blob: 7d39290eb15221fb691fcdcbac4d6d11cf03d017 [file] [log] [blame]
// Copyright 2008 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Tested by search_test.cc.
//
// Prog::SearchOnePass is an efficient implementation of
// regular expression search with submatch tracking for
// what I call "one-pass regular expressions". (An alternate
// name might be "backtracking-free regular expressions".)
//
// One-pass regular expressions have the property that
// at each input byte during an anchored match, there may be
// multiple alternatives but only one can proceed for any
// given input byte.
//
// For example, the regexp /x*yx*/ is one-pass: you read
// x's until a y, then you read the y, then you keep reading x's.
// At no point do you have to guess what to do or back up
// and try a different guess.
//
// On the other hand, /x*x/ is not one-pass: when you're
// looking at an input "x", it's not clear whether you should
// use it to extend the x* or as the final x.
//
// More examples: /([^ ]*) (.*)/ is one-pass; /(.*) (.*)/ is not.
// /(\d+)-(\d+)/ is one-pass; /(\d+).(\d+)/ is not.
//
// A simple intuition for identifying one-pass regular expressions
// is that it's always immediately obvious when a repetition ends.
// It must also be immediately obvious which branch of an | to take:
//
// /x(y|z)/ is one-pass, but /(xy|xz)/ is not.
//
// The NFA-based search in nfa.cc does some bookkeeping to
// avoid the need for backtracking and its associated exponential blowup.
// But if we have a one-pass regular expression, there is no
// possibility of backtracking, so there is no need for the
// extra bookkeeping. Hence, this code.
//
// On a one-pass regular expression, the NFA code in nfa.cc
// runs at about 1/20 of the backtracking-based PCRE speed.
// In contrast, the code in this file runs at about the same
// speed as PCRE.
//
// One-pass regular expressions get used a lot when RE is
// used for parsing simple strings, so it pays off to
// notice them and handle them efficiently.
//
// See also Anne Br├╝ggemann-Klein and Derick Wood,
// "One-unambiguous regular languages", Information and Computation 142(2).
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include "util/util.h"
#include "util/logging.h"
#include "util/pod_array.h"
#include "util/sparse_set.h"
#include "util/strutil.h"
#include "util/utf.h"
#include "re2/prog.h"
#include "re2/stringpiece.h"
// Silence "zero-sized array in struct/union" warning for OneState::action.
#ifdef _MSC_VER
#pragma warning(disable: 4200)
#endif
namespace re2 {
static const bool ExtraDebug = false;
// The key insight behind this implementation is that the
// non-determinism in an NFA for a one-pass regular expression
// is contained. To explain what that means, first a
// refresher about what regular expression programs look like
// and how the usual NFA execution runs.
//
// In a regular expression program, only the kInstByteRange
// instruction processes an input byte c and moves on to the
// next byte in the string (it does so if c is in the given range).
// The kInstByteRange instructions correspond to literal characters
// and character classes in the regular expression.
//
// The kInstAlt instructions are used as wiring to connect the
// kInstByteRange instructions together in interesting ways when
// implementing | + and *.
// The kInstAlt instruction forks execution, like a goto that
// jumps to ip->out() and ip->out1() in parallel. Each of the
// resulting computation paths is called a thread.
//
// The other instructions -- kInstEmptyWidth, kInstMatch, kInstCapture --
// are interesting in their own right but like kInstAlt they don't
// advance the input pointer. Only kInstByteRange does.
//
// The automaton execution in nfa.cc runs all the possible
// threads of execution in lock-step over the input. To process
// a particular byte, each thread gets run until it either dies
// or finds a kInstByteRange instruction matching the byte.
// If the latter happens, the thread stops just past the
// kInstByteRange instruction (at ip->out()) and waits for
// the other threads to finish processing the input byte.
// Then, once all the threads have processed that input byte,
// the whole process repeats. The kInstAlt state instruction
// might create new threads during input processing, but no
// matter what, all the threads stop after a kInstByteRange
// and wait for the other threads to "catch up".
// Running in lock step like this ensures that the NFA reads
// the input string only once.
//
// Each thread maintains its own set of capture registers
// (the string positions at which it executed the kInstCapture
// instructions corresponding to capturing parentheses in the
// regular expression). Repeated copying of the capture registers
// is the main performance bottleneck in the NFA implementation.
