blob: 1212da12c4144d6ab8956307c551cf8d6d372a26 [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/delay.h>
#include "dm_services.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dcn20/dcn20_resource.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn10/dcn10_hw_sequencer.h"
#include "dcn20_hwseq.h"
#include "dce/dce_hwseq.h"
#ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
#include "dcn20/dcn20_dsc.h"
#endif
#include "abm.h"
#include "clk_mgr.h"
#include "dmcu.h"
#include "hubp.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "reg_helper.h"
#include "dcn10/dcn10_cm_common.h"
#include "dcn10/dcn10_hubbub.h"
#include "dcn10/dcn10_optc.h"
#include "dc_link_dp.h"
#include "vm_helper.h"
#include "dccg.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
static void dcn20_enable_power_gating_plane(
struct dce_hwseq *hws,
bool enable)
{
bool force_on = 1; /* disable power gating */
if (enable)
force_on = 0;
/* DCHUBP0/1/2/3/4/5 */
REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
if (REG(DOMAIN8_PG_CONFIG))
REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
if (REG(DOMAIN10_PG_CONFIG))
REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
/* DPP0/1/2/3/4/5 */
REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
if (REG(DOMAIN9_PG_CONFIG))
REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
if (REG(DOMAIN11_PG_CONFIG))
REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
/* DCS0/1/2/3/4/5 */
REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on);
if (REG(DOMAIN19_PG_CONFIG))
REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on);
if (REG(DOMAIN20_PG_CONFIG))
REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on);
if (REG(DOMAIN21_PG_CONFIG))
REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on);
}
void dcn20_dccg_init(struct dce_hwseq *hws)
{
/*
* set MICROSECOND_TIME_BASE_DIV
* 100Mhz refclk -> 0x120264
* 27Mhz refclk -> 0x12021b
* 48Mhz refclk -> 0x120230
*
*/
REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264);
/*
* set MILLISECOND_TIME_BASE_DIV
* 100Mhz refclk -> 0x1186a0
* 27Mhz refclk -> 0x106978
* 48Mhz refclk -> 0x10bb80
*
*/
REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0);
/* This value is dependent on the hardware pipeline delay so set once per SOC */
REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0x801003c);
}
void dcn20_display_init(struct dc *dc)
{
struct dce_hwseq *hws = dc->hwseq;
/* RBBMIF
* disable RBBMIF timeout detection for all clients
* Ensure RBBMIF does not drop register accesses due to the per-client timeout
*/
REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
/* DCCG */
dcn20_dccg_init(hws);
REG_UPDATE(DC_MEM_GLOBAL_PWR_REQ_CNTL, DC_MEM_GLOBAL_PWR_REQ_DIS, 0);
/* DCHUB/MMHUBBUB
* set global timer refclk divider
* 100Mhz refclk -> 2
* 27Mhz refclk -> 1
* 48Mhz refclk -> 1
*/
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
REG_WRITE(REFCLK_CNTL, 0);
/* OPTC
* OTG_CONTROL.OTG_DISABLE_POINT_CNTL = 0x3; will be set during optc2_enable_crtc
*/
/* AZ
* default value is 0x64 for 100Mhz ref clock, if the ref clock is 100Mhz, no need to program this regiser,
* if not, it should be programmed according to the ref clock
*/
REG_UPDATE(AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, 0x64);
/* Enable controller clock gating */
REG_WRITE(AZALIA_CONTROLLER_CLOCK_GATING, 0x1);
}
void dcn20_disable_vga(
struct dce_hwseq *hws)
{
REG_WRITE(D1VGA_CONTROL, 0);
REG_WRITE(D2VGA_CONTROL, 0);
REG_WRITE(D3VGA_CONTROL, 0);
REG_WRITE(D4VGA_CONTROL, 0);
REG_WRITE(D5VGA_CONTROL, 0);
REG_WRITE(D6VGA_CONTROL, 0);
}
void dcn20_program_tripleBuffer(
const struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool enableTripleBuffer)
{
if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) {
pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer(
pipe_ctx->plane_res.hubp,
enableTripleBuffer);
}
}
/* Blank pixel data during initialization */
void dcn20_init_blank(
struct dc *dc,
struct timing_generator *tg)
{
enum dc_color_space color_space;
struct tg_color black_color = {0};
struct output_pixel_processor *opp = NULL;
struct output_pixel_processor *bottom_opp = NULL;
uint32_t num_opps, opp_id_src0, opp_id_src1;
uint32_t otg_active_width, otg_active_height;
/* program opp dpg blank color */
color_space = COLOR_SPACE_SRGB;
color_space_to_black_color(dc, color_space, &black_color);
/* get the OTG active size */
tg->funcs->get_otg_active_size(tg,
&otg_active_width,
&otg_active_height);
/* get the OPTC source */
tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
opp = dc->res_pool->opps[opp_id_src0];
if (num_opps == 2) {
otg_active_width = otg_active_width / 2;
ASSERT(opp_id_src1 < dc->res_pool->res_cap->num_opp);
bottom_opp = dc->res_pool->opps[opp_id_src1];
}
opp->funcs->opp_set_disp_pattern_generator(
opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height);
if (num_opps == 2) {
bottom_opp->funcs->opp_set_disp_pattern_generator(
bottom_opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height);
}
dcn20_hwss_wait_for_blank_complete(opp);
}
#ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
static void dcn20_dsc_pg_control(
struct dce_hwseq *hws,
unsigned int dsc_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
uint32_t org_ip_request_cntl = 0;
if (hws->ctx->dc->debug.disable_dsc_power_gate)
return;
if (REG(DOMAIN16_PG_CONFIG) == 0)
return;
REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
switch (dsc_inst) {
case 0: /* DSC0 */
REG_UPDATE(DOMAIN16_PG_CONFIG,
DOMAIN16_POWER_GATE, power_gate);
REG_WAIT(DOMAIN16_PG_STATUS,
DOMAIN16_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DSC1 */
