
ret = -EINVAL;
else if (args->value)
i915_gem_context_set_no_error_capture(ctx);
else
i915_gem_context_clear_no_error_capture(ctx);
break;
case I915_CONTEXT_PARAM_BANNABLE:
if (args->size)
ret = -EINVAL;
else if (!capable(CAP_SYS_ADMIN) && !args->value)
ret = -EPERM;
else if (args->value)
i915_gem_context_set_bannable(ctx);
else
i915_gem_context_clear_bannable(ctx);
break;
case I915_CONTEXT_PARAM_RECOVERABLE:
if (args->size)
ret = -EINVAL;
else if (args->value)
i915_gem_context_set_recoverable(ctx);
else
i915_gem_context_clear_recoverable(ctx);
break;
case I915_CONTEXT_PARAM_PRIORITY:
ret = set_priority(ctx, args);
break;
case I915_CONTEXT_PARAM_SSEU:
ret = set_sseu(ctx, args);
break;
case I915_CONTEXT_PARAM_VM:
ret = set_ppgtt(fpriv, ctx, args);
break;
case I915_CONTEXT_PARAM_ENGINES:
ret = set_engines(ctx, args);
break;
case I915_CONTEXT_PARAM_PERSISTENCE:
ret = set_persistence(ctx, args);
break;
case I915_CONTEXT_PARAM_BAN_PERIOD:
default:
ret = -EINVAL;
break;
}
return ret;
}
struct create_ext {
struct i915_gem_context *ctx;
struct drm_i915_file_private *fpriv;
};
static int create_setparam(struct i915_user_extension __user *ext, void *data)
{
struct drm_i915_gem_context_create_ext_setparam local;
const struct create_ext *arg = data;
if (copy_from_user(&local, ext, sizeof(local)))
return -EFAULT;
if (local.param.ctx_id)
return -EINVAL;
return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
}
static int clone_engines(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
struct i915_gem_engines *clone;
bool user_engines;
unsigned long n;
clone = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
if (!clone)
goto err_unlock;
init_rcu_head(&clone->rcu);
for (n = 0; n < e->num_engines; n++) {
struct intel_engine_cs *engine;
if (!e->engines[n]) {
clone->engines[n] = NULL;
continue;
}
engine = e->engines[n]->engine;
/*
* Virtual engines are singletons; they can only exist
* inside a single context, because they embed their
* HW context... As each virtual context implies a single
* timeline (each engine can only dequeue a single request
* at any time), it would be surprising for two contexts
* to use the same engine. So let's create a copy of
* the virtual engine instead.
*/
if (intel_engine_is_virtual(engine))
clone->engines[n] =
intel_execlists_clone_virtual(engine);
else
clone->engines[n] = intel_context_create(engine);
if (IS_ERR_OR_NULL(clone->engines[n])) {
__free_engines(clone, n);
goto err_unlock;
}
intel_context_set_gem(clone->engines[n], dst);
}
clone->num_engines = n;
user_engines = i915_gem_context_user_engines(src);
i915_gem_context_unlock_engines(src);
/* Serialised by constructor */
free_engines(__context_engines_static(dst));
RCU_INIT_POINTER(dst->engines, clone);
if (user_engines)
i915_gem_context_set_user_engines(dst);
else
i915_gem_context_clear_user_engines(dst);
return 0;
err_unlock:
i915_gem_context_unlock_engines(src);
return -ENOMEM;
}
static int clone_flags(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
dst->user_flags = src->user_flags;
return 0;
}
static int clone_schedattr(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
dst->sched = src->sched;
return 0;
}
static int clone_sseu(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
struct i915_gem_engines *clone;
unsigned long n;
int err;
/* no locking required; sole access under constructor*/
clone = __context_engines_static(dst);
if (e->num_engines != clone->num_engines) {
err = -EINVAL;
goto unlock;
}
for (n = 0; n < e->num_engines; n++) {
struct intel_context *ce = e->engines[n];
if (clone->engines[n]->engine->class != ce->engine->class) {
/* Must have compatible engine maps! */
err = -EINVAL;
goto unlock;
}
/* serialises with set_sseu */
err = intel_context_lock_pinned(ce);
if (err)
goto unlock;
clone->engines[n]->sseu = ce->sseu;
intel_context_unlock_pinned(ce);
}
err = 0;
unlock:
i915_gem_context_unlock_engines(src);
return err;
}