//
// A regular expression program is "one-pass" if, no matter what
// the input string, there is only one thread that makes it
// past a kInstByteRange instruction at each input byte. This means
// that there is in some sense only one active thread throughout
// the execution. Other threads might be created during the
// processing of an input byte, but they are ephemeral: only one
// thread is left to start processing the next input byte.
// This is what I meant above when I said the non-determinism
// was "contained".
//
// To execute a one-pass regular expression program, we can build
// a DFA (no non-determinism) that has at most as many states as
// the NFA (compare this to the possibly exponential number of states
// in the general case). Each state records, for each possible
// input byte, the next state along with the conditions required
// before entering that state -- empty-width flags that must be true
// and capture operations that must be performed. It also records
// whether a set of conditions required to finish a match at that
// point in the input rather than process the next byte.
// A state in the one-pass NFA - just an array of actions indexed
// by the bytemap_[] of the next input byte. (The bytemap
// maps next input bytes into equivalence classes, to reduce
// the memory footprint.)
struct OneState {
uint32_t matchcond; // conditions to match right now.
uint32_t action[];
};
// The uint32_t conditions in the action are a combination of
// condition and capture bits and the next state. The bottom 16 bits
// are the condition and capture bits, and the top 16 are the index of
// the next state.
//
// Bits 0-5 are the empty-width flags from prog.h.
// Bit 6 is kMatchWins, which means the match takes
// priority over moving to next in a first-match search.
// The remaining bits mark capture registers that should
// be set to the current input position. The capture bits
// start at index 2, since the search loop can take care of
// cap[0], cap[1] (the overall match position).
// That means we can handle up to 5 capturing parens: $1 through $4, plus $0.
// No input position can satisfy both kEmptyWordBoundary
// and kEmptyNonWordBoundary, so we can use that as a sentinel
// instead of needing an extra bit.
static const int kIndexShift = 16; // number of bits below index
static const int kEmptyShift = 6; // number of empty flags in prog.h
static const int kRealCapShift = kEmptyShift + 1;
static const int kRealMaxCap = (kIndexShift - kRealCapShift) / 2 * 2;
// Parameters used to skip over cap[0], cap[1].
static const int kCapShift = kRealCapShift - 2;
static const int kMaxCap = kRealMaxCap + 2;
static const uint32_t kMatchWins = 1 << kEmptyShift;
static const uint32_t kCapMask = ((1 << kRealMaxCap) - 1) << kRealCapShift;
static const uint32_t kImpossible = kEmptyWordBoundary | kEmptyNonWordBoundary;
// Check, at compile time, that prog.h agrees with math above.
// This function is never called.
void OnePass_Checks() {
static_assert((1<<kEmptyShift)-1 == kEmptyAllFlags,
"kEmptyShift disagrees with kEmptyAllFlags");
// kMaxCap counts pointers, kMaxOnePassCapture counts pairs.
static_assert(kMaxCap == Prog::kMaxOnePassCapture*2,
"kMaxCap disagrees with kMaxOnePassCapture");
}
static bool Satisfy(uint32_t cond, const StringPiece& context, const char* p) {
uint32_t satisfied = Prog::EmptyFlags(context, p);
if (cond & kEmptyAllFlags & ~satisfied)
return false;
return true;
}
// Apply the capture bits in cond, saving p to the appropriate
// locations in cap[].
static void ApplyCaptures(uint32_t cond, const char* p,
const char** cap, int ncap) {
for (int i = 2; i < ncap; i++)
if (cond & (1 << kCapShift << i))
cap[i] = p;
}
// Computes the OneState* for the given nodeindex.
static inline OneState* IndexToNode(uint8_t* nodes, int statesize,
int nodeindex) {
return reinterpret_cast<OneState*>(nodes + statesize*nodeindex);
}
bool Prog::SearchOnePass(const StringPiece& text,
const StringPiece& const_context,
Anchor anchor, MatchKind kind,
StringPiece* match, int nmatch) {
if (anchor != kAnchored && kind != kFullMatch) {
LOG(DFATAL) << "Cannot use SearchOnePass for unanchored matches.";
return false;
}
// Make sure we have at least cap[1],
// because we use it to tell if we matched.
int ncap = 2*nmatch;
if (ncap < 2)
ncap = 2;
const char* cap[kMaxCap];
for (int i = 0; i < ncap; i++)
cap[i] = NULL;
const char* matchcap[kMaxCap];
for (int i = 0; i < ncap; i++)
matchcap[i] = NULL;
StringPiece context = const_context;
if (context.begin() == NULL)
context = text;
if (anchor_start() && context.begin() != text.begin())
return false;
if (anchor_end() && context.end() != text.end())
return false;
if (anchor_end())
kind = kFullMatch;
uint8_t* nodes = onepass_nodes_;
int statesize = sizeof(OneState) + bytemap_range()*sizeof(uint32_t);
// start() is always mapped to the zeroth OneState.