REG_UPDATE(DOMAIN17_PG_CONFIG,
DOMAIN17_POWER_GATE, power_gate);
REG_WAIT(DOMAIN17_PG_STATUS,
DOMAIN17_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DSC2 */
REG_UPDATE(DOMAIN18_PG_CONFIG,
DOMAIN18_POWER_GATE, power_gate);
REG_WAIT(DOMAIN18_PG_STATUS,
DOMAIN18_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DSC3 */
REG_UPDATE(DOMAIN19_PG_CONFIG,
DOMAIN19_POWER_GATE, power_gate);
REG_WAIT(DOMAIN19_PG_STATUS,
DOMAIN19_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 4: /* DSC4 */
REG_UPDATE(DOMAIN20_PG_CONFIG,
DOMAIN20_POWER_GATE, power_gate);
REG_WAIT(DOMAIN20_PG_STATUS,
DOMAIN20_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 5: /* DSC5 */
REG_UPDATE(DOMAIN21_PG_CONFIG,
DOMAIN21_POWER_GATE, power_gate);
REG_WAIT(DOMAIN21_PG_STATUS,
DOMAIN21_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
}
#endif
static void dcn20_dpp_pg_control(
struct dce_hwseq *hws,
unsigned int dpp_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_dpp_power_gate)
return;
if (REG(DOMAIN1_PG_CONFIG) == 0)
return;
switch (dpp_inst) {
case 0: /* DPP0 */
REG_UPDATE(DOMAIN1_PG_CONFIG,
DOMAIN1_POWER_GATE, power_gate);
REG_WAIT(DOMAIN1_PG_STATUS,
DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DPP1 */
REG_UPDATE(DOMAIN3_PG_CONFIG,
DOMAIN3_POWER_GATE, power_gate);
REG_WAIT(DOMAIN3_PG_STATUS,
DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DPP2 */
REG_UPDATE(DOMAIN5_PG_CONFIG,
DOMAIN5_POWER_GATE, power_gate);
REG_WAIT(DOMAIN5_PG_STATUS,
DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DPP3 */
REG_UPDATE(DOMAIN7_PG_CONFIG,
DOMAIN7_POWER_GATE, power_gate);
REG_WAIT(DOMAIN7_PG_STATUS,
DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 4: /* DPP4 */
REG_UPDATE(DOMAIN9_PG_CONFIG,
DOMAIN9_POWER_GATE, power_gate);
REG_WAIT(DOMAIN9_PG_STATUS,
DOMAIN9_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 5: /* DPP5 */
/*
* Do not power gate DPP5, should be left at HW default, power on permanently.
* PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
* reset.
* REG_UPDATE(DOMAIN11_PG_CONFIG,
* DOMAIN11_POWER_GATE, power_gate);
*
* REG_WAIT(DOMAIN11_PG_STATUS,
* DOMAIN11_PGFSM_PWR_STATUS, pwr_status,
* 1, 1000);
*/
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void dcn20_hubp_pg_control(
struct dce_hwseq *hws,
unsigned int hubp_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_hubp_power_gate)
return;
if (REG(DOMAIN0_PG_CONFIG) == 0)
return;
switch (hubp_inst) {
case 0: /* DCHUBP0 */
REG_UPDATE(DOMAIN0_PG_CONFIG,
DOMAIN0_POWER_GATE, power_gate);
REG_WAIT(DOMAIN0_PG_STATUS,
DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DCHUBP1 */
REG_UPDATE(DOMAIN2_PG_CONFIG,
DOMAIN2_POWER_GATE, power_gate);
REG_WAIT(DOMAIN2_PG_STATUS,
DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DCHUBP2 */
REG_UPDATE(DOMAIN4_PG_CONFIG,
DOMAIN4_POWER_GATE, power_gate);
REG_WAIT(DOMAIN4_PG_STATUS,
DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DCHUBP3 */
REG_UPDATE(DOMAIN6_PG_CONFIG,
DOMAIN6_POWER_GATE, power_gate);
REG_WAIT(DOMAIN6_PG_STATUS,
DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 4: /* DCHUBP4 */
REG_UPDATE(DOMAIN8_PG_CONFIG,
DOMAIN8_POWER_GATE, power_gate);
REG_WAIT(DOMAIN8_PG_STATUS,
DOMAIN8_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 5: /* DCHUBP5 */
/*
* Do not power gate DCHUB5, should be left at HW default, power on permanently.
* PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
* reset.
* REG_UPDATE(DOMAIN10_PG_CONFIG,
* DOMAIN10_POWER_GATE, power_gate);
*
* REG_WAIT(DOMAIN10_PG_STATUS,
* DOMAIN10_PGFSM_PWR_STATUS, pwr_status,
* 1, 1000);
*/
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
/* disable HW used by plane.
* note: cannot disable until disconnect is complete
*/
static void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct dpp *dpp = pipe_ctx->plane_res.dpp;
dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
/* In flip immediate with pipe splitting case GSL is used for
* synchronization so we must disable it when the plane is disabled.
*/
if (pipe_ctx->stream_res.gsl_group != 0)
dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
dc->hwss.set_flip_control_gsl(pipe_ctx, false);
hubp->funcs->hubp_clk_cntl(hubp, false);
dpp->funcs->dpp_dppclk_control(dpp, false, false);
hubp->power_gated = true;
dc->optimized_required = false; /* We're powering off, no need to optimize */
dc->hwss.plane_atomic_power_down(dc,
pipe_ctx->plane_res.dpp,
pipe_ctx->plane_res.hubp);
pipe_ctx->stream = NULL;
memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
pipe_ctx->top_pipe = NULL;
pipe_ctx->bottom_pipe = NULL;
pipe_ctx->plane_state = NULL;
}
void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
DC_LOGGER_INIT(dc->ctx->logger);
if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
return;
dcn20_plane_atomic_disable(dc, pipe_ctx);
DC_LOG_DC("Power down front end %d\n",
pipe_ctx->pipe_idx);
}
enum dc_status dcn20_enable_stream_timing(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct drr_params params = {0};
unsigned int event_triggers = 0;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
/* by upper caller loop, pipe0 is parent pipe and be called first.
* back end is set up by for pipe0. Other children pipe share back end
* with pipe 0. No program is needed.
*/
if (pipe_ctx->top_pipe != NULL)
return DC_OK;
/* TODO check if timing_changed, disable stream if timing changed */
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
opp_cnt++;
}
if (opp_cnt > 1)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
&pipe_ctx->stream->timing);
/* HW program guide assume display already disable
* by unplug sequence. OTG assume stop.