static int clone_timeline(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
if (src->timeline)
__assign_timeline(dst, src->timeline);
return 0;
}
static int clone_vm(struct i915_gem_context *dst,
struct i915_gem_context *src)
{
struct i915_address_space *vm;
int err = 0;
if (!rcu_access_pointer(src->vm))
return 0;
rcu_read_lock();
vm = context_get_vm_rcu(src);
rcu_read_unlock();
if (!mutex_lock_interruptible(&dst->mutex)) {
__assign_ppgtt(dst, vm);
mutex_unlock(&dst->mutex);
} else {
err = -EINTR;
}
i915_vm_put(vm);
return err;
}
static int create_clone(struct i915_user_extension __user *ext, void *data)
{
static int (* const fn[])(struct i915_gem_context *dst,
struct i915_gem_context *src) = {
#define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
MAP(ENGINES, clone_engines),
MAP(FLAGS, clone_flags),
MAP(SCHEDATTR, clone_schedattr),
MAP(SSEU, clone_sseu),
MAP(TIMELINE, clone_timeline),
MAP(VM, clone_vm),
#undef MAP
};
struct drm_i915_gem_context_create_ext_clone local;
const struct create_ext *arg = data;
struct i915_gem_context *dst = arg->ctx;
struct i915_gem_context *src;
int err, bit;
if (copy_from_user(&local, ext, sizeof(local)))
return -EFAULT;
BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
I915_CONTEXT_CLONE_UNKNOWN);
if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
return -EINVAL;
if (local.rsvd)
return -EINVAL;
rcu_read_lock();
src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
rcu_read_unlock();
if (!src)
return -ENOENT;
GEM_BUG_ON(src == dst);
for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
if (!(local.flags & BIT(bit)))
continue;
err = fn[bit](dst, src);
if (err)
return err;
}
return 0;
}
static const i915_user_extension_fn create_extensions[] = {
[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
};
static bool client_is_banned(struct drm_i915_file_private *file_priv)
{
return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
}
int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_context_create_ext *args = data;
struct create_ext ext_data;
int ret;
u32 id;
if (!DRIVER_CAPS(i915)->has_logical_contexts)
return -ENODEV;
if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
return -EINVAL;
ret = intel_gt_terminally_wedged(&i915->gt);
if (ret)
return ret;
ext_data.fpriv = file->driver_priv;
if (client_is_banned(ext_data.fpriv)) {
DRM_DEBUG("client %s[%d] banned from creating ctx\n",
current->comm, task_pid_nr(current));
return -EIO;
}
ext_data.ctx = i915_gem_create_context(i915, args->flags);
if (IS_ERR(ext_data.ctx))
return PTR_ERR(ext_data.ctx);
if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
create_extensions,
ARRAY_SIZE(create_extensions),
&ext_data);
if (ret)
goto err_ctx;
}
ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
if (ret < 0)
goto err_ctx;
args->ctx_id = id;
DRM_DEBUG("HW context %d created\n", args->ctx_id);
return 0;
err_ctx:
context_close(ext_data.ctx);
return ret;
}
int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_context_destroy *args = data;
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_gem_context *ctx;
if (args->pad != 0)
return -EINVAL;
if (!args->ctx_id)
return -ENOENT;
ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
if (!ctx)
return -ENOENT;
context_close(ctx);
return 0;
}
static int get_sseu(struct i915_gem_context *ctx,
struct drm_i915_gem_context_param *args)
{
struct drm_i915_gem_context_param_sseu user_sseu;
struct intel_context *ce;
unsigned long lookup;
int err;
if (args->size == 0)
goto out;
else if (args->size < sizeof(user_sseu))
return -EINVAL;
if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
sizeof(user_sseu)))
return -EFAULT;
if (user_sseu.rsvd)
return -EINVAL;
if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
return -EINVAL;
lookup = 0;
if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
lookup |= LOOKUP_USER_INDEX;
ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
if (err) {
intel_context_put(ce);
return err;