OneState* state = IndexToNode(nodes, statesize, 0);
uint8_t* bytemap = bytemap_;
const char* bp = text.begin();
const char* ep = text.end();
const char* p;
bool matched = false;
matchcap[0] = bp;
cap[0] = bp;
uint32_t nextmatchcond = state->matchcond;
for (p = bp; p < ep; p++) {
int c = bytemap[*p & 0xFF];
uint32_t matchcond = nextmatchcond;
uint32_t cond = state->action[c];
// Determine whether we can reach act->next.
// If so, advance state and nextmatchcond.
if ((cond & kEmptyAllFlags) == 0 || Satisfy(cond, context, p)) {
uint32_t nextindex = cond >> kIndexShift;
state = IndexToNode(nodes, statesize, nextindex);
nextmatchcond = state->matchcond;
} else {
state = NULL;
nextmatchcond = kImpossible;
}
// This code section is carefully tuned.
// The goto sequence is about 10% faster than the
// obvious rewrite as a large if statement in the
// ASCIIMatchRE2 and DotMatchRE2 benchmarks.
// Saving the match capture registers is expensive.
// Is this intermediate match worth thinking about?
// Not if we want a full match.
if (kind == kFullMatch)
goto skipmatch;
// Not if it's impossible.
if (matchcond == kImpossible)
goto skipmatch;
// Not if the possible match is beaten by the certain
// match at the next byte. When this test is useless
// (e.g., HTTPPartialMatchRE2) it slows the loop by
// about 10%, but when it avoids work (e.g., DotMatchRE2),
// it cuts the loop execution by about 45%.
if ((cond & kMatchWins) == 0 && (nextmatchcond & kEmptyAllFlags) == 0)
goto skipmatch;
// Finally, the match conditions must be satisfied.
if ((matchcond & kEmptyAllFlags) == 0 || Satisfy(matchcond, context, p)) {
for (int i = 2; i < 2*nmatch; i++)
matchcap[i] = cap[i];
if (nmatch > 1 && (matchcond & kCapMask))
ApplyCaptures(matchcond, p, matchcap, ncap);
matchcap[1] = p;
matched = true;
// If we're in longest match mode, we have to keep
// going and see if we find a longer match.
// In first match mode, we can stop if the match
// takes priority over the next state for this input byte.
// That bit is per-input byte and thus in cond, not matchcond.
if (kind == kFirstMatch && (cond & kMatchWins))
goto done;
}
skipmatch:
if (state == NULL)
goto done;
if ((cond & kCapMask) && nmatch > 1)
ApplyCaptures(cond, p, cap, ncap);
}
// Look for match at end of input.
{
uint32_t matchcond = state->matchcond;
if (matchcond != kImpossible &&
((matchcond & kEmptyAllFlags) == 0 || Satisfy(matchcond, context, p))) {
if (nmatch > 1 && (matchcond & kCapMask))
ApplyCaptures(matchcond, p, cap, ncap);
for (int i = 2; i < ncap; i++)
matchcap[i] = cap[i];
matchcap[1] = p;
matched = true;
}
}
done:
if (!matched)
return false;
for (int i = 0; i < nmatch; i++)
match[i] =
StringPiece(matchcap[2 * i],
static_cast<size_t>(matchcap[2 * i + 1] - matchcap[2 * i]));
return true;
}
// Analysis to determine whether a given regexp program is one-pass.
// If ip is not on workq, adds ip to work queue and returns true.
// If ip is already on work queue, does nothing and returns false.