*/
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
pipe_ctx->stream_res.tg->funcs->program_timing(
pipe_ctx->stream_res.tg,
&stream->timing,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width,
pipe_ctx->stream->signal,
true);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
odm_pipe->stream_res.opp,
true);
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
true);
dc->hwss.blank_pixel_data(dc, pipe_ctx, true);
/* VTG is within DCHUB command block. DCFCLK is always on */
if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
dcn20_hwss_wait_for_blank_complete(pipe_ctx->stream_res.opp);
params.vertical_total_min = stream->adjust.v_total_min;
params.vertical_total_max = stream->adjust.v_total_max;
params.vertical_total_mid = stream->adjust.v_total_mid;
params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;
if (pipe_ctx->stream_res.tg->funcs->set_drr)
pipe_ctx->stream_res.tg->funcs->set_drr(
pipe_ctx->stream_res.tg, &params);
// DRR should set trigger event to monitor surface update event
if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
event_triggers = 0x80;
if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
pipe_ctx->stream_res.tg, event_triggers);
/* TODO program crtc source select for non-virtual signal*/
/* TODO program FMT */
/* TODO setup link_enc */
/* TODO set stream attributes */
/* TODO program audio */
/* TODO enable stream if timing changed */
/* TODO unblank stream if DP */
return DC_OK;
}
void dcn20_program_output_csc(struct dc *dc,
struct pipe_ctx *pipe_ctx,
enum dc_color_space colorspace,
uint16_t *matrix,
int opp_id)
{
struct mpc *mpc = dc->res_pool->mpc;
enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
if (mpc->funcs->power_on_mpc_mem_pwr)
mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
if (mpc->funcs->set_output_csc != NULL)
mpc->funcs->set_output_csc(mpc,
opp_id,
matrix,
ocsc_mode);
} else {
if (mpc->funcs->set_ocsc_default != NULL)
mpc->funcs->set_ocsc_default(mpc,
opp_id,
colorspace,
ocsc_mode);
}
}
bool dcn20_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
struct pwl_params *params = NULL;
/*
* program OGAM only for the top pipe
* if there is a pipe split then fix diagnostic is required:
* how to pass OGAM parameter for stream.
* if programming for all pipes is required then remove condition
* pipe_ctx->top_pipe == NULL ,but then fix the diagnostic.
*/
if (mpc->funcs->power_on_mpc_mem_pwr)
mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
if (pipe_ctx->top_pipe == NULL
&& mpc->funcs->set_output_gamma && stream->out_transfer_func) {
if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
params = &stream->out_transfer_func->pwl;
else if (pipe_ctx->stream->out_transfer_func->type ==
TF_TYPE_DISTRIBUTED_POINTS &&
cm_helper_translate_curve_to_hw_format(
stream->out_transfer_func,
&mpc->blender_params, false))
params = &mpc->blender_params;
/*
* there is no ROM
*/
if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
BREAK_TO_DEBUGGER();
}
/*
* if above if is not executed then 'params' equal to 0 and set in bypass
*/
mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
return true;
}
static bool dcn20_set_blend_lut(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
bool result = true;
struct pwl_params *blend_lut = NULL;
if (plane_state->blend_tf) {
if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
blend_lut = &plane_state->blend_tf->pwl;
else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
plane_state->blend_tf,
&dpp_base->regamma_params, false);
blend_lut = &dpp_base->regamma_params;
}
}
result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
return result;
}
static bool dcn20_set_shaper_3dlut(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
bool result = true;
struct pwl_params *shaper_lut = NULL;
if (plane_state->in_shaper_func) {
if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
shaper_lut = &plane_state->in_shaper_func->pwl;
else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
plane_state->in_shaper_func,
&dpp_base->shaper_params, true);
shaper_lut = &dpp_base->shaper_params;
}
}
result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut);
if (plane_state->lut3d_func &&
plane_state->lut3d_func->state.bits.initialized == 1)
result = dpp_base->funcs->dpp_program_3dlut(dpp_base,
&plane_state->lut3d_func->lut_3d);
else
result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL);
if (plane_state->lut3d_func &&
plane_state->lut3d_func->state.bits.initialized == 1 &&
plane_state->lut3d_func->hdr_multiplier != 0)
dpp_base->funcs->dpp_set_hdr_multiplier(dpp_base,
plane_state->lut3d_func->hdr_multiplier);
else
dpp_base->funcs->dpp_set_hdr_multiplier(dpp_base, 0x1f000);
return result;
}
bool dcn20_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
const struct dc_transfer_func *tf = NULL;
bool result = true;
bool use_degamma_ram = false;
if (dpp_base == NULL || plane_state == NULL)
return false;
dcn20_set_shaper_3dlut(pipe_ctx, plane_state);
dcn20_set_blend_lut(pipe_ctx, plane_state);
if (plane_state->in_transfer_func)
tf = plane_state->in_transfer_func;
if (tf == NULL) {
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
return true;
}
if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS)
use_degamma_ram = true;
if (use_degamma_ram == true) {
if (tf->type == TF_TYPE_HWPWL)
dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
&tf->pwl);
else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_degamma_hw_format(tf,
&dpp_base->degamma_params);
dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
&dpp_base->degamma_params);
}
return true;
}
/* handle here the optimized cases when de-gamma ROM could be used.
*
*/
if (tf->type == TF_TYPE_PREDEFINED) {
switch (tf->tf) {
case TRANSFER_FUNCTION_SRGB:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_HW_sRGB);
break;
case TRANSFER_FUNCTION_BT709:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_HW_xvYCC);
break;
case TRANSFER_FUNCTION_LINEAR:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
break;
case TRANSFER_FUNCTION_PQ:
default:
result = false;
break;
}
} else if (tf->type == TF_TYPE_BYPASS)
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
else {
/*
* if we are here, we did not handle correctly.
* fix is required for this use case
*/
BREAK_TO_DEBUGGER();
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
}
return result;
}
static void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
opp_cnt++;
}
if (opp_cnt > 1)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
&pipe_ctx->stream->timing);
else
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
}
void dcn20_blank_pixel_data(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool blank)
{
struct tg_color black_color = {0};
struct stream_resource *stream_res = &pipe_ctx->stream_res;
struct dc_stream_state *stream = pipe_ctx->stream;
enum dc_color_space color_space = stream->output_color_space;
enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
struct pipe_ctx *odm_pipe;
int odm_cnt = 1;
int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
/* get opp dpg blank color */
color_space_to_black_color(dc, color_space, &black_color);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
odm_cnt++;
width = width / odm_cnt;
if (blank) {
if (stream_res->abm)
stream_res->abm->funcs->set_abm_immediate_disable(stream_res->abm);
if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE)
test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
} else {
test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
}
stream_res->opp->funcs->opp_set_disp_pattern_generator(
stream_res->opp,
test_pattern,
stream->timing.display_color_depth,
&black_color,
width,
height);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_set_disp_pattern_generator(
odm_pipe->stream_res.opp,
dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE && blank ?
CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern,
stream->timing.display_color_depth,
&black_color,
width,
height);
}
if (!blank)
if (stream_res->abm) {
stream_res->abm->funcs->set_pipe(stream_res->abm, stream_res->tg->inst + 1);
stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
}
}
static void dcn20_power_on_plane(
struct dce_hwseq *hws,
struct pipe_ctx *pipe_ctx)
{
DC_LOGGER_INIT(hws->ctx->logger);
if (REG(DC_IP_REQUEST_CNTL)) {
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
dcn20_dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true);
dcn20_hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
DC_LOG_DEBUG(
"Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst);
}
}
void dcn20_enable_plane(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
//if (dc->debug.sanity_checks) {
// dcn10_verify_allow_pstate_change_high(dc);
//}
dcn20_power_on_plane(dc->hwseq, pipe_ctx);
/* enable DCFCLK current DCHUB */
pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
/* initialize HUBP on power up */
pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
/* make sure OPP_PIPE_CLOCK_EN = 1 */
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
true);
/* TODO: enable/disable in dm as per update type.
if (plane_state) {
DC_LOG_DC(dc->ctx->logger,
"Pipe:%d 0x%x: addr hi:0x%x, "
"addr low:0x%x, "
"src: %d, %d, %d,"
" %d; dst: %d, %d, %d, %d;\n",
pipe_ctx->pipe_idx,
plane_state,
plane_state->address.grph.addr.high_part,
plane_state->address.grph.addr.low_part,
plane_state->src_rect.x,
plane_state->src_rect.y,
plane_state->src_rect.width,
plane_state->src_rect.height,
plane_state->dst_rect.x,
plane_state->dst_rect.y,
plane_state->dst_rect.width,
plane_state->dst_rect.height);
DC_LOG_DC(dc->ctx->logger,
"Pipe %d: width, height, x, y format:%d\n"
"viewport:%d, %d, %d, %d\n"
"recout: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
plane_state->format,
pipe_ctx->plane_res.scl_data.viewport.width,
pipe_ctx->plane_res.scl_data.viewport.height,
pipe_ctx->plane_res.scl_data.viewport.x,
pipe_ctx->plane_res.scl_data.viewport.y,
pipe_ctx->plane_res.scl_data.recout.width,
pipe_ctx->plane_res.scl_data.recout.height,
pipe_ctx->plane_res.scl_data.recout.x,
pipe_ctx->plane_res.scl_data.recout.y);
print_rq_dlg_ttu(dc, pipe_ctx);
}
*/
if (dc->vm_pa_config.valid) {
struct vm_system_aperture_param apt;
apt.sys_default.quad_part = 0;
apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
// Program system aperture settings
pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
}
// if (dc->debug.sanity_checks) {
// dcn10_verify_allow_pstate_change_high(dc);
// }
}
static void dcn20_program_pipe(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
pipe_ctx->plane_state->update_flags.bits.full_update =
context->commit_hints.full_update_needed ? 1 : pipe_ctx->plane_state->update_flags.bits.full_update;
if (pipe_ctx->plane_state->update_flags.bits.full_update)
dcn20_enable_plane(dc, pipe_ctx, context);
update_dchubp_dpp(dc, pipe_ctx, context);
set_hdr_multiplier(pipe_ctx);
if (pipe_ctx->plane_state->update_flags.bits.full_update ||
pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
pipe_ctx->plane_state->update_flags.bits.gamma_change)
dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state);
/* dcn10_translate_regamma_to_hw_format takes 750us to finish
* only do gamma programming for full update.
* TODO: This can be further optimized/cleaned up
* Always call this for now since it does memcmp inside before
* doing heavy calculation and programming
*/
if (pipe_ctx->plane_state->update_flags.bits.full_update)
dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream);
}
static void dcn20_program_all_pipe_in_tree(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
if (pipe_ctx->top_pipe == NULL && !pipe_ctx->prev_odm_pipe) {
bool blank = !is_pipe_tree_visible(pipe_ctx);
pipe_ctx->stream_res.tg->funcs->program_global_sync(
pipe_ctx->stream_res.tg,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width);
pipe_ctx->stream_res.tg->funcs->set_vtg_params(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
dc->hwss.blank_pixel_data(dc, pipe_ctx, blank);
if (dc->hwss.update_odm)
dc->hwss.update_odm(dc, context, pipe_ctx);
}
if (pipe_ctx->plane_state != NULL)
dcn20_program_pipe(dc, pipe_ctx, context);
if (pipe_ctx->bottom_pipe != NULL) {
ASSERT(pipe_ctx->bottom_pipe != pipe_ctx);
dcn20_program_all_pipe_in_tree(dc, pipe_ctx->bottom_pipe, context);
} else if (pipe_ctx->next_odm_pipe != NULL) {
ASSERT(pipe_ctx->next_odm_pipe != pipe_ctx);
dcn20_program_all_pipe_in_tree(dc, pipe_ctx->next_odm_pipe, context);
}
}
void dcn20_pipe_control_lock_global(
struct dc *dc,
struct pipe_ctx *pipe,
bool lock)
{
if (lock) {
pipe->stream_res.tg->funcs->lock_doublebuffer_enable(
pipe->stream_res.tg);
pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
} else {
pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg,
CRTC_STATE_VACTIVE);
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg,
CRTC_STATE_VBLANK);
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg,
CRTC_STATE_VACTIVE);
pipe->stream_res.tg->funcs->lock_doublebuffer_disable(
pipe->stream_res.tg);
}
}
void dcn20_pipe_control_lock(
struct dc *dc,
struct pipe_ctx *pipe,
bool lock)
{
bool flip_immediate = false;
/* use TG master update lock to lock everything on the TG
* therefore only top pipe need to lock
*/
if (pipe->top_pipe)
return;
if (pipe->plane_state != NULL)
flip_immediate = pipe->plane_state->flip_immediate;
/* In flip immediate and pipe splitting case, we need to use GSL
* for synchronization. Only do setup on locking and on flip type change.