}
user_sseu.slice_mask = ce->sseu.slice_mask;
user_sseu.subslice_mask = ce->sseu.subslice_mask;
user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;
intel_context_unlock_pinned(ce);
intel_context_put(ce);
if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
sizeof(user_sseu)))
return -EFAULT;
out:
args->size = sizeof(user_sseu);
return 0;
}
int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_gem_context_param *args = data;
struct i915_gem_context *ctx;
int ret = 0;
ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
if (!ctx)
return -ENOENT;
switch (args->param) {
case I915_CONTEXT_PARAM_NO_ZEROMAP:
args->size = 0;
args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
break;
case I915_CONTEXT_PARAM_GTT_SIZE:
args->size = 0;
rcu_read_lock();
if (rcu_access_pointer(ctx->vm))
args->value = rcu_dereference(ctx->vm)->total;
else
args->value = to_i915(dev)->ggtt.vm.total;
rcu_read_unlock();
break;
case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
args->size = 0;
args->value = i915_gem_context_no_error_capture(ctx);
break;
case I915_CONTEXT_PARAM_BANNABLE:
args->size = 0;
args->value = i915_gem_context_is_bannable(ctx);
break;
case I915_CONTEXT_PARAM_RECOVERABLE:
args->size = 0;
args->value = i915_gem_context_is_recoverable(ctx);
break;
case I915_CONTEXT_PARAM_PRIORITY:
args->size = 0;
args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
break;
case I915_CONTEXT_PARAM_SSEU:
ret = get_sseu(ctx, args);
break;
case I915_CONTEXT_PARAM_VM:
ret = get_ppgtt(file_priv, ctx, args);
break;
case I915_CONTEXT_PARAM_ENGINES:
ret = get_engines(ctx, args);
break;
case I915_CONTEXT_PARAM_PERSISTENCE:
args->size = 0;
args->value = i915_gem_context_is_persistent(ctx);
break;
case I915_CONTEXT_PARAM_BAN_PERIOD:
default:
ret = -EINVAL;
break;
}
i915_gem_context_put(ctx);
return ret;
}
int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_gem_context_param *args = data;
struct i915_gem_context *ctx;
int ret;
ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
if (!ctx)
return -ENOENT;
ret = ctx_setparam(file_priv, ctx, args);
i915_gem_context_put(ctx);
return ret;
}
int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
void *data, struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_reset_stats *args = data;
struct i915_gem_context *ctx;
int ret;
if (args->flags || args->pad)
return -EINVAL;
ret = -ENOENT;
rcu_read_lock();
ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
if (!ctx)
goto out;
/*
* We opt for unserialised reads here. This may result in tearing
* in the extremely unlikely event of a GPU hang on this context
* as we are querying them. If we need that extra layer of protection,
* we should wrap the hangstats with a seqlock.
*/
if (capable(CAP_SYS_ADMIN))
args->reset_count = i915_reset_count(&i915->gpu_error);
else
args->reset_count = 0;
args->batch_active = atomic_read(&ctx->guilty_count);
args->batch_pending = atomic_read(&ctx->active_count);
ret = 0;
out:
rcu_read_unlock();
return ret;
}
/* GEM context-engines iterator: for_each_gem_engine() */
struct intel_context *
i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
{
const struct i915_gem_engines *e = it->engines;
struct intel_context *ctx;
do {
if (it->idx >= e->num_engines)
return NULL;
ctx = e->engines[it->idx++];
} while (!ctx);
return ctx;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_context.c"
#include "selftests/i915_gem_context.c"
#endif
static void i915_global_gem_context_shrink(void)
{
kmem_cache_shrink(global.slab_luts);
}
static void i915_global_gem_context_exit(void)
{
kmem_cache_destroy(global.slab_luts);
}
static struct i915_global_gem_context global = { {
.shrink = i915_global_gem_context_shrink,
.exit = i915_global_gem_context_exit,
} };
int __init i915_global_gem_context_init(void)
{
global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
if (!global.slab_luts)
return -ENOMEM;
i915_global_register(&global.base);
return 0;
}