// If ip is NULL, does nothing and returns true (pretends to add it).
typedef SparseSet Instq;
static bool AddQ(Instq *q, int id) {
if (id == 0)
return true;
if (q->contains(id))
return false;
q->insert(id);
return true;
}
struct InstCond {
int id;
uint32_t cond;
};
// Returns whether this is a one-pass program; that is,
// returns whether it is safe to use SearchOnePass on this program.
// These conditions must be true for any instruction ip:
//
// (1) for any other Inst nip, there is at most one input-free
// path from ip to nip.
// (2) there is at most one kInstByte instruction reachable from
// ip that matches any particular byte c.
// (3) there is at most one input-free path from ip to a kInstMatch
// instruction.
//
// This is actually just a conservative approximation: it might
// return false when the answer is true, when kInstEmptyWidth
// instructions are involved.
// Constructs and saves corresponding one-pass NFA on success.
bool Prog::IsOnePass() {
if (did_onepass_)
return onepass_nodes_ != NULL;
did_onepass_ = true;
if (start() == 0) // no match
return false;
// Steal memory for the one-pass NFA from the overall DFA budget.
// Willing to use at most 1/4 of the DFA budget (heuristic).
// Limit max node count to 65000 as a conservative estimate to
// avoid overflowing 16-bit node index in encoding.
int maxnodes = 2 + inst_count(kInstByteRange);
int statesize = sizeof(OneState) + bytemap_range()*sizeof(uint32_t);
if (maxnodes >= 65000 || dfa_mem_ / 4 / statesize < maxnodes)
return false;
// Flood the graph starting at the start state, and check
// that in each reachable state, each possible byte leads
// to a unique next state.
int stacksize = inst_count(kInstCapture) +
inst_count(kInstEmptyWidth) +
inst_count(kInstNop) + 1; // + 1 for start inst
PODArray<InstCond> stack(stacksize);
int size = this->size();
PODArray<int> nodebyid(size); // indexed by ip
memset(nodebyid.data(), 0xFF, size*sizeof nodebyid[0]);
// Originally, nodes was a uint8_t[maxnodes*statesize], but that was
// unnecessarily optimistic: why allocate a large amount of memory
// upfront for a large program when it is unlikely to be one-pass?
std::vector<uint8_t> nodes;
Instq tovisit(size), workq(size);
AddQ(&tovisit, start());
nodebyid[start()] = 0;
int nalloc = 1;
nodes.insert(nodes.end(), statesize, 0);
for (Instq::iterator it = tovisit.begin(); it != tovisit.end(); ++it) {
int id = *it;
int nodeindex = nodebyid[id];
OneState* node = IndexToNode(nodes.data(), statesize, nodeindex);
// Flood graph using manual stack, filling in actions as found.
// Default is none.
for (int b = 0; b < bytemap_range_; b++)
node->action[b] = kImpossible;
node->matchcond = kImpossible;
workq.clear();
bool matched = false;
int nstack = 0;
stack[nstack].id = id;
stack[nstack++].cond = 0;
while (nstack > 0) {
int id = stack[--nstack].id;
uint32_t cond = stack[nstack].cond;
Loop:
Prog::Inst* ip = inst(id);
switch (ip->opcode()) {
default:
LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
break;
case kInstAltMatch:
// TODO(rsc): Ignoring kInstAltMatch optimization.
// Should implement it in this engine, but it's subtle.
DCHECK(!ip->last());
// If already on work queue, (1) is violated: bail out.
if (!AddQ(&workq, id+1))
goto fail;
id = id+1;
goto Loop;
case kInstByteRange: {
int nextindex = nodebyid[ip->out()];
if (nextindex == -1) {
if (nalloc >= maxnodes) {
if (ExtraDebug)
LOG(ERROR) << StringPrintf(
"Not OnePass: hit node limit %d >= %d", nalloc, maxnodes);
goto fail;
}
nextindex = nalloc;
AddQ(&tovisit, ip->out());
nodebyid[ip->out()] = nalloc;
nalloc++;
nodes.insert(nodes.end(), statesize, 0);
// Update node because it might have been invalidated.
node = IndexToNode(nodes.data(), statesize, nodeindex);
}
for (int c = ip->lo(); c <= ip->hi(); c++) {
int b = bytemap_[c];
// Skip any bytes immediately after c that are also in b.