*/
if (lock && pipe->bottom_pipe != NULL)
if ((flip_immediate && pipe->stream_res.gsl_group == 0) ||
(!flip_immediate && pipe->stream_res.gsl_group > 0))
dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate);
if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
if (lock)
pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
} else {
if (lock)
pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
}
}
static void dcn20_apply_ctx_for_surface(
struct dc *dc,
const struct dc_stream_state *stream,
int num_planes,
struct dc_state *context)
{
const unsigned int TIMEOUT_FOR_PIPE_ENABLE_MS = 100;
int i;
struct timing_generator *tg;
bool removed_pipe[6] = { false };
bool interdependent_update = false;
struct pipe_ctx *top_pipe_to_program =
find_top_pipe_for_stream(dc, context, stream);
struct pipe_ctx *prev_top_pipe_to_program =
find_top_pipe_for_stream(dc, dc->current_state, stream);
DC_LOGGER_INIT(dc->ctx->logger);
if (!top_pipe_to_program)
return;
/* Carry over GSL groups in case the context is changing. */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe_ctx =
&dc->current_state->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == stream &&
pipe_ctx->stream == old_pipe_ctx->stream)
pipe_ctx->stream_res.gsl_group =
old_pipe_ctx->stream_res.gsl_group;
}
tg = top_pipe_to_program->stream_res.tg;
interdependent_update = top_pipe_to_program->plane_state &&
top_pipe_to_program->plane_state->update_flags.bits.full_update;
if (interdependent_update)
lock_all_pipes(dc, context, true);
else
dcn20_pipe_control_lock(dc, top_pipe_to_program, true);
if (num_planes == 0) {
/* OTG blank before remove all front end */
dc->hwss.blank_pixel_data(dc, top_pipe_to_program, true);
}
/* Disconnect unused mpcc */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe_ctx =
&dc->current_state->res_ctx.pipe_ctx[i];
/*
* Powergate reused pipes that are not powergated
* fairly hacky right now, using opp_id as indicator
* TODO: After move dc_post to dc_update, this will
* be removed.
*/
if (pipe_ctx->plane_state && !old_pipe_ctx->plane_state) {
if (old_pipe_ctx->stream_res.tg == tg &&
old_pipe_ctx->plane_res.hubp &&
old_pipe_ctx->plane_res.hubp->opp_id != OPP_ID_INVALID)
dc->hwss.disable_plane(dc, old_pipe_ctx);
}
if ((!pipe_ctx->plane_state ||
pipe_ctx->stream_res.tg != old_pipe_ctx->stream_res.tg) &&
old_pipe_ctx->plane_state &&
old_pipe_ctx->stream_res.tg == tg) {
dc->hwss.plane_atomic_disconnect(dc, old_pipe_ctx);
removed_pipe[i] = true;
DC_LOG_DC("Reset mpcc for pipe %d\n",
old_pipe_ctx->pipe_idx);
}
}
if (num_planes > 0)
dcn20_program_all_pipe_in_tree(dc, top_pipe_to_program, context);
/* Program secondary blending tree and writeback pipes */
if ((stream->num_wb_info > 0) && (dc->hwss.program_all_writeback_pipes_in_tree))
dc->hwss.program_all_writeback_pipes_in_tree(dc, stream, context);
if (interdependent_update)
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
/* Skip inactive pipes and ones already updated */
if (!pipe_ctx->stream || pipe_ctx->stream == stream ||
!pipe_ctx->plane_state || !tg->funcs->is_tg_enabled(tg))
continue;
pipe_ctx->plane_res.hubp->funcs->hubp_setup_interdependent(
pipe_ctx->plane_res.hubp,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs);
}
if (interdependent_update)
lock_all_pipes(dc, context, false);
else
dcn20_pipe_control_lock(dc, top_pipe_to_program, false);
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (removed_pipe[i])
dcn20_disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
/*
* If we are enabling a pipe, we need to wait for pending clear as this is a critical
* part of the enable operation otherwise, DM may request an immediate flip which
* will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which
* is unsupported on DCN.
*/
i = 0;
if (num_planes > 0 && top_pipe_to_program &&
(prev_top_pipe_to_program == NULL || prev_top_pipe_to_program->plane_state == NULL)) {
while (i < TIMEOUT_FOR_PIPE_ENABLE_MS &&
top_pipe_to_program->plane_res.hubp->funcs->hubp_is_flip_pending(top_pipe_to_program->plane_res.hubp)) {
i += 1;
msleep(1);
}
}
}
void dcn20_prepare_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct hubbub *hubbub = dc->res_pool->hubbub;
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
false);
/* program dchubbub watermarks */
hubbub->funcs->program_watermarks(hubbub,
&context->bw_ctx.bw.dcn.watermarks,
dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
false);
}
void dcn20_optimize_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct hubbub *hubbub = dc->res_pool->hubbub;
/* program dchubbub watermarks */
hubbub->funcs->program_watermarks(hubbub,
&context->bw_ctx.bw.dcn.watermarks,
dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
true);
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
true);
}
bool dcn20_update_bandwidth(
struct dc *dc,
struct dc_state *context)
{
int i;
/* recalculate DML parameters */
if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false))
return false;
/* apply updated bandwidth parameters */
dc->hwss.prepare_bandwidth(dc, context);
/* update hubp configs for all pipes */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->plane_state == NULL)
continue;
if (pipe_ctx->top_pipe == NULL) {
bool blank = !is_pipe_tree_visible(pipe_ctx);
pipe_ctx->stream_res.tg->funcs->program_global_sync(
pipe_ctx->stream_res.tg,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width);
pipe_ctx->stream_res.tg->funcs->set_vtg_params(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
if (pipe_ctx->prev_odm_pipe == NULL)
dc->hwss.blank_pixel_data(dc, pipe_ctx, blank);
}
pipe_ctx->plane_res.hubp->funcs->hubp_setup(
pipe_ctx->plane_res.hubp,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs,
&pipe_ctx->rq_regs,
&pipe_ctx->pipe_dlg_param);
}
return true;
}
static void dcn20_enable_writeback(
struct dc *dc,
const struct dc_stream_status *stream_status,
struct dc_writeback_info *wb_info)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
struct timing_generator *optc;
ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
ASSERT(wb_info->wb_enabled);
dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
/* set the OPTC source mux */
ASSERT(stream_status->primary_otg_inst < MAX_PIPES);
optc = dc->res_pool->timing_generators[stream_status->primary_otg_inst];
optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst);
/* set MCIF_WB buffer and arbitration configuration */
mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height);
mcif_wb->funcs->config_mcif_arb(mcif_wb, &dc->current_state->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
/* Enable MCIF_WB */
mcif_wb->funcs->enable_mcif(mcif_wb);
/* Enable DWB */
dwb->funcs->enable(dwb, &wb_info->dwb_params);
/* TODO: add sequence to enable/disable warmup */
}
void dcn20_disable_writeback(
struct dc *dc,
unsigned int dwb_pipe_inst)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
dwb = dc->res_pool->dwbc[dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
dwb->funcs->disable(dwb);
mcif_wb->funcs->disable_mcif(mcif_wb);
}
bool dcn20_hwss_wait_for_blank_complete(
struct output_pixel_processor *opp)
{
int counter;
for (counter = 0; counter < 1000; counter++) {
if (opp->funcs->dpg_is_blanked(opp))
break;
udelay(100);
}
if (counter == 1000) {
dm_error("DC: failed to blank crtc!\n");
return false;
}
return true;
}
bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
if (!hubp)
return false;
return hubp->funcs->dmdata_status_done(hubp);
}
static void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
#ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
struct dce_hwseq *hws = dc->hwseq;
if (pipe_ctx->stream_res.dsc) {
struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true);
while (odm_pipe) {
dcn20_dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true);
odm_pipe = odm_pipe->next_odm_pipe;
}
}
#endif
}
static void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
#ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
struct dce_hwseq *hws = dc->hwseq;
if (pipe_ctx->stream_res.dsc) {
struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false);
while (odm_pipe) {
dcn20_dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false);
odm_pipe = odm_pipe->next_odm_pipe;
}
}
#endif
}
void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
{
struct dc_dmdata_attributes attr = { 0 };
struct hubp *hubp = pipe_ctx->plane_res.hubp;
attr.dmdata_mode = DMDATA_HW_MODE;
attr.dmdata_size =
dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
attr.address.quad_part =
pipe_ctx->stream->dmdata_address.quad_part;
attr.dmdata_dl_delta = 0;
attr.dmdata_qos_mode = 0;
attr.dmdata_qos_level = 0;
attr.dmdata_repeat = 1; /* always repeat */
attr.dmdata_updated = 1;
attr.dmdata_sw_data = NULL;
hubp->funcs->dmdata_set_attributes(hubp, &attr);
}
void dcn20_disable_stream(struct pipe_ctx *pipe_ctx)
{
dce110_disable_stream(pipe_ctx);
}
static void dcn20_init_vm_ctx(
struct dce_hwseq *hws,
struct dc *dc,
struct dc_virtual_addr_space_config *va_config,
int vmid)
{
struct dcn_hubbub_virt_addr_config config;
if (vmid == 0) {
ASSERT(0); /* VMID cannot be 0 for vm context */
return;
}
config.page_table_start_addr = va_config->page_table_start_addr;
config.page_table_end_addr = va_config->page_table_end_addr;
config.page_table_block_size = va_config->page_table_block_size_in_bytes;
config.page_table_depth = va_config->page_table_depth;
config.page_table_base_addr = va_config->page_table_base_addr;
dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid);
}
static int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config)
{
struct dcn_hubbub_phys_addr_config config;
config.system_aperture.fb_top = pa_config->system_aperture.fb_top;
config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset;
config.system_aperture.fb_base = pa_config->system_aperture.fb_base;
config.system_aperture.agp_top = pa_config->system_aperture.agp_top;
config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot;
config.system_aperture.agp_base = pa_config->system_aperture.agp_base;
config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr;
config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr;
config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
config.page_table_default_page_addr = pa_config->page_table_default_page_addr;
return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config);
}
static bool patch_address_for_sbs_tb_stereo(
struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
bool sec_split = pipe_ctx->top_pipe &&
pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
(pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_SIDE_BY_SIDE ||
pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
*addr = plane_state->address.grph_stereo.left_addr;
plane_state->address.grph_stereo.left_addr =
plane_state->address.grph_stereo.right_addr;
return true;
}
if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
plane_state->address.grph_stereo.right_addr =
plane_state->address.grph_stereo.left_addr;
}
return false;
}
static void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
{
bool addr_patched = false;
PHYSICAL_ADDRESS_LOC addr;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
if (plane_state == NULL)
return;
addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
// Call Helper to track VMID use
vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst);
pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
pipe_ctx->plane_res.hubp,
&plane_state->address,
plane_state->flip_immediate);
plane_state->status.requested_address = plane_state->address;
if (plane_state->flip_immediate)
plane_state->status.current_address = plane_state->address;
if (addr_patched)
pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
}
void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = { { 0 } };
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct pipe_ctx *odm_pipe;
params.opp_cnt = 1;
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
params.opp_cnt++;
}
/* only 3 items below are used by unblank */
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
if (optc1_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1)
params.timing.pix_clk_100hz /= 2;
pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1);
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
}
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
link->dc->hwss.edp_backlight_control(link, true);
}
}
void dcn20_setup_vupdate_interrupt(struct pipe_ctx *pipe_ctx)
{
struct timing_generator *tg = pipe_ctx->stream_res.tg;
int start_line = get_vupdate_offset_from_vsync(pipe_ctx);
if (start_line < 0)
start_line = 0;
if (tg->funcs->setup_vertical_interrupt2)
tg->funcs->setup_vertical_interrupt2(tg, start_line);
}
static void dcn20_reset_back_end_for_pipe(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
int i;
DC_LOGGER_INIT(dc->ctx->logger);
if (pipe_ctx->stream_res.stream_enc == NULL) {
pipe_ctx->stream = NULL;
return;
}
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
/* DPMS may already disable */
if (!pipe_ctx->stream->dpms_off)
core_link_disable_stream(pipe_ctx);
else if (pipe_ctx->stream_res.audio)
dc->hwss.disable_audio_stream(pipe_ctx);
/* free acquired resources */
if (pipe_ctx->stream_res.audio) {
/*disable az_endpoint*/
pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
/*free audio*/
if (dc->caps.dynamic_audio == true) {
/*we have to dynamic arbitrate the audio endpoints*/
/*we free the resource, need reset is_audio_acquired*/
update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
pipe_ctx->stream_res.audio, false);
pipe_ctx->stream_res.audio = NULL;
}
}
}
#ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
else if (pipe_ctx->stream_res.dsc) {
dp_set_dsc_enable(pipe_ctx, false);
}
#endif
/* by upper caller loop, parent pipe: pipe0, will be reset last.
* back end share by all pipes and will be disable only when disable
* parent pipe.