while (c < 256-1 && bytemap_[c+1] == b)
c++;
uint32_t act = node->action[b];
uint32_t newact = (nextindex << kIndexShift) | cond;
if (matched)
newact |= kMatchWins;
if ((act & kImpossible) == kImpossible) {
node->action[b] = newact;
} else if (act != newact) {
if (ExtraDebug)
LOG(ERROR) << StringPrintf(
"Not OnePass: conflict on byte %#x at state %d", c, *it);
goto fail;
}
}
if (ip->foldcase()) {
Rune lo = std::max<Rune>(ip->lo(), 'a') + 'A' - 'a';
Rune hi = std::min<Rune>(ip->hi(), 'z') + 'A' - 'a';
for (int c = lo; c <= hi; c++) {
int b = bytemap_[c];
// Skip any bytes immediately after c that are also in b.
while (c < 256-1 && bytemap_[c+1] == b)
c++;
uint32_t act = node->action[b];
uint32_t newact = (nextindex << kIndexShift) | cond;
if (matched)
newact |= kMatchWins;
if ((act & kImpossible) == kImpossible) {
node->action[b] = newact;
} else if (act != newact) {
if (ExtraDebug)
LOG(ERROR) << StringPrintf(
"Not OnePass: conflict on byte %#x at state %d", c, *it);
goto fail;
}
}
}
if (ip->last())
break;
// If already on work queue, (1) is violated: bail out.
if (!AddQ(&workq, id+1))
goto fail;
id = id+1;
goto Loop;
}
case kInstCapture:
case kInstEmptyWidth:
case kInstNop:
if (!ip->last()) {
// If already on work queue, (1) is violated: bail out.
if (!AddQ(&workq, id+1))
goto fail;
stack[nstack].id = id+1;
stack[nstack++].cond = cond;
}
if (ip->opcode() == kInstCapture && ip->cap() < kMaxCap)
cond |= (1 << kCapShift) << ip->cap();
if (ip->opcode() == kInstEmptyWidth)
cond |= ip->empty();
// kInstCapture and kInstNop always proceed to ip->out().
// kInstEmptyWidth only sometimes proceeds to ip->out(),
// but as a conservative approximation we assume it always does.
// We could be a little more precise by looking at what c
// is, but that seems like overkill.
// If already on work queue, (1) is violated: bail out.
if (!AddQ(&workq, ip->out())) {
if (ExtraDebug)
LOG(ERROR) << StringPrintf(
"Not OnePass: multiple paths %d -> %d\n", *it, ip->out());
goto fail;
}
id = ip->out();
goto Loop;
case kInstMatch:
if (matched) {
// (3) is violated
if (ExtraDebug)
LOG(ERROR) << StringPrintf(
"Not OnePass: multiple matches from %d\n", *it);
goto fail;
}
matched = true;
node->matchcond = cond;
if (ip->last())
break;
// If already on work queue, (1) is violated: bail out.
if (!AddQ(&workq, id+1))
goto fail;
id = id+1;
goto Loop;
case kInstFail:
break;
}
}
}
if (ExtraDebug) { // For debugging, dump one-pass NFA to LOG(ERROR).
LOG(ERROR) << "bytemap:\n" << DumpByteMap();
LOG(ERROR) << "prog:\n" << Dump();
std::map<int, int> idmap;
for (int i = 0; i < size; i++)
if (nodebyid[i] != -1)
idmap[nodebyid[i]] = i;
string dump;
for (Instq::iterator it = tovisit.begin(); it != tovisit.end(); ++it) {
int id = *it;
int nodeindex = nodebyid[id];
if (nodeindex == -1)
continue;
OneState* node = IndexToNode(nodes.data(), statesize, nodeindex);
StringAppendF(&dump, "node %d id=%d: matchcond=%#x\n",
nodeindex, id, node->matchcond);
for (int i = 0; i < bytemap_range_; i++) {
if ((node->action[i] & kImpossible) == kImpossible)
continue;
StringAppendF(&dump, " %d cond %#x -> %d id=%d\n",
i, node->action[i] & 0xFFFF,
node->action[i] >> kIndexShift,
idmap[node->action[i] >> kIndexShift]);
}
}
LOG(ERROR) << "nodes:\n" << dump;
}
dfa_mem_ -= nalloc*statesize;
onepass_nodes_ = new uint8_t[nalloc*statesize];
memmove(onepass_nodes_, nodes.data(), nalloc*statesize);
return true;
fail:
return false;
}
} // namespace re2