*/
if (pipe_ctx->top_pipe == NULL) {
pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
if (pipe_ctx->stream_res.tg->funcs->set_drr)
pipe_ctx->stream_res.tg->funcs->set_drr(
pipe_ctx->stream_res.tg, NULL);
}
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
break;
if (i == dc->res_pool->pipe_count)
return;
pipe_ctx->stream = NULL;
DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
}
static void dcn20_reset_hw_ctx_wrap(
struct dc *dc,
struct dc_state *context)
{
int i;
/* Reset Back End*/
for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx_old->stream)
continue;
if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
continue;
if (!pipe_ctx->stream ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
struct clock_source *old_clk = pipe_ctx_old->clock_source;
dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
if (dc->hwss.enable_stream_gating)
dc->hwss.enable_stream_gating(dc, pipe_ctx);
if (old_clk)
old_clk->funcs->cs_power_down(old_clk);
}
}
}
static void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct mpcc_blnd_cfg blnd_cfg = { {0} };
bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha;
int mpcc_id;
struct mpcc *new_mpcc;
struct mpc *mpc = dc->res_pool->mpc;
struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
// input to MPCC is always RGB, by default leave black_color at 0
if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
dcn10_get_hdr_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
dcn10_get_surface_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
}
if (per_pixel_alpha)
blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
else
blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
blnd_cfg.overlap_only = false;
blnd_cfg.global_gain = 0xff;
if (pipe_ctx->plane_state->global_alpha)
blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
else
blnd_cfg.global_alpha = 0xff;
blnd_cfg.background_color_bpc = 4;
blnd_cfg.bottom_gain_mode = 0;
blnd_cfg.top_gain = 0x1f000;
blnd_cfg.bottom_inside_gain = 0x1f000;
blnd_cfg.bottom_outside_gain = 0x1f000;
blnd_cfg.pre_multiplied_alpha = per_pixel_alpha;
/*
* TODO: remove hack
* Note: currently there is a bug in init_hw such that
* on resume from hibernate, BIOS sets up MPCC0, and
* we do mpcc_remove but the mpcc cannot go to idle
* after remove. This cause us to pick mpcc1 here,
* which causes a pstate hang for yet unknown reason.
*/
mpcc_id = hubp->inst;
/* If there is no full update, don't need to touch MPC tree*/
if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
return;
}
/* check if this MPCC is already being used */
new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
/* remove MPCC if being used */
if (new_mpcc != NULL)
mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
else
if (dc->debug.sanity_checks)
mpc->funcs->assert_mpcc_idle_before_connect(
dc->res_pool->mpc, mpcc_id);
/* Call MPC to insert new plane */
new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
mpc_tree_params,
&blnd_cfg,
NULL,
NULL,
hubp->inst,
mpcc_id);
ASSERT(new_mpcc != NULL);
hubp->opp_id = pipe_ctx->stream_res.opp->inst;
hubp->mpcc_id = mpcc_id;
}
static int find_free_gsl_group(const struct dc *dc)
{
if (dc->res_pool->gsl_groups.gsl_0 == 0)
return 1;
if (dc->res_pool->gsl_groups.gsl_1 == 0)
return 2;
if (dc->res_pool->gsl_groups.gsl_2 == 0)
return 3;
return 0;
}
/* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock)
* This is only used to lock pipes in pipe splitting case with immediate flip
* Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate,
* so we get tearing with freesync since we cannot flip multiple pipes
* atomically.
* We use GSL for this:
* - immediate flip: find first available GSL group if not already assigned
* program gsl with that group, set current OTG as master
* and always us 0x4 = AND of flip_ready from all pipes
* - vsync flip: disable GSL if used
*
* Groups in stream_res are stored as +1 from HW registers, i.e.
* gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1
* Using a magic value like -1 would require tracking all inits/resets
*/
void dcn20_setup_gsl_group_as_lock(
const struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool enable)
{
struct gsl_params gsl;
int group_idx;
memset(&gsl, 0, sizeof(struct gsl_params));
if (enable) {
/* return if group already assigned since GSL was set up
* for vsync flip, we would unassign so it can't be "left over"
*/
if (pipe_ctx->stream_res.gsl_group > 0)
return;
group_idx = find_free_gsl_group(dc);
ASSERT(group_idx != 0);
pipe_ctx->stream_res.gsl_group = group_idx;
/* set gsl group reg field and mark resource used */
switch (group_idx) {
case 1:
gsl.gsl0_en = 1;
dc->res_pool->gsl_groups.gsl_0 = 1;
break;
case 2:
gsl.gsl1_en = 1;
dc->res_pool->gsl_groups.gsl_1 = 1;
break;
case 3:
gsl.gsl2_en = 1;
dc->res_pool->gsl_groups.gsl_2 = 1;
break;
default:
BREAK_TO_DEBUGGER();
return; // invalid case
}
gsl.gsl_master_en = 1;
} else {
group_idx = pipe_ctx->stream_res.gsl_group;
if (group_idx == 0)
return; // if not in use, just return
pipe_ctx->stream_res.gsl_group = 0;
/* unset gsl group reg field and mark resource free */
switch (group_idx) {
case 1:
gsl.gsl0_en = 0;
dc->res_pool->gsl_groups.gsl_0 = 0;
break;
case 2:
gsl.gsl1_en = 0;
dc->res_pool->gsl_groups.gsl_1 = 0;
break;
case 3:
gsl.gsl2_en = 0;
dc->res_pool->gsl_groups.gsl_2 = 0;
break;
default:
BREAK_TO_DEBUGGER();
return;
}
gsl.gsl_master_en = 0;
}
/* at this point we want to program whether it's to enable or disable */
if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL &&
pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) {
pipe_ctx->stream_res.tg->funcs->set_gsl(
pipe_ctx->stream_res.tg,
&gsl);
pipe_ctx->stream_res.tg->funcs->set_gsl_source_select(
pipe_ctx->stream_res.tg, group_idx, enable ? 4 : 0);
} else
BREAK_TO_DEBUGGER();
}
static void dcn20_set_flip_control_gsl(
struct pipe_ctx *pipe_ctx,
bool flip_immediate)
{
if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl)
pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl(
pipe_ctx->plane_res.hubp, flip_immediate);
}
static void dcn20_enable_stream(struct pipe_ctx *pipe_ctx)
{
enum dc_lane_count lane_count =
pipe_ctx->stream->link->cur_link_settings.lane_count;
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
struct dc_link *link = pipe_ctx->stream->link;
uint32_t active_total_with_borders;
uint32_t early_control = 0;
struct timing_generator *tg = pipe_ctx->stream_res.tg;
/* For MST, there are multiply stream go to only one link.
* connect DIG back_end to front_end while enable_stream and
* disconnect them during disable_stream
* BY this, it is logic clean to separate stream and link
*/
link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
pipe_ctx->stream_res.stream_enc->id, true);
if (link->dc->hwss.program_dmdata_engine)
link->dc->hwss.program_dmdata_engine(pipe_ctx);
link->dc->hwss.update_info_frame(pipe_ctx);
/* enable early control to avoid corruption on DP monitor*/
active_total_with_borders =
timing->h_addressable
+ timing->h_border_left
+ timing->h_border_right;
if (lane_count != 0)
early_control = active_total_with_borders % lane_count;
if (early_control == 0)
early_control = lane_count;
tg->funcs->set_early_control(tg, early_control);
/* enable audio only within mode set */
if (pipe_ctx->stream_res.audio != NULL) {
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
}
}
static void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
bool enable = false;
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
enum dynamic_metadata_mode mode = dc_is_dp_signal(stream->signal)
? dmdata_dp
: dmdata_hdmi;
/* if using dynamic meta, don't set up generic infopackets */
if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
enable = true;
}
if (!hubp)
return;
if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata)
return;
stream_enc->funcs->set_dynamic_metadata(stream_enc, enable,
hubp->inst, mode);
}
static void dcn20_fpga_init_hw(struct dc *dc)
{
int i, j;
struct dce_hwseq *hws = dc->hwseq;
struct resource_pool *res_pool = dc->res_pool;
struct dc_state *context = dc->current_state;
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
//Enable ability to power gate / don't force power on permanently
dc->hwss.enable_power_gating_plane(hws, true);
// Specific to FPGA dccg and registers
REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
dcn20_dccg_init(hws);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
REG_WRITE(REFCLK_CNTL, 0);
//
/* Blank pixel data with OPP DPG */
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
dcn20_init_blank(dc, tg);
}
for (i = 0; i < res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->lock(tg);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct dpp *dpp = res_pool->dpps[i];
dpp->funcs->dpp_reset(dpp);
}
/* Reset all MPCC muxes */
res_pool->mpc->funcs->mpc_init(res_pool->mpc);
/* initialize OPP mpc_tree parameter */
for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
for (j = 0; j < MAX_PIPES; j++)
res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = dc->res_pool->hubps[i];
struct dpp *dpp = dc->res_pool->dpps[i];
pipe_ctx->stream_res.tg = tg;
pipe_ctx->pipe_idx = i;
pipe_ctx->plane_res.hubp = hubp;
pipe_ctx->plane_res.dpp = dpp;
pipe_ctx->plane_res.mpcc_inst = dpp->inst;
hubp->mpcc_id = dpp->inst;
hubp->opp_id = OPP_ID_INVALID;
hubp->power_gated = false;
pipe_ctx->stream_res.opp = NULL;
hubp->funcs->hubp_init(hubp);
//dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
//dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
/*to do*/
hwss1_plane_atomic_disconnect(dc, pipe_ctx);
}
/* initialize DWB pointer to MCIF_WB */
for (i = 0; i < res_pool->res_cap->num_dwb; i++)
res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->unlock(tg);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
dc->hwss.disable_plane(dc, pipe_ctx);
pipe_ctx->stream_res.tg = NULL;
pipe_ctx->plane_res.hubp = NULL;
}
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
tg->funcs->tg_init(tg);
}
}
void dcn20_hw_sequencer_construct(struct dc *dc)
{
dcn10_hw_sequencer_construct(dc);
dc->hwss.unblank_stream = dcn20_unblank_stream;
dc->hwss.update_plane_addr = dcn20_update_plane_addr;
dc->hwss.enable_stream_timing = dcn20_enable_stream_timing;
dc->hwss.program_triplebuffer = dcn20_program_tripleBuffer;
dc->hwss.set_input_transfer_func = dcn20_set_input_transfer_func;
dc->hwss.set_output_transfer_func = dcn20_set_output_transfer_func;
dc->hwss.apply_ctx_for_surface = dcn20_apply_ctx_for_surface;
dc->hwss.pipe_control_lock = dcn20_pipe_control_lock;
dc->hwss.pipe_control_lock_global = dcn20_pipe_control_lock_global;
dc->hwss.optimize_bandwidth = dcn20_optimize_bandwidth;
dc->hwss.prepare_bandwidth = dcn20_prepare_bandwidth;
dc->hwss.update_bandwidth = dcn20_update_bandwidth;
dc->hwss.enable_writeback = dcn20_enable_writeback;
dc->hwss.disable_writeback = dcn20_disable_writeback;
dc->hwss.program_output_csc = dcn20_program_output_csc;
dc->hwss.update_odm = dcn20_update_odm;
dc->hwss.blank_pixel_data = dcn20_blank_pixel_data;
dc->hwss.dmdata_status_done = dcn20_dmdata_status_done;
dc->hwss.program_dmdata_engine = dcn20_program_dmdata_engine;
dc->hwss.enable_stream = dcn20_enable_stream;
dc->hwss.disable_stream = dcn20_disable_stream;
dc->hwss.init_sys_ctx = dcn20_init_sys_ctx;
dc->hwss.init_vm_ctx = dcn20_init_vm_ctx;
dc->hwss.disable_stream_gating = dcn20_disable_stream_gating;
dc->hwss.enable_stream_gating = dcn20_enable_stream_gating;
dc->hwss.setup_vupdate_interrupt = dcn20_setup_vupdate_interrupt;
dc->hwss.reset_hw_ctx_wrap = dcn20_reset_hw_ctx_wrap;
dc->hwss.update_mpcc = dcn20_update_mpcc;
dc->hwss.set_flip_control_gsl = dcn20_set_flip_control_gsl;
dc->hwss.init_blank = dcn20_init_blank;
dc->hwss.disable_plane = dcn20_disable_plane;
dc->hwss.plane_atomic_disable = dcn20_plane_atomic_disable;
dc->hwss.enable_power_gating_plane = dcn20_enable_power_gating_plane;
dc->hwss.dpp_pg_control = dcn20_dpp_pg_control;
dc->hwss.hubp_pg_control = dcn20_hubp_pg_control;
#ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
dc->hwss.dsc_pg_control = dcn20_dsc_pg_control;
#else
dc->hwss.dsc_pg_control = NULL;
#endif
dc->hwss.disable_vga = dcn20_disable_vga;
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
dc->hwss.init_hw = dcn20_fpga_init_hw;
dc->hwss.init_pipes = NULL;
}